The Spasmolytic, Bronchodilator, and Vasodilator Activities of Parmotrema perlatum Are Explained by Anti-Muscarinic and Calcium Antagonistic Mechanisms
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Analysis of Pp.Cr
2.2. Acute Toxicity of Pp.Cr
2.3. Spasmolytic Effect of Pp.Cr
2.4. Tracheo-Relaxant Effect of Pp.Cr
2.5. Vasodilator Effect of Pp.Cr
3. Discussion
4. Materials and Methods
4.1. Preparation of Crude Extract
4.2. Chemicals and Standard Drugs
4.3. Animals
4.4. Phytochemical Screening
4.5. HPLC System and Conditions
4.6. Acute Toxicity Test
4.7. Spasmolytic/Spasmogenic Activity on Isolated Rabbit Jejunum Preparations
4.8. Bronchodilator Activity on Isolated Rabbit Tracheal Preparations
4.9. Vasodilator Activity on Isolated Rabbit Aorta Preparations
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Liu, L.; Oza, S.; Hogan, D.; Chu, Y.; Perin, J.; Zhu, J.; Lawn, J.E.; Cousens, S.; Mathers, C.; Black, R.E. Global, regional, and national causes of under-5 mortality in 2000–15: An updated systematic analysis with implications for the Sustainable Development Goals. Lancet 2016, 388, 3027–3035. [Google Scholar] [CrossRef] [Green Version]
- UNICEF, One Is too Many Ending Child Deaths from Pneumonia and Diarrhoea. 2016. Available online: https://www.unicef.org/publications/index_93020.html (accessed on 14 August 2021).
- Barr, W.; Smith, A. Acute diarrhea in adults. Am. Fam. Physician 2014, 89, 180–189. [Google Scholar]
- Papi, A.; Brightling, C.; Pedersen, S.; Reddel, H. Seminar Asthma. Lancet 2018, 391, 783–800. [Google Scholar] [CrossRef]
- El-Husseini, Z.W.; Gosens, R.; Dekker, F.; Koppelman, G.H. The genetics of asthma and the promise of genomics-guided drug target discovery. Lancet Respir. Med. 2020, 8, 1045–1056. [Google Scholar] [CrossRef]
- Pierdomenico, S.D.; DI Nicola, M.; Esposito, A.L.; Di Mascio, R.; Ballone, E.; Lapenna, D.; Cuccurullo, F. Prognostic Value of Different Indices of Blood Pressure Variability in Hypertensive Patients. Am. J. Hypertens. 2009, 22, 842–847. [Google Scholar] [CrossRef] [PubMed]
- Freedman, B.I.; Cohen, A.H. Hypertension-attributed nephropathy: What’s in a name? Nat. Rev. Nephrol. 2016, 12, 27. [Google Scholar] [CrossRef] [PubMed]
- Frishman, W.H.; Beravol, P.; Carosella, C. Alternative and Complementary Medicine for Preventing and Treating Cardiovascular Disease. Disease 2009, 55, 121–192. [Google Scholar] [CrossRef] [PubMed]
- Susalit, E.; Agus, N.; Effendi, I.; Tjandrawinata, R.; Nofiarny, D.; Perrinjaquet-Moccetti, T.; Verbruggen, M. Olive (Olea europaea) leaf extract effective in patients with stage-1 hypertension: Comparison with Captopril. Phytomedicine 2011, 18, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Tabassum, N.; Ahmad, F. Role of natural herbs in the treatment of hypertension. Pharmacogn. Rev. 2011, 5, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Gilani, A.; Jabeen, Q.; Ghayur, M.; Janbaz, K.; Akhtar, M. Studies on the antihypertensive, antispasmodic, bronchodilator and hepatoprotective activities of the Carumcopticum seed extract. J. Ethnopharmacol. 2005, 98, 127–135. [Google Scholar] [CrossRef]
- Gilani, A.H.; Khan, A.-U.; Raoof, M.; Ghayur, M.N.; Siddiqui, B.; Vohra, W.; Begum, S. Gastrointestinal, selective airways and urinary bladder relaxant effects of Hyoscyamusniger are mediated through dual blockade of muscarinic receptors and Ca2+channels. Fundam. Clin. Pharmacol. 2008, 22, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Ajay, M.; Gilani, A.; Mustafa, M. Effects of flavonoids on vascular smooth muscle of the isolated rat thoracic aorta. Life Sci. 2003, 74, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Bolton, T.B. Mechanisms of action of transmitters and other substances on smooth muscle. Physiol. Rev. 1979, 59, 606–718. [Google Scholar] [CrossRef] [PubMed]
- Gilani, A.; Aziz, N.; Khurram, I.M.; Chaudhary, K.S.; Iqbal, A. Bronchodilator, spasmolytic and calcium antagonist activities of Nigella sativa seeds (Kalonji): A traditional herbal product with multiple medicinal uses. J. Pak. Med. Assoc. 2001, 51, 115. [Google Scholar] [PubMed]
- Mehmood, M.H.; Rehman, A.; Rehman, N.; Gilani, A. Studies on Prokinetic, Laxative and Spasmodic Activities of Phyllanthus emblica in Experimental Animals. Phytotherapy Res. 2013, 27, 1054–1060. [Google Scholar] [CrossRef]
- Hussain, M.; Waqas, H.M.; Raza, S.M.; Farooq, U.; Ahmed, M.M.; Majeed, A. Anti-cholinergic and Ca2+-antagonist mechanisms explain the pharmacological basis for folkloric use of Sisymbriumirio Linn. in gastrointestinal, airways and vascular system ailments. J. Ethnopharmacol. 2016, 193, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Imran, I.; Hussain, L.; Zia-Ul-Haq, M.; Janbaz, K.H.; Gilani, A.H.; De Feo, V. Gastrointestial and respiratory activities of Acacia leucophloea. J. Ethnopharmacol. 2011, 138, 676–682. [Google Scholar] [CrossRef]
- Hill-Eubanks, D.C.; Werner, M.E.; Heppner, T.J.; Nelson, M.T. Calcium Signaling in Smooth Muscle. Cold Spring Harb. Perspect. Biol. 2011, 3, a004549. [Google Scholar] [CrossRef]
- Monnerot, M.; Vigne, J.-D.; Biju-Duval, C.; Casane, D.; Callou, C.; Hardy, C.; Mougel, F.; Soriguer, R.; Dennebouy, N.; Mounolou, J.C. Rabbit and man: Genetic and historic approach. Genet. Sel. Evol. 1994, 26, 167S–182S. [Google Scholar] [CrossRef]
- Khare, C.P. Indian Medicinal Plants: An Illustrated Dictionary; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2004; p. 113. [Google Scholar]
- Kaushal, K.; Upreti, D.K. Parmelia spp. (lichens) in ancient medicinal plant lore of India. Econ. Bot. 2001, 55, 458–459. [Google Scholar] [CrossRef]
- Abdullah, S.T.; Hamid, H.; Ali, M.; Ansari, S.H.; Alam, M.S. Two New Terpenes from the Lichen Parmeliaperlata. Indian J. Chem. 2007, 38, 173–176. [Google Scholar] [CrossRef]
- Sharma, A.K.; Sharma, M.; Dobhal, M.P. Phytochemical investigation of therapeutic important lichen: Parmeliaperlata. J. Nat. Prod. Plant Resour. 2012, 2, 101–106. [Google Scholar]
- Nielsen, F.H. Manganese, Molybdenum, Boron, Chromium, and Other Trace Elements. Present Knowl. Nutr. 2012, 18, 586–607. [Google Scholar] [CrossRef]
- Müller, K. Pharmaceutically relevant metabolites from lichens. Appl. Microbiol. Biotechnol. 2001, 56, 9–16. [Google Scholar] [CrossRef]
- Halama, P.; Van Haluwin, C.V. Antifungal activity of lichen extracts and lichenic acids. BioControl 2004, 49, 95–107. [Google Scholar] [CrossRef]
- Jothi, G.; Brindha, P. Antidiabetic and antihyperlipidemic effect of Parmeliaperlata. Ach. in alloxan induced diabetic rats. Int. J. Pharm. Pharm. Sci. 2014, 6, 43–46. [Google Scholar]
- Shailajan, S.; Joshi, M.; Tiwari, B. Hepatoprotective activity of Parmeliaperlata (Huds.) Ach. against CCl4 induced liver toxicity in Albino Wistar rats. J. Appl. Pharm. Sci. 2014, 4, 70. [Google Scholar]
- Bézivin, C.; Tomasi, S.; Lohézic-Le Dévéhat, F.; Boustie, J. Cytotoxic activity of some lichen extracts on murine and human cancer cell lines. Phytomedicine 2003, 10, 499–503. [Google Scholar] [CrossRef]
- Rahman, H.; Vijaya, B.; Ghosh, S.; Pant, G.; Sibi, G. In Vitro Studies on Antioxidant, Hypolipidemic and Cytotoxic Potential of ParmeliaPerlata. Am. J. Life Sci. 2014, 2, 7. [Google Scholar] [CrossRef] [Green Version]
- Goyal, P.K.; Verma, S.K.; Sharma, A.K. Evaluation of antiurolithiatic effects of Parmeliaperlata against calcium oxalate calculi in hyperoxaluric rats. J. Appl. Pharm. Sci. 2018, 8, 129–135. [Google Scholar]
- Manojlović, N.T.; Rančić, A.B.; Décor, R.; Vasiljević, P.; Tomović, J. Determination of chemical composition and antimicrobial, antioxidant and cytotoxic activities of lichens Parmeliaconspersa and Parmeliaperlata. J. Food Meas. Charact. 2021, 15, 686–696. [Google Scholar] [CrossRef]
- Lakshmi, V.; Ameta, K.; Mishra, V.; Srivastava, A.; Agarwal, S.; Palit, G.; Mahdi, A.A. Gastroprotective effect of ethanolic extract of Parmeliaperlata in rats. J. Phytopharm. 2013, 2, 19–25. [Google Scholar]
- Kosanić, M.M.; Ranković, B.R.; Stanojković, T.P. Agriculture, Antioxidant, antimicrobial and anticancer activities of three Parmelia species. J. Sci. Food Agric. 2012, 92, 1909–1916. [Google Scholar] [CrossRef]
- Hoda, S.; Vijayaraghavan, P. Evaluation of antimicrobial prospective of Parmotremaperlatum hexane extract. Int. J. Pharm. Res. Allied Sci. 2015, 4, 47–53. [Google Scholar]
- Cakmak, K.C.; Gülçin, I. Anticholinergic and antioxidant activities of usnic acid-an activity-structure insight. Toxicol. Rep. 2019, 6, 1273–1280. [Google Scholar] [CrossRef]
- Hoa, N.T.; Van Bay, M.; Mechler, A.; Vo, Q.V. Is Usnic Acid a Promising Radical Scavenger? ACS Omega 2020, 5, 17715–17720. [Google Scholar] [CrossRef]
- Paul, S.; Singh, A.R.; Sasikumar, C.S. Innovation, An antioxidant and bioactive compound studies of Parmeliaperlata, Ganoderma lucidum and Phellinus igniarius–supplimentory drug. Asian J. Pharm. Technol. Innov. 2014, 2, 13–22. [Google Scholar]
- Ratz, P.H.; Berg, K.M.; Urban, N.H.; Miner, A.S. Regulation of smooth muscle calcium sensitivity: KCl as a calcium-sensitizing stimulus. Am. J. Physiol. Physiol. 2005, 288, C769–C783. [Google Scholar] [CrossRef] [Green Version]
- Broadley, K.J.; Kelly, D.R. Muscarinic receptor agonists and antagonists. Molecules 2001, 6, 142–193. [Google Scholar] [CrossRef] [Green Version]
- Barnes, P.J.; Hansel, T.T. Prospects for new drugs for chronic obstructive pulmonary disease. Lancet 2004, 364, 985–996. [Google Scholar] [CrossRef]
- Jude, J.A.; Wylam, M.E.; Walseth, T.F.; Kannan, M.S. Calcium Signaling in Airway Smooth Muscle. Proc. Am. Thorac. Soc. 2008, 5, 15–22. [Google Scholar] [CrossRef]
- Enaud, R.; Prevel, R.; Ciarlo, E.; Beaufils, F.; Wieërs, G.; Guery, B.; Delhaes, L. The Gut-Lung Axis in Health and Respiratory Diseases: A Place for Inter-Organ and Inter-Kingdom Crosstalks. Front. Cell. Infect. Microbiol. 2020, 10, 9. [Google Scholar] [CrossRef] [Green Version]
- Gayton, A.C.; Hall, J.E. Text. Book of Medical Physiology, 11th ed.; WBSaunders: Philadelphia, PA, USA, 2006; pp. 100–123. [Google Scholar]
- Ghayur, M.N.; Gilani, A.H. Pharmacological Basis for the Medicinal Use of Ginger in Gastrointestinal Disorders. Dig. Dis. Sci. 2005, 50, 1889–1897. [Google Scholar] [CrossRef]
- Perez, D.M. Structure–function of α1-adrenergic receptors. Biochem. Pharmacol. 2007, 73, 1051–1062. [Google Scholar] [CrossRef] [Green Version]
- Revuelta, M.; Cantabrana, B.; Hidalgo, A. Depolarization-dependent effect of flavonoids in rat uterine smooth muscle contraction elicited by CaCl2. Gen. Pharmacol. Vasc. Syst. 1997, 29, 847–857. [Google Scholar] [CrossRef]
- Cui, H.; Liu, Y.; Li, T.; Zhang, Z.; Ding, M.; Long, Y.; She, Z. 3-Arylisoindolinone and sesquiterpene derivatives from the mangrove endophytic fungi Aspergillus versicolor SYSU-SKS025. Fitoterapia 2018, 124, 177–181. [Google Scholar] [CrossRef]
- Gilani, A.H.; Rahman, A.-U. Trends in ethnopharmacology. J. Ethnopharmacol. 2005, 100, 43–49. [Google Scholar] [CrossRef]
- Rahman, H.M.A.; Ahmed, K.; Rasool, M.F.; Imran, I. Pharmacological evaluation of smooth muscle relaxant and cardiac-modulation potential of Phyla nodiflora in ex-vivo and in-vivo experiments. Asian Pac. J. Trop. Med. 2017, 10, 1146–1153. [Google Scholar] [CrossRef]
- National Research Council. Guide for the Care and Use of Laboratory Animals; The National Academies Press: Washington, DC, USA, 2010. [Google Scholar]
- Aleem, A.; Janbaz, K.H. Dual mechanisms of anti-muscarinic and Ca++ antagonistic activities to validate the folkloric uses of Cyperusniveus Retz. as antispasmodic and antidiarrheal. J. Ethnopharmacol. 2018, 213, 138–148. [Google Scholar] [CrossRef]
- de Paz, G.A.; Raggio, J.; Gómez-Serranillos, M.; Palomino, O.; González-Burgos, E.; Carretero, M.; Crespo, A. HPLC isolation of antioxidant constituents from Xanthoparmelia spp. J. Pharm. Biomed. Anal. 2010, 53, 165–171. [Google Scholar] [CrossRef]
- Jenkinson, D. Classical Approaches to the Study of DrugÒ Receptor Interactions. Textb. Recept. Pharmacol. 2002, 2, 3–80. [Google Scholar] [CrossRef]
- Khan, A.-U.; Gilani, A.H. Antispasmodic and bronchodilator activities of Artemisia vulgaris are mediated through dual blockade of muscarinic receptors and calcium influx. J. Ethnopharmacol. 2009, 126, 480–486. [Google Scholar] [CrossRef]
- Charlton, S.J.; Vauquelin, G. Elusive equilibrium: The challenge of interpreting receptor pharmacology using calcium assays. Br. J. Pharmacol. 2010, 161, 1250–1265. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, M.; Bakhsh, H.; Syed, S.K.; Ullah, M.S.; Alqahtani, A.M.; Alqahtani, T.; Aldahish, A.A.; Emran, T.B.; Rehman, K.U.; Janbaz, K.H. The Spasmolytic, Bronchodilator, and Vasodilator Activities of Parmotrema perlatum Are Explained by Anti-Muscarinic and Calcium Antagonistic Mechanisms. Molecules 2021, 26, 6348. https://doi.org/10.3390/molecules26216348
Hussain M, Bakhsh H, Syed SK, Ullah MS, Alqahtani AM, Alqahtani T, Aldahish AA, Emran TB, Rehman KU, Janbaz KH. The Spasmolytic, Bronchodilator, and Vasodilator Activities of Parmotrema perlatum Are Explained by Anti-Muscarinic and Calcium Antagonistic Mechanisms. Molecules. 2021; 26(21):6348. https://doi.org/10.3390/molecules26216348
Chicago/Turabian StyleHussain, Musaddique, Hazoor Bakhsh, Shahzada Khurram Syed, Malik Saad Ullah, Ali M. Alqahtani, Taha Alqahtani, Afaf A. Aldahish, Talha Bin Emran, Kashif Ur Rehman, and Khalid Hussain Janbaz. 2021. "The Spasmolytic, Bronchodilator, and Vasodilator Activities of Parmotrema perlatum Are Explained by Anti-Muscarinic and Calcium Antagonistic Mechanisms" Molecules 26, no. 21: 6348. https://doi.org/10.3390/molecules26216348
APA StyleHussain, M., Bakhsh, H., Syed, S. K., Ullah, M. S., Alqahtani, A. M., Alqahtani, T., Aldahish, A. A., Emran, T. B., Rehman, K. U., & Janbaz, K. H. (2021). The Spasmolytic, Bronchodilator, and Vasodilator Activities of Parmotrema perlatum Are Explained by Anti-Muscarinic and Calcium Antagonistic Mechanisms. Molecules, 26(21), 6348. https://doi.org/10.3390/molecules26216348