Identification of C21 Steroidal Glycosides from Gymnema sylvestre (Retz.) and Evaluation of Their Glucose Uptake Activities
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. General Experimental Procedures
3.3. Materials
3.4. Extraction and Isolation
3.4.1. Sylvepregosides A (1)
3.4.2. Sylvepregosides B (2)
3.4.3. Sylvepregosides C (3)
3.4.4. Sylvepregosides D (4)
3.5. Glucose Uptake and GLUT-4 Fusion with the Plasma Membrane
3.5.1. Propagation and Maintenance of L6 Cells
3.5.2. Glucose Uptake Assay
3.5.3. GLUT-4 Fusion with the Plasma Membrane
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Li, K.D.; Ma, Y.R.; Zhou, T.X.; Yang, X.Z.; Choi, H.Y. Chemical constituents from roots of Sophora davidii (Franch.) Skeels and their glucose transporter 4 translocation activities. Molecules 2021, 26, 756. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.J.; Tang, Y.L.; Shi, S.R.; Gao, S.J.; Wang, Y.; Xiao, D.X.; Chen, T.Y.; He, Q.; Zhang, J.J.; Lin, Y.F. Tetrahedral framework nucleic acids ameliorate insulin resistance in type 2 diabetes mellitus via the PI3K/Akt pathway. ACS Appl. Mater. Interfaces 2021, 13, 40354–40364. [Google Scholar] [CrossRef]
- Keane, K.N.; Cruzat, V.F.; Carlessi, R.; de Bittencourt, P.I.J.; Newsholme, P. Molecular events linking oxidative stress and inflammation to insulin resistance and β-cell dysfunction. Oxid. Med. Cell. Longev. 2015, 2015. [Google Scholar] [CrossRef]
- Xu, L.; Li, Y.; Dai, Y.; Peng, J. Natural products for the treatment of type 2 diabetes mellitus: Pharmacology and mechanisms. Pharm. Res. 2018, 130, 451–465. [Google Scholar] [CrossRef]
- Editorial Committee of Chinese of Flora China Academy of Sciences. Flora China; Science Press: Beijing, China, 1977; p. 418. [Google Scholar]
- National Chinese Herbal Medicine Compilation Compilation Group. The Compilation of National Chinese Herbal Medicine; People’s Medical Publishing House: Beijing, China, 1978; p. 573. [Google Scholar]
- Xiang, J.M.; Wei, J.H.; Xiao, W.; Xu, J.L.; Xiao, P.G. Research progress in Gymnema sylvestre (Retz.) Schult. Res. Pract. Chin. Med. 2018, 32, 77–78. [Google Scholar] [CrossRef]
- Tiwari, P.; Mishra, B.N.; Sangwan, N.S. Phytochemical and pharmacological properties of Gymnema sylvestre: An important medicinal plant. Biomed. Res. Int. 2014, 2014, 830285. [Google Scholar] [CrossRef]
- Zhu, H. National medicine clinical progress of the treatment of diabetic. J. Med. Pharm. Chin. Minorities 2008, 6, 68–70. [Google Scholar] [CrossRef]
- Kang, M.H.; Lee, M.S.; Choi, M.K.; Min, K.S.; Shibamoto, T. Hypoglycemic activity of Gymnema sylvestre extracts on oxidative stress and antioxidant status in diabetic rats. J. Agric. Food Chem. 2012, 60, 2517–2524. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.S.; Wang, Y.H.; Li, R.L.; Lin, M. Study on the hypoglycemic pharmacological action of the root of Gymnema sylvestre (Retz) Schult. Phytochemistry 2000, 54, 875–881. [Google Scholar] [CrossRef]
- Ramar, K.; David Adedayo Animasaun, R.T. Patel, Rajashekhar Ingalhalli. Phytochemical constituents and hypoglycemic effect of gymnemin acid extracts from big and small leaf varieties of Gymnema sylvestre R. Br. Indonesian J. Pharm. 2016, 27, 59–65. [Google Scholar] [CrossRef]
- Zhu, X.M.; Xie, P.; Di, Y.T.; Peng, S.L.; Ding, L.S.; Wang, M.K. Two new triterpenoid saponins from Gymnema sylvestre. J. Integr. Plant Biol. 2008, 50, 589–592. [Google Scholar] [CrossRef]
- Arumugam, R.; Govindarajan, S. Histological studies on pancreatic tissue in high fat diet with low multiple dosage of streptozotocin induced type 2 diabetes after Gymnema sylvestre administration. Indian J. Public Health 2019, 10, 917–922. [Google Scholar] [CrossRef]
- Gaytán Martínez, L.A.; Sánchez-Ruiz, L.A.; Zuñiga, L.Y.; González-Ortiz, M.; Martínez-Abundis, E. Effect of Gymnema sylvestre administration on glycemic control, insulin secretion, and insulin sensitivity in patients with impaired glucose tolerance. J. Med. Food 2021, 24, 28–32. [Google Scholar] [CrossRef]
- Ulbricht, C.; Abrams, T.R.; Basch, E.; Davies-Heerema, T.; Foppa, I.; Hammerness, P.; Rusie, E.; Tanguay-Colucci, S.; Taylor, S.; Ulbricht, C.; et al. An evidence-based systematic review of gymnema (Gymnema sylvestre R. Br.) by the natural standard research collaboration. J. Diet. Suppl. 2011, 8, 311–330. [Google Scholar] [CrossRef]
- Kumar, P.M.; Venkataranganna, M.V.; Manjunath, K.; Viswanatha, G.L.; Ashok, G. Methanolic leaf extract of Gymnema sylvestre augments glucose uptake and ameliorates insulin resistance by upregulating glucose transporter-4, peroxisome proliferator-activated receptor-gamma, adiponectin, and leptin levels in vitro. J. Intercult. Ethnopharmacol. 2016, 5, 146–152. [Google Scholar] [CrossRef]
- Patel, K.; Gadewar, M.; Tripathi, R. Pharmacological and analytical aspects of gymnemic acid: A concise report. Asian Pac. J. Trop. Dis. 2012, 2, 414–416. [Google Scholar] [CrossRef]
- Li, Y.M.; Liu, Y.P.; Liang, J.J.; Wang, T.X.; Sun, M.Z.; Zhang, Z.S. Gymnemic acid ameliorates hyperglycemia through PI3K/AKT- and AMPK-Mediated signaling pathways in type 2 diabetes mellitus rats. J. Agric. Food Chem. 2019, 67, 13051–13060. [Google Scholar] [CrossRef]
- Wang, Y.; Dawid, C.; Kottra, G.; Daniel, H.; Hofmann, T. Gymnemic acids inhibit sodium-dependent glucose transporter 1. J Agric. Food Chem. 2014, 62, 5925–5931. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Chen, Y.W.; Wang, L.Y.; Tang, X.Q. Research progress on pharmacological action of Gymnema sylvestre (Retz.) Schult. Chin. Tradit. Pat. Med. 2013, 35, 1748–1751. [Google Scholar] [CrossRef]
- Qiu, Q.; Zhen, H.S.; Wei, Y.F.; Zhen, D.D. Research Progress on Effective substance and quality analysis of Gymnema sylvestre (Retz.) schult. Chin. J. Ethnomed. Ethnopharm. 2017, 26, 51–53. [Google Scholar]
- Lin, Y.L.; Wu, Y.M.; Kuo, Y.H.; Chen, C.F. Pregnane glycosides from Gymnema alternifolium. J. Chin. Chem. Soc. 2013, 46, 841–846. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Matsuchika, K.; Arihara, S.; Chang, H.C.; Wang, J.D. Pregnane glycosides, gymnepregosides A-F from the roots of Gymnema alternifolium. Chem. Pharm. Bull. 1998, 46, 1239–1243. [Google Scholar] [CrossRef]
- Li, X.; Sun, H.; Ye, Y.; Chen, F.; Tu, J.; Pan, Y. Four new immunomodulating steroidal glycosides from the stems of Stephanotis mucronata. Steroids 2006, 71, 683–690. [Google Scholar] [CrossRef]
- Li, J.L.; Zhou, J.; Chen, Z.H.; Guo, S.Y.; Li, C.Q.; Zhao, W.M. Bioactive C21 steroidal glycosides from the roots of Cynanchum otophyllum that suppress the seizure-like locomotor activity of zebrafish caused by pentylenetetrazole. J. Nat. Prod. 2015, 78, 1548–1555. [Google Scholar] [CrossRef]
- Tsoukalas, M.; Muller, C.D.; Lobstein, A.; Urbain, A. Pregnane glycosides from Cynanchum marnierianum stimulate GLP-1 secretion in STC-1 cells. Planta Med. 2016, 82, 992–999. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Yang, Y.; Zhang, Y.; Ren, F.; Xu, J.; Yu, N.; Zhao, Y. New pregnane glycosides from Gymnema sylvestre. Molecules 2015, 20, 3050–3066. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Okada, N.; Kan, Y.; Arihara, S. Steroidal glycosides from the fresh stem of Stephanotis lutchuensis var. japonica (Asclepiadaceae). Chemical structures of stephanosides K-Q. Chem. Pharm. Bull. 1996, 44, 2243–2248. [Google Scholar] [CrossRef] [PubMed]
- Trang, D.T.; Yen, D.T.H.; Cuong, N.T.; Anh, L.T.; Hoai, N.T.; Tai, B.H.; Doan, V.V.; Yen, P.H.; Quang, T.H.; Nhiem, N.X.; et al. Pregnane glycosides from Gymnema inodorum and their α-glucosidase inhibitory activity. Nat. Prod. Res. 2021, 35, 2157–2163. [Google Scholar] [CrossRef]
- Li, J.L.; Gao, Z.B.; Zhao, W.M. Identification and evaluation of antiepileptic activity of C21 steroidal glycosides from the roots of Cynanchum wilfordii. J. Nat. Prod. 2016, 79, 89–97. [Google Scholar] [CrossRef]
- Shi, L.M.; Liu, W.H.; Yu, Q.; Wan, H.T. Two New C21 steroids from the roots of Cynanchum otophyllum. J. Chem. Res. 2011, 37, 126–128. [Google Scholar] [CrossRef]
- Abe, F.; Okabe, H.; Yamauchi, T.; Honda, K.; Hayashi, N. Pregnane glycosides from Marsdenia tomentosa. Chem. Pharm. Bull. 1999, 47, 869–875. [Google Scholar] [CrossRef]
- Li, X.Y.; Zong, S.L.; Chen, F.Y.; Xu, S.F.; Ye, Y.P. Three novel immunosuppressive steroidal glycosides from the stems of Stephanotis mucronata. Nat. Prod. Commun. 2012, 7, 1269–1270. [Google Scholar] [CrossRef] [PubMed]
- Kaur, K.; Khare, M.P.; Khare, A. A novel pregnane ester tetraglycoside from Orthenthera viminea. J. Nat. Prod. 1985, 48, 928–932. [Google Scholar] [CrossRef]
- Lee, Y.S.; Kim, W.S.; Kim, K.H.; Yoon, M.J.; Cho, H.J.; Shen, Y.; Ye, J.M.; Lee, C.H.; Oh, W.K.; Kim, C.T.; et al. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes 2006, 55, 2256–2264. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, X.; Zhuang, L.; Liu, X.; Zhao, H.; Shan, Y.; Liu, Z.; Li, F.; Wang, Y.; Fang, J. Berberine decreases insulin resistance in a PCOS rats by improving GLUT4: Dual regulation of the PI3K/AKT and MAPK pathways. Regul. Toxicol. Pharmacol. 2020, 110, 104544. [Google Scholar] [CrossRef]
- Lawson, M.A.; Purslow, P.P. Differentiation of myoblasts in serum-free media: Effects of modified media are cell line-specific. Cells Tissues Organs. 2000, 167, 130–137. [Google Scholar] [CrossRef]
- Zhao, P.; Tian, D.; Song, G.; Ming, Q.; Liu, J.; Shen, J.; Liu, Q.H.; Yang, X. Neferine promotes GLUT4 expression and fusio With the plasma membrane to induce glucose uptake in L6 cells. Front. Pharmacol. 2019, 10, 999. [Google Scholar] [CrossRef]
No. | 1 | 2 | ||
---|---|---|---|---|
δc | δH mult. (J in Hz) | δc | δH mult. (J in Hz) | |
1 | 26.1 | 1.53~1.56, m | 26.3 | 1.50~1.52, m |
1.95~1.97, m | 1.97~1.98, m | |||
2 | 26.7 | 1.46~1.50, m | 26.7 | 1.46~1.50, m |
1.77~1.80, m | 1.77~1.78, m | |||
3 | 74.9 | 4.07~4.10, m | 74.9 | 4.07, m |
4 | 38.5 | 1.6~1.62, m | 38.6 | 1.59~1.60, m |
1.98~2.02, overlap | 1.99~2.03, m | |||
5 | 74.6 | 74.6 | ||
6 | 136.7 | 5.63, d, (10) | 136.3 | 5.60, d, (10.3) |
7 | 126.3 | 5.83, d, (10) | 126.4 | 5.82, d, (10.3) |
8 | 74.3 | 74.1 | ||
9 | 36.0 | 1.87~1.90, overlap | 36.0 | 1.88~1.89, m |
10 | 39.2 | 39.2 | ||
11 | 22.7 | 1.74~1.76, m | 22.8 | 1.74~1.76, m |
1.87~1.90, m | 1.91~1.92, m | |||
12 | 74.8 | 4.74~4.77, m | 74.7 | 4.72, dd, (10.4, 4.4) |
13 | 57.6 | 57.4 | ||
14 | 87.8 | 88.0 | ||
15 | 32.1 | 1.70~1.73, m | 32.3 | 1.72~1.73, m |
1.91~1.94, m | 1.89~1.91, m | |||
16 | 33.5 | 1.98~2.02, overlap | 33.1 | 1.93~1.95, overlap |
17 | 87.5 | 87.4 | ||
18 | 11.5 | 1.60, s | 11.5 | 1.53, s |
19 | 21.1 | 1.01, s | 21.1 | 1.03, s |
20 | 74.7 | 4.84, q, (6.1) | 73.9 | 4.67~4.69, m |
21 | 15.4 | 1.35, d, (6.2) | 15.3 | 1.22, d, (6.2) |
1′ | 166.6 | 166.5 | ||
2′ | 118.9 | 6.07, d, (16) | 119.1 | 6.22, d, (16) |
3′ | 144.3 | 7.42, d, (16) | 144.2 | 7.53, d, (16) |
4′ | 134.4 | 134.6 | ||
5′(9′) | 128.3 | 7.24, d, (7.3) | 128.2 | 7.45~7.47, m |
6′(8′) | 128.5 | 7.30~7.36, overlap | 128.9 | 7.36~7.38, overlap |
7′ | 130.2 | 7.30~7.36, overlap | 130.3 | 7.36~7.38, overlap |
1″ | 165.0 | 166.1 | ||
2″ | 130.4 | 128.8 | ||
3″ | 129.9 | 7.92, d, (7.2) | 138.1 | 6.72~6.77, m |
4″ | 128.7 | 7.30~7.36, overlap | 14.5 | 1.68, d, (7.1) |
5″ | 133.1 | 7.53, t, (7.4) | 12.2 | 1.71, s |
cymⅠ | cymⅠ | |||
1 | 97.7 | 4.81, dd, (9.7, 1.6) | 97.7 | 4.81, dd, (9.6, 1.8) |
2 | 35.5 | 1.57~1.59, m | 35.5 | 1.58~1.59, m |
2.11~2.14, m | 2.11~2.14, m | |||
3 | 77.1 | 3.79~3.81, m | 77.1 | 3.80, dd, (5.8, 3.0) |
4 | 82.2 | 3.24, dd, (9.7, 2.8) | 82.2 | 3.24, dd, (9.7, 2.9) |
5 | 68.8 | 3.85, dq, (9.6, 6.1) | 68.8 | 3.85, dq, (9.6, 6.2) |
6 | 18.2 | 1.21, d, (6.2) | 18.2 | 1.20, d, (6.2) |
OMe | 58.2 | 3.45, s | 58.2 | 3.44, s |
cymII | cymII | |||
1 | 99.5 | 4.67, dd, (9.7, 1.6) | 99.5 | 4.66, dd, (10.0, 2.3) |
2 | 33.8 | 1.62~1.64, m | 33.8 | 1.62~1.63, m |
2.23~2.27, m | 2.24~2.26, m | |||
3 | 77.5 | 3.62, dd, (6.0, 2.9) | 77.5 | 3.62, dd, (6.2, 3.1) |
4 | 72.5 | 3.19, dd, (9.7, 2.8) | 72.5 | 3.17~3.21, m |
5 | 70.9 | 3.55, dq, (9.6, 6.1) | 70.9 | 3.55, dq, (9.6, 6.2) |
6 | 18.5 | 1.27, d, (6.2) | 18.5 | 1.27, d, (6.2) |
OMe | 57.4 | 3.42, s | 57.4 | 3.42, s |
No. | 3 | 4 | ||
---|---|---|---|---|
δc | δH mult. (J in Hz) | δc | δH mult. (J in Hz) | |
1 | 38.9 | 1.06~1.10, m | 38.9 | 1.08, dd, (13.5, 3.5) |
1.83~1.84, overlap | 1.83~1.84, overlap | |||
2 | 29.1 | 1.63~1.64, m | 29.1 | 1.61~1.64, m |
1.89~1.93, overlap | 1.87~1.92, overlap | |||
3 | 78.1 | 3.54~3.56, m | 77.9 | 3.53~3.56, m |
4 | 38.9 | 2.29~2.32, m | 38.8 | 2.29~2.32, m |
2.36~2.40, m | 2.36~2.39, m | |||
5 | 139.9 | 139.7 | ||
6 | 118.4 | 5.36~5.38, m | 118.6 | 5.36~5.37, m |
7 | 34.6 | 2.14~2.17, m | 34.6 | 2.14~2.17, m |
8 | 74.2 | 74.2 | ||
9 | 43.4 | 1.45~1.47, overlap | 43.4 | 1.44~1.46, overlap |
10 | 37.1 | 37.1 | ||
11 | 24.9 | 1.65~1.67, m | 24.9 | 1.64~1.66, m |
1.89~1.93, overlap | 1.87~1.92, overlap | |||
12 | 73.6 | 4.62, dd, (11.3, 4.0) | 73.6 | 4.62, dd, (11.5, 4.2) |
13 | 56.2 | 56.2 | ||
14 | 88.0 | 87.9 | ||
15 | 32.0 | 1.87~1.89, overlap | 31.8 | 1.86~1.88, overlap |
1.89~1.93, overlap | 1.90~1.93, overlap | |||
16 | 33.2 | 1.87~1.89, overlap | 33.2 | 1.86~1.88, overlap |
1.89~1.93, overlap | 1.90~1.93, overlap | |||
17 | 87.9 | 88.1 | ||
18 | 10.4 | 1.44, s | 10.4 | 1.44, s |
19 | 18.3 | 1.13, s | 18.3 | 1.14, s |
20 | 74.2 | 4.65~4.66, m | 74.2 | 4.65, q, (6.2) |
21 | 15.1 | 1.23, d, (5.6) | 15.1 | 1.22, d, (6.1) |
1′ | 166.4 | 166.4 | ||
2′ | 128.8 | 128.8 | ||
3′ | 138.0 | 6.83~6.87, m | 138.1 | 6.83~6.87, m |
4′ | 14.7 | 1.82, d, (7.0) | 14.8 | 1.81, d, (7.1) |
5′ | 12.3 | 1.85, s | 12.3 | 1.85, s |
1″ | 171.3 | 171.3 | ||
2″ | 21.9 | 1.94, s | 21.9 | 1.94, s |
cymI | cym | |||
1 | 96.2 | 4.84, dd, (9.7, 1.7) | 95.7 | 4.78, dd, (9.6, 1.8) |
2 | 35.6 | 1.55~1.59, m | 34.2 | 1.57~1.60, m |
2.09~2.12, m | 2.19~2.22, m | |||
3 | 77.2 | 3.81, dd, (5.9, 2.8) | 77.6 | 3.62, dd, (6.1, 3.0) |
4 | 82.6 | 3.22, dd, (9.7, 2.9) | 72.6 | 3.21, dd, (9.5, 3.6) |
5 | 68.6 | 3.85, dq, (9.6, 6.1) | 70.9 | 3.57, dq, (9.7, 6.1) |
6 | 18.3 | 1.22, d, (6.0) | 18.4 | 1.27, d, (6.2) |
OMe | 58.1 | 3.44, s | 57.4 | 3.43, s |
cymII | ||||
1 | 99.5 | 4.67, dd, (9.5, 1.8) | ||
2 | 33.8 | 1.60~1.62, m | ||
2.23~2.26, m | ||||
3 | 77.5 | 3.62, (6.2, 3.1) | ||
4 | 72.5 | 3.19, dd, (9.7, 3.6) | ||
5 | 70.8 | 3.55, dq, (9.5, 6.2) | ||
6 | 18.5 | 1.27, d, (6.2) | ||
OMe | 57.4 | 3.42, s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Zhou, T.; Zhang, J.; Liao, G.; Lu, R.; Yang, X. Identification of C21 Steroidal Glycosides from Gymnema sylvestre (Retz.) and Evaluation of Their Glucose Uptake Activities. Molecules 2021, 26, 6549. https://doi.org/10.3390/molecules26216549
Liu M, Zhou T, Zhang J, Liao G, Lu R, Yang X. Identification of C21 Steroidal Glycosides from Gymnema sylvestre (Retz.) and Evaluation of Their Glucose Uptake Activities. Molecules. 2021; 26(21):6549. https://doi.org/10.3390/molecules26216549
Chicago/Turabian StyleLiu, Meiyu, Tongxi Zhou, Jinyan Zhang, Guangfeng Liao, Rumei Lu, and Xinzhou Yang. 2021. "Identification of C21 Steroidal Glycosides from Gymnema sylvestre (Retz.) and Evaluation of Their Glucose Uptake Activities" Molecules 26, no. 21: 6549. https://doi.org/10.3390/molecules26216549
APA StyleLiu, M., Zhou, T., Zhang, J., Liao, G., Lu, R., & Yang, X. (2021). Identification of C21 Steroidal Glycosides from Gymnema sylvestre (Retz.) and Evaluation of Their Glucose Uptake Activities. Molecules, 26(21), 6549. https://doi.org/10.3390/molecules26216549