Antimicrobial Activity and Synergy Investigation of Hypericum scabrum Essential Oil with Antifungal Drugs
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Analysis
2.2. Antimicrobial Activity
3. Materials and Methods
3.1. Plant Material
3.2. Essential Oil Extraction
3.3. GC Analyses
3.4. GC–MS Analyses
3.5. Qualitative and Quantitative Analysis
3.6. Antimicrobial Activity
3.7. Synergy Test by Microdilution Checkerboard Technique
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dobnndt, U.; Hentschel, U.; Kaper, J.B.; Hacker, J. Genome plasticity in pathogenic and nonpathogenic enterobactetia. Curr. Top. Microbiol. Immunol. 2002, 264, 157–175. [Google Scholar]
- Duval-Iflah, Y.; Rmbaud, P.; Tancrede, C.; Rousseau, M. R-plasmid transfer from Serratia liquefaciens to Escherichia coli in vitro and in vivo in the digestive tract of gnotobiotic mice associated with human fecal flora. Infect. Immun. 1980, 28, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Andremont, A. Comment définir le potentiel de selection de la résistance bactérienne aux antibiotiques? Med. Mal. Infect. 2005, 35, 207–211. [Google Scholar] [CrossRef]
- Fischbach, M.A. Combination therapies for combating antimicrobial resistance. Curr. Opin. Microbiol. 2011, 14, 519–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williamson, E.M. Synergy and other interactions in phytomedicines. Phytomedicine 2001, 8, 401–409. [Google Scholar] [CrossRef]
- Fadli, M.; Saad, A.; Sayadi, S.; Chevalier, J.; Mezrioui, N.E.; Pagès, J.M.; Hassani, L. Antibacterial activity of Thymus maroccanus and Thymus broussonetii essential oils against nosocomial infection—bacteria and their synergistic potential with antibiotics. Phytomedicine 2012, 19, 464–471. [Google Scholar] [CrossRef]
- Mahboubi, M.; Bidgoli, F.G. In vitro synergistic efficacy of combination of amphotericin B with Myrtus communis essential oil against clinical isolates of Candida albicans. Phytomedicine 2010, 17, 771–774. [Google Scholar] [CrossRef]
- Rosato, A.; Vitali, C.; De Laurentis, N.; Armenise, D.; Milillo, M. Antibacterial effect of some essential oils administered alone or in combination with Norfloxacin. Phytomedicine 2007, 14, 727–732. [Google Scholar] [CrossRef]
- Cavaliere, C.; Rea, P.; Lynch, M.D.; Blumenthal, M. Herbal supplement sales experience slight increase in 2008. HerbalGram 2009, 82, 58–61. [Google Scholar]
- Gambarana, C.; Tolu, P.L.; Masi, F.; Rinaldi, M.; Giachetti, D.; Morazzoni, P.; De Montis, M.G. A study of the antidepressant activity of Hypericum perforatum on animal models. Pharmacopsychiatry 2001, 34, 42–44. [Google Scholar] [CrossRef]
- Cakilcioglu, U.; Turkoglu, I. An ethnobotanical survey of medicinal plants in Sivrice (Elazığ-Turkey). J. Ethnopharmacol. 2010, 132, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Amiri, M.S.; Jabbarzadeh, P.; Akhondi, M. An ethnobotanical survey of medicinal plants used by indigenous people in Zangelanlo district, Northeast Iran. J. Med. Plant Res. 2012, 6, 749–753. [Google Scholar]
- Sezik, E.; Yesilada, E.; Shadidoyatov, H.; Kulivey, Z.; Nigmatullaev, A.M.; Aripov, H.N.; Takaishi, Y.; Takeda, Y.; Honda, G. Folk medicine in Uzbekistan: I. Toshkent, Djizzax, and Samarqand provinces. J. Ethnopharmacol. 2004, 92, 197–207. [Google Scholar] [CrossRef]
- Fakir, H.; Korkmaz, M.; Güller, B. Medicinal Plant Diversity of Western Mediterrenean Region in Turkey. J. Appl. Biol. Sci. 2009, 3, 3–4. [Google Scholar]
- Ebrahimzadeh, M.A.; Nabavi, S.M.; Nabavi, S.F.; Ahangar, N. Anticonvulsant activity of Hypericum scabrum L.; possible mechanism involved. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 2141–2144. [Google Scholar] [PubMed]
- Eslami, B.; Nabavi, S.F.; Nabavi, S.M.; Ebrahimzadeh, M.A.; Mahmoudi, M. Pharmacological activities of Hypericum scabrum L. Eur. Rev. Med. Pharmacol. Sci. 2011, 15, 532–537. [Google Scholar]
- Unal, E.L.; Mavi, A.; Kara, A.A.; Cakir, A.; Şengül, M.; Yildirim, A. Antimicrobial and Antioxidant Activities of Some Plants Used as Remedies in Turkish Traditional Medicine. Pharm. Biol. 2008, 46, 207–224. [Google Scholar] [CrossRef] [Green Version]
- Akhbari, M.; Batooli, H.; Mozdianfard, M. Comparative study of composition and biological activities of SDE prepared essential oils from flowers and fruits of two Hypericum species from central Iran. Nat. Prod. Res. 2012, 26, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Morteza-Semnani, K.; Saeedi, M.; Changizi, S. The essential oil composition of Hypericum scabrum L. from Iran. Flavour Fragr. J. 2006, 21, 513–515. [Google Scholar] [CrossRef]
- Çakir, A.; Duru, M.E.; Harmandar, M.; Ciriminna, R.; Passannanti, S.; Piozzi, F. Comparison of the Volatile Oils of Hypericum scabrum L. and Hypericum perforatum L. from Turkey. Flavour Fragr. J. 1997, 12, 285–287. [Google Scholar] [CrossRef]
- Sharopov, F.; Gulmurodov, I.; Setzer, W. Essential oil composition of Hypericum perforatum L. and Hypericum scabrum L. growing wild in Tajikistan. J. Chem. Pharm. Res. 2010, 2, 284–290. [Google Scholar]
- Baser, K.H.C.; Ozek, T.; Nuriddinov, H.R.; Demirci, A.B. Essential oils of two Hypericum species from Uzbekistan. Chem. Nat. Compd. 2002, 38, 55–57. [Google Scholar]
- Ríos, J.L.; Recio, M.C. Medicinal plants and antimicrobial activity. J. Ethnopharmacol. 2005, 100, 80–84. [Google Scholar] [CrossRef]
- Fahed, L.; Stien, D.; Ouaini, N.; Eparvier, V.; El Beyrouthy, M. Chemical diversity and antimicrobial activity of the essential oils of Salvia multicaulis Vahl. Chem. Biodivers. 2016, 13, 591–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawksworth, D.L.; Allner, K. Administration and safety. In Filamentous Fungi; Hawksworth, D.L., Kirsop, B.E., Eds.; Cambridge University Press: Cambridge, UK, 1988. [Google Scholar]
- González-Fernández, R.; Prats, E.; Jorrín-Novo, J.V. Proteomics of plant pathogenic fungi. J. Biomed. Biotechnol. 2010, 2010, 1–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mouterde, P. Nouvelle Flore du Liban et de la Syrie, Tome III; Dar El-Marchreq: Beyrouth, Lebanon, 1970. [Google Scholar]
- European Pharmacopoeia, 3rd ed.; Council of Europe: Strasbourg, France, 1997; pp. 1–1799.
- Jennings, W.; Shibamoto, T. Qualitative Analysis of Flavour and Fragrance Volatiles by Glass Capillary Gas Chromatography; Academic Press: New York, NY, USA, 1980. [Google Scholar]
- Davies, N.W. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicone and Carbowax 20M phases. J. Chromatogr. A 1990, 503, 1–24. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Nirma, C.; Eparvier, V.; Stien, D. Antibacterial Ilicicolinic Acids C and D and Ilicicolinal from Neonectria discophora SNB-CN63 Isolated from a Termite Nest. J. Nat. Prod. 2015, 78, 159–162. [Google Scholar] [CrossRef]
- Barry, A.L.; Craig, W.A.; Nadler, H.; Reller, L.B.; Sanders, C.C.; Swenson, J.M. M26-A Reference Methods for Determining Bactericidal Activity of Antimicrobial Agents; Approved Guideline; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 1999. [Google Scholar]
- Rex, J.H.; Alexander, B.D.; Andes, D.; Arthington-Skaggs, B.; Brown, S.D.; Chaturvedi, V.; Ghannoum, M.A.; Espinel-Ingroff, A. M38-A2 Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard, 2nd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008. [Google Scholar]
- Rex, J.H.; Alexander, B.D.; Andes, D.; Arthington-Skaggs, B.; Brown, S.D.; Chaturvedi, V.; Ghannoum, M.A.; Espinel-Ingroff, A.; Knapp, C.C.; Ostrosky-Zeichner, L.; et al. M27-A3 Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard, 3rd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008. [Google Scholar]
- Fahed, L.; Khoury, M.; Stien, D.; Ouaini, N.; Eparvier, V.; El Beyrouthy, M. Essential oils composition and antimicrobial activity of six conifers harvested in Lebanon. Chem. Biodivers. 2017, 14, 825–830. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.M.S.; Theodoro, P.N.E.T.; Basset, C.; Silva, M.R.R.; Beauchene, J.; Espindola, L.S.; Stien, D. Search for antifungal compounds from the wood of durable tropical trees. J. Nat. Prod. 2010, 73, 1706–1707. [Google Scholar] [CrossRef] [PubMed]
- Vinks, A.; Derendorf, H.; Mouton, J. Fundamentals of Antimicrobial Pharmacokinetics and Pharmacodynamics; Springer: New York, NY, USA, 2013. [Google Scholar]
- Houël, E.; Rodrigues, A.M.S.; Jahn-Oyac, A.; Bessière, J.-M.; Eparvier, V.; Deharo, E.; Stien, D. In vitro antidermatophytic activity of Otacanthus azureus (Linden) Ronse essential oil alone and in combination with azoles. J. Appl. Microbiol. 2013, 116, 288–294. [Google Scholar] [CrossRef]
- Shin, S.; Lim, S. Antifungal effects of herbal essential oils alone and in combination with ketoconazole against Trichophyton spp. J. Appl. Microbiol. 2004, 97, 1289–1296. [Google Scholar] [CrossRef] [PubMed]
RI a | RI b | Compounds | CAS No | Molecular Formula | (%) |
---|---|---|---|---|---|
901 | - | Nonane | 111-84-2 | C9H20 | 3.0 |
938 | 1076 | α-Pinene | 80-56-8 | C10H16 | 37.8 |
980 | 1118 | β-Pinene | 127-91-3 | C10H16 | 3.4 |
993 | 1174 | Myrcene | 123-35-3 | C10H16 | 5.6 |
1030 | 1203 | Limonene | 138-86-3 | C10H16 | 11.6 |
1045 | 1269 | cis-β-Ocimene | 3338-55-4 | C10H16 | 1.1 |
1050 | 1253 | trans-β-Ocimene | 3779-61-1 | C10H16 | 0.9 |
1100 | 1490 | Undecane | 1120-21-4 | C11H24 | 1.6 |
1134 | 1493 | allo-Ocimene | 673-84-7 | C10H16 | 1.7 |
1138 | 1664 | Pinocarveol | 5947-36-4 | C10H16O | 0.1 |
1152 | 1683 | trans-Verbenol | 1820-09-3 | C10H16O | 0.2 |
1168 | 1697 | α-Phellandren-8-ol | 1686-20-0 | C10H16O | 0.1 |
1189 | 1706 | α-Terpineol | 98-55-5 | C10H18O | 0.1 |
1196 | 1804 | Myrtenol | 515-00-4 | C10H16O | 0.1 |
1352 | 1466 | α-Cubebene | 17699-14-8 | C15H24 | 0.1 |
1377 | 1497 | α-Copaene | 3856-25-5 | C15H24 | 0.3 |
1385 | 1533 | β-Bourbonene | 5208-59-3 | C15H24 | 0.1 |
1415 | 1612 | trans-Caryophyllene | 87-44-5 | C15H24 | 1.3 |
1437 | 1628 | Aromadendrene | 109119-91-7 | C15H24 | 0.3 |
1439 | 1650 | α-Guaiene | 3691-12-1 | C15H24 | 0.3 |
1455 | 1689 | trans-β-Farnesene | 18794-84-8 | C15H24 | 2.0 |
1477 | 1726 | Germacrene D | 23986-74-5 | C15H24 | 1.3 |
1485 | 1711 | β-Selinene | 17066-67-0 | C15H24 | 0.4 |
1495 | 1740 | Valencene | 4630-07-3 | C15H24 | 1.2 |
1500 | 1740 | α-Muurolene | 10208-80-7 | C15H24 | 0.4 |
1515 | 1776 | γ-Cadinene | 39029-41-9 | C15H24 | 0.7 |
1525 | 1772 | δ-Cadinene | 483-76-1 | C15H24 | 1.3 |
1526 | 1773 | α-Cadinene | 24406-05-1 | C15H24 | 0.2 |
1541 | 1918 | α-Calacorene | 38599-17-6 | C15H20 | 0.2 |
1566 | 2050 | Nerolidol | 142-50-7 | C15H26O | 0.4 |
1577 | 2008 | Spathulenol | 6750-60-3 | C15H24O | 2.7 |
1585 | 2098 | Globulol | 489-41-8 | C15H26O | 0.5 |
1591 | 2104 | Viridiflorol | 552-02-3 | C15H26O | 0.3 |
1640 | 2188 | T-Cadinol | 5937-11-1 | C15H26O | 0.9 |
1645 | 2145 | Torreyol | 19435-97-3 | C15H26O | 0.3 |
1649 | 2188 | α-Eudesmol | 473-16-5 | C15H26O | 0.2 |
1650 | 2256 | α-Cadinol | 481-34-5 | C15H26O | 1.4 |
Total identified | 84.2 |
Pathogens | S. aureus ATCC 29213 | C. albicans ATCC 10231 | P. aeruginosa CIP 82118 | T. rubrum SNB-TR1 | T. mentagrophytes SNB-TM1 | T. soudanense SNB-TS1 | T. violaceum SNB-TV1 | T. tonsurans SNB-TT1 |
---|---|---|---|---|---|---|---|---|
Hypericum scabrum EO | > 512 | 512 | > 512 | 64 | 32 | 32 | 32 | 64 |
Reference compounds | 1 a | 1 b | 0.25 c | 2 b | 1 d | 2 b | 2 b | 4 b |
Nonane | α-Pinene | β-Pinene | Myrcene | Limonene | Reconstructed EO (61.4%) | |
---|---|---|---|---|---|---|
T. rubrum SNB-TR1 | 512 | 512 | 512 | 512 | 512 | 256 |
Combination | EO: Fluconazole | EO: Griseofulvin | EO: Amphotericin B | |
---|---|---|---|---|
EO | MICa MICc FIC | 64 32 0.5 | 64 32 0.5 | 64 32 0.5 |
Drug | MICa MICc FIC | 2 0.25 0.125 | 1 0.0625 0.0625 | 4 0.125 0.03 |
FICI | 0.6 | 0.6 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fahed, L.; Beyrouthy, M.E.; Ouaini, N.; Eparvier, V.; Stien, D.; Vitalini, S.; Iriti, M. Antimicrobial Activity and Synergy Investigation of Hypericum scabrum Essential Oil with Antifungal Drugs. Molecules 2021, 26, 6545. https://doi.org/10.3390/molecules26216545
Fahed L, Beyrouthy ME, Ouaini N, Eparvier V, Stien D, Vitalini S, Iriti M. Antimicrobial Activity and Synergy Investigation of Hypericum scabrum Essential Oil with Antifungal Drugs. Molecules. 2021; 26(21):6545. https://doi.org/10.3390/molecules26216545
Chicago/Turabian StyleFahed, Layal, Marc El Beyrouthy, Naïm Ouaini, Véronique Eparvier, Didier Stien, Sara Vitalini, and Marcello Iriti. 2021. "Antimicrobial Activity and Synergy Investigation of Hypericum scabrum Essential Oil with Antifungal Drugs" Molecules 26, no. 21: 6545. https://doi.org/10.3390/molecules26216545
APA StyleFahed, L., Beyrouthy, M. E., Ouaini, N., Eparvier, V., Stien, D., Vitalini, S., & Iriti, M. (2021). Antimicrobial Activity and Synergy Investigation of Hypericum scabrum Essential Oil with Antifungal Drugs. Molecules, 26(21), 6545. https://doi.org/10.3390/molecules26216545