Antibacterial Activity of Thymus vulgaris L. Essential Oil Vapours and Their GC/MS Analysis Using Solid-Phase Microextraction and Syringe Headspace Sampling Techniques
Abstract
:1. Introduction
2. Results
2.1. Antimicrobial Activity
2.2. Chemical Analysis of EOs
2.3. Chemical Analysis of EOs’ Vapour Phase
3. Discussion
4. Materials and Methods
4.1. Plant Material and Sample Preparation
4.2. Hydrodistillation of the Essential Oils
4.3. Bacterial Strains and Culture Media
4.4. Antimicrobial Assay
4.5. Chemical Analysis of EOs
4.6. Chemical Analysis of EOs’ Vapour Phase
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Nguyen, T.K.P.; Tran, T.H.; Roberts, C.L.; Graham, S.M.; Marais, B.J. Child pneumonia—Focus on the Western Pacific Region. Paediatr. Respir. Rev. 2017, 21, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Pneumonia: The Forgotten Killer of Children. Available online: https://apps.who.int/iris/handle/10665/43640 (accessed on 5 January 2021).
- Baron, S. Medical Microbiology, 4th ed.; University of Texas Medical Branch at Galveston: Galveston, TX, USA, 1996. [Google Scholar]
- Houdkova, M.; Urbanova, K.; Doskocil, I.; Rondevaldova, J.; Novy, P.; Nguon, S.; Chrun, R.; Kokoska, L. In vitro growth-inhibitory effect of Cambodian essential oils against pneumonia causing bacteria in liquid and vapour phase and their toxicity to lung fibroblasts. S. Afr. J. Bot. 2018, 118, 85–97. [Google Scholar] [CrossRef]
- World Health Organization—Forum of International Respiratory Societies. The Global Impact of Respiratory Disease, 2nd ed.; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Wang, X.; Li, Y.; O’Brien, K.L.; Madhi, S.A.; Widdowson, M.-A.; Byass, P.; Omer, S.B.; Abbas, Q.; Ali, A.; Amu, A.; et al. Global burden of respiratory infections associated with seasonal influenza in children under 5 years in 2018: A systematic review and modelling study. Lancet Glob. Health 2020, 8, 497–510. [Google Scholar] [CrossRef] [Green Version]
- Kokoska, L.; Kloucek, P.; Leuner, O.; Novy, P. Plant-derived products as antibacterial and antifungal agents in human health care. Curr. Med. Chem. 2019, 26, 5501–5541. [Google Scholar] [CrossRef]
- Borghardt, J.M.; Kloft, C.; Sharma, A. Inhaled therapy in respiratory disease: The complex interplay of pulmonary kinetic processes. Can. Respir. J. 2018, 2018, 2732017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Döring, G.; Hoiby, N. Consensus study group early intervention and prevention of lung disease in cystic fibrosis: A European consensus. J. Cyst. Fibros. 2004, 3, 67–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Pablo, E.; Fernández-García, R.; Ballesteros, M.P.; Torrado, J.J.; Serrano, D.R. Nebulised antibiotherapy: Conventional versus nanotechnology-based approaches, is targeting at a nano scale a difficult subject? Ann. Transl. Med. 2017, 5, 448. [Google Scholar] [CrossRef] [Green Version]
- Schreiber, M.P.; Shorr, A.F. Inhaled antibiotics for the treatment of pneumonia. Curr. Opin. Pulm. Med. 2019, 25, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Ehrmann, S.; Chastre, J.; Diot, P.; Lu, Q. Nebulized antibiotics in mechanically ventilated patients: A challenge for translational research from technology to clinical care. Ann. Intensive Care 2017, 7, 78. [Google Scholar] [CrossRef] [PubMed]
- Tiddens, H.A.W.M.; Bos, A.C.; Mouton, J.W.; Devadason, S.; Janssens, H.M. Inhaled antibiotics: Dry or wet? Eur. Clin. Respir. J. 2014, 44, 1308–1318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Jongh, F.H.C.; Rinkel, M.J.G.; Hoeijmakers, H.W.M. Aerosol deposition in the upper airways of a child. J. Aerosol Med. 2006, 19, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Laube, B.L.; Jashnani, R.; Dalby, R.N.; Zeitlin, P.L. Targeting aerosol deposition in patients with cystic fibrosis: Effects of alterations in particle size and inspiratory flow rate. Chest 2000, 118, 1069–1076. [Google Scholar] [CrossRef]
- Heinrich, M. Fundamentals of Pharmacognosy and Phytotherapy, 2nd ed.; Elsevier: Edinburgh, UK, 2012. [Google Scholar]
- Netopilova, M.; Houdkova, M.; Urbanova, K.; Rondevaldova, J.; Damme, P.; Kokoska, L. In vitro antimicrobial combinatory effect of Cinnamomum cassia essential oil with 8-hydroxyquinoline against Staphylococcus aureus in liquid and vapour phase. J. Appl. Microbiol. 2020, 129, 906–915. [Google Scholar] [CrossRef] [PubMed]
- Başer, K.H.C.; Buchbauer, G. Handbook of Essential Oils: Science, Technology, and Applications, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Ghahremani-Chabok, A.; Bagheri-Nesami, M.; Shorofi, S.A.; Mousavinasab, S.N.; Gholipour-Baradari, A.; Saeedi, M. The effects of Thymus vulgaris inhalation therapy on airway status and oxygen saturation of patients under mechanical ventilation: A randomized clinical trial. Adv. Integr. Med. 2020, 8, 92–100. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Pisoschi, A.; Pop, A.; Cecilia, G.; Turcuş, V.; Olah, N.-K.; Mathe, E. An overview of natural antimicrobials role in food. Eur. J. Med. Chem. 2017, 143, 922–935. [Google Scholar] [CrossRef] [PubMed]
- Tongnuanchan, P.; Benjakul, S. Essential oils: Extraction, bioactivities, and their uses for food preservation. J. Food Sci. 2014, 79, R1231–R1249. [Google Scholar] [CrossRef] [PubMed]
- HMPC Monographs: Overview of Recommendations for the Uses of Herbal Medicinal Products in the Paediatric Population. Available online: https://www.ema.europa.eu/en/documents/other/hmpc-monographs-overview-recommendations-uses-herbal-medicinal-products-paediatric-population_en.pdf (accessed on 6 January 2021).
- Assessment Report on Thymus vulgaris L., Thymus zygis L., Aetheroleum. Available online: https://www.ema.europa.eu/en/documents/herbal-report/draft-assessment-report-thymus-vulgaris-l-thymus-zygis-l-aetheroleum-revision-1_en.pdf (accessed on 6 January 2021).
- Nikolić, M.; Glamočlija, J.; Ferreira, I.C.F.R.; Calhelha, R.C.; Fernandes, Â.; Marković, T.; Marković, D.; Giweli, A.; Soković, M. Chemical composition, antimicrobial, antioxidant and antitumor activity of Thymus serpyllum L., Thymus algeriensis Boiss. and Reut and Thymus vulgaris L. essential oils. Ind. Crop. Prod. 2014, 52, 183–190. [Google Scholar] [CrossRef]
- Pina-Vaz, C.; Rodrigues, A.G.; Pinto, E.; Costa-de-Oliveira, S.; Tavares, C.; Salgueiro, L.; Cavaleiro, C.; Gonçalves, M.; de Oliveira, M. Antifungal activity of Thymus oils and their major compounds. J. Eur. Acad. Dermatol. Venereol. 2004, 18, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Fani, M.; Kohanteb, J. In vitro antimicrobial activity of Thymus vulgaris essential oil against major oral pathogens. J. Evid. Based Complement. Altern. Med. 2017, 22, 660–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inouye, S.; Takizawa, T.; Yamaguchi, H. Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact. J. Antimicrob. Chemother. 2001, 47, 565–573. [Google Scholar] [CrossRef] [Green Version]
- Tullio, V.; Nostro, A.; Mandras, N.; Dugo, P.; Banche, G.; Cannatelli, M.A.; Cuffini, A.M.; Alonzo, V.; Carlone, N.A. Antifungal activity of essential oils against filamentous fungi determined by broth microdilution and vapour contact methods. J. Appl. Microbiol. 2007, 102, 1544–1550. [Google Scholar] [CrossRef] [PubMed]
- M100Ed30|Performance Standards for Antimicrobial Susceptibility Testing, 30th ed. Available online: https://clsi.org/standards/products/microbiology/documents/m100/ (accessed on 2 February 2021).
- Borugă, O.; Jianu, C.; Mişcă, C.; Goleţ, I.; Gruia, A.; Horhat, F. Thymus vulgaris essential oil: Chemical composition and antimicrobial activity. J. Med. Life 2014, 7, 56–60. [Google Scholar] [PubMed]
- Ács, K.; Balázs, V.L.; Kocsis, B.; Bencsik, T.; Böszörményi, A.; Horváth, G. Antibacterial activity evaluation of selected essential oils in liquid and vapor phase on respiratory tract pathogens. BMC Complement. Altern. Med. 2018, 18, 227. [Google Scholar] [CrossRef] [Green Version]
- Bueno, J. Models of evaluation of antimicrobial activity of essential oils in vapour phase: A promising use in healthcare decontamination. Nat. Volatiles Essent. Oils 2015, 2, 16–29. [Google Scholar]
- Edwards-Jones, V.; Buck, R.; Shawcross, S.G.; Dawson, M.M.; Dunn, K. The effect of essential oils on methicillin-resistant Staphylococcus aureus using a dressing model. Burns 2004, 30, 772–777. [Google Scholar] [CrossRef]
- Houdkova, M.; Rondevaldova, J.; Doskocil, I.; Kokoska, L. Evaluation of antibacterial potential and toxicity of plant volatile compounds using new broth microdilution volatilization method and modified MTT assay. Fitoterapia 2017, 118, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Nedorostova, L.; Kloucek, P.; Kokoska, L.; Stolcova, M.; Pulkrabek, J. Antimicrobial properties of selected essential oils in vapour phase against foodborne bacteria. Food Control 2009, 20, 157–160. [Google Scholar] [CrossRef]
- López, P.; Sánchez, C.; Batlle, R.; Nerín, C. Solid- and vapor-phase antimicrobial activities of six essential oils: Susceptibility of selected foodborne bacterial and fungal strains. J. Agric. Food Chem. 2005, 53, 6939–6946. [Google Scholar] [CrossRef]
- Laird, K.; Phillips, C. Vapour Phase: A potential future use for essential oils as antimicrobials?: Essential oil vapours and their antimicrobial activity. Lett. Appl. Microbiol. 2012, 54, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liang, X. Headspace gas chromatography-mass spectrometry for volatile components analysis in Ipomoea cairica (L.) sweet leaves: Natural deep eutectic solvents as green extraction and dilution matrix. Foods 2019, 8, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, C.F. Headspace analysis. In Comprehensive Sampling and Sample Preparation; Elsevier: Amsterdam, The Netherlands, 2012; pp. 27–50. [Google Scholar]
- Lugo-Estrada, L.; Galindo-Rodríguez, S.A.; Pérez-López, L.A.; de Torres, N.W.; Álvarez-Román, R. Headspace–Solid-phase microextraction gas chromatography method to quantify Thymus vulgaris essential oil in polymeric nanoparticles. Pharmacogn. Mag. 2019, 15, 473. [Google Scholar]
- López, P.; Sánchez, C.; Batlle, R.; Nerín, C. Vapor-phase activities of cinnamon, thyme, and oregano essential oils and key constituents against foodborne microorganisms. J. Agric. Food Chem. 2007, 55, 4348–4356. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Jurado, F.; Navarro-Cruz, A.R.; Ochoa-Velasco, C.E.; Palou, E.; López-Malo, A.; Ávila-Sosa, R. Essential oils in vapor phase as alternative antimicrobials: A review. Food Sci. Nutr. 2020, 60, 1641–1650. [Google Scholar] [CrossRef]
- Snow, N.H.; Bullock, G.P. Novel techniques for enhancing sensitivity in static headspace extraction-gas chromatography. J. Chromatogr. A 2010, 1217, 2726–2735. [Google Scholar] [CrossRef] [PubMed]
- Bicchi, C. Essential oils|gas chromatography. In Encyclopedia of Separation Science; Elsevier: Amsterdam, The Netherlands, 2000; pp. 2744–2755. [Google Scholar]
- Murray, R.A. Limitations to the use of solid-phase microextraction for quantitation of mixtures of volatile organic sulfur compounds. Anal. Chem. 2001, 73, 1646–1649. [Google Scholar] [CrossRef]
- Regti, A.; Kassimi, A.E.; Laamari, M.R.; Haddad, M.E. Competitive adsorption and optimization of binary mixture of textile dyes: A factorial design analysis. J. Assoc. Arab Univ. Basic Appl. Sci. 2017, 24, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kolb, B.; Ettre, L.S. Static Headspace-Gas Chromatography: Theory and Practice, 2nd ed.; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectorscopy, 4th ed.; Allured Publishing Corp: Carol Stream, IL, USA, 2007. [Google Scholar]
- National Institute of Standards and Technology. Available online: https://www.nist.gov/ (accessed on 15 December 2020).
- Satyal, P.; Murray, B.; McFeeters, R.; Setzer, W. Essential oil characterization of Thymus vulgaris from various geographical locations. Foods 2016, 5, 70. [Google Scholar] [CrossRef] [PubMed]
- Houdkova, M.; Kokoska, L. Volatile antimicrobial agents and In vitro methods for evaluating their activity in the vapour phase: A review. Planta Med. 2020, 86, 822–857. [Google Scholar] [CrossRef] [PubMed]
- Smith-Palmer, A.; Stewart, J.; Fyfe, L. Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Lett. Appl. Microbiol. 1998, 26, 118–122. [Google Scholar] [CrossRef] [PubMed]
- Mann, C.M.; Cox, S.D.; Markham, J.L. The outer membrane of Pseudomonas aeruginosa NCTC 6749 contributes to its tolerance to the essential oil of Melaleuca alternifolia (tea tree oil). Lett. Appl. Microbiol. 2000, 30, 294–297. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Jurado, F.; Cervantes-Rincón, T.; Bach, H.; López-Malo, A.; Palou, E. Antimicrobial activity of Mexican oregano (Lippia berlandieri), Thyme (Thymus vulgaris), and Mustard (Brassica nigra) essential oils in gaseous phase. Ind. Crops Prod. 2019, 131, 90–95. [Google Scholar] [CrossRef]
- Nezhadali, A.; Nabavi, M.; Rajabian Noghundar, M.; Akbarpour, M.; Pourali, P.; Amini, F. Chemical variation of leaf essential oil at different stages of plant growth and in vitro antibacterial activity of Thymus vulgaris Lamiaceae, from Iran. Beni-Suef Univ. J. Basic Appl. Sci. 2014, 3, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Kloucek, P.; Smid, J.; Frankova, A.; Kokoska, L.; Valterová, I.; Pavela, R. Fast screening method for assessment of antimicrobial activity of essential oils in vapor phase. Food Res. Int. 2012, 47, 161–165. [Google Scholar] [CrossRef]
- Muthaiyan, A.; Biswas, D.; Crandall, P.G.; Wilkinson, B.J.; Ricke, S.C. Application of orange essential oil as an antistaphylococcal agent in a dressing model. BMC Complement. Altern. Med. 2012, 12, 125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Mottaleb, M.A.; Meziani, M.J.; Rafiq Islam, M. Solid-phase microextraction (SPME) and its application to natural products. In Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation; Wiley: Hoboken, NJ, USA, 2006; pp. 105–127. [Google Scholar]
- Seo, H.S.; Beuchat, L.R.; Kim, H.; Ryu, J.H. Development of an experimental apparatus and protocol for determining antimicrobial activities of gaseous plant essential oils. Int. J. Food Microbiol. 2015, 215, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, J.H.; Turnidge, J.D. Susceptibility test methods: Dilution and disk diffusion methods. In Manual of Clinical Microbiology; Jorgensen, J.H., Carroll, K.C., Funke, G., Pfaller, M.A., Landry, M.L., Richter, S.S., Warnock, D.W., Eds.; ASM Press: Washington, DC, USA, 2015; pp. 1253–1273. [Google Scholar]
- Feyaerts, A.F.; Mathé, L.; Luyten, W.; Tournu, H.; Dyck, K.V.; Broekx, L.; Dijck, P.V. Assay and recommendations for the detection of vapour-phase-mediated antimicrobial activities. Flavour Fragr. J. 2017, 32, 347–353. [Google Scholar] [CrossRef]
- Amat, S.; Baines, D.; Alexander, T.W. A vapour phase assay for evaluating the antimicrobial activities of essential oils against bovine respiratory bacterial pathogens. Lett. Appl. Microbiol. 2017, 65, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Casey, J.T.; O’Cleirigh, C.; Walsh, P.K.; O’Shea, D.G. Development of a robust microtiter plate-based assay method for assessment of bioactivity. J. Microbiol. Methods 2004, 58, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Fisher, K.; Phillips, C. Potential antimicrobial uses of essential oils in food: Is citrus the answer? Trends Food Sci. Technol. 2008, 19, 156–164. [Google Scholar] [CrossRef]
- Kalemba, D.; Kunicka, A. Antibacterial and antifungal properties of essential oils. Curr. Med. Chem. 2003, 10, 813–829. [Google Scholar] [CrossRef] [PubMed]
- Orchard, A.; van Vuuren, S. Commercial essential oils as potential antimicrobials to treat skin diseases. Evid. Based Complement. Alternat. Med. 2017, 2017, 4517971. [Google Scholar] [CrossRef] [Green Version]
- Reyes-Jurado, F.; Franco-Vega, A.; Ramírez-Corona, N.; Palou, E.; López-Malo, A. Essential oils: Antimicrobial activities, extraction methods, and their modeling. Food Eng. Rev. 2015, 7, 275–297. [Google Scholar] [CrossRef]
- Leyva-López, N.; Gutiérrez-Grijalva, E.P.; Vazquez-Olivo, G.; Heredia, J.B. Heredia Essential oils of oregano: Biological activity beyond their antimicrobial properties. Molecules 2017, 22, 989. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, E.; Wanner, J.; Höferl, M.; Jirovetz, L.; Buchbauer, G.; Gochev, V.; Girova, T.; Stoyanova, A.; Geissler, M. Chemical composition, olfactory analysis and antibacterial activity of Thymus vulgaris chemotypes geraniol, 4-Thujanol/Terpinen-4-ol, thymol and linalool cultivated in southern France. Nat. Prod. Commun. 2012, 7, 1934578X1200700833. [Google Scholar] [CrossRef] [Green Version]
- Grosso, C.; Figueiredo, A.C.; Burillo, J.; Mainar, A.M.; Urieta, J.S.; Barroso, J.G.; Coelho, J.A.; Palavra, A.M.F. Composition and antioxidant activity of Thymus vulgaris volatiles: Comparison between supercritical fluid extraction and hydrodistillation. J. Sep. Sci. 2010, 33, 2211–2218. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Scheffer, J.J.C. Factors affecting secondary metabolite production in plants: Volatile components and essential oils. Flavour Fragr. J. 2008, 23, 213–226. [Google Scholar] [CrossRef]
- Hudaib, M.; Speroni, E.; Di Pietra, A.M.; Cavrini, V. GC/MS evaluation of thyme (Thymus vulgaris L.) oil composition and variations during the vegetative cycle. J. Pharm. Biomed. 2002, 29, 691–700. [Google Scholar] [CrossRef]
- Fan, S.; Chang, J.; Zong, Y.; Hu, G.; Jia, J. GC/MS Analysis of the composition of the essential oil from Dendranthema indicum vararomaticum using three extraction methods and two columns. Molecules 2018, 23, 576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Netopilova, M.; Houdkova, M.; Urbanova, K.; Rondevaldova, J.; Kokoska, L. Validation of qualitative broth volatilization checkerboard method for testing of essential oils: Dual-column GC–FID/MS analysis and in vitro combinatory antimicrobial effect of Origanum vulgare and Thymus vulgaris against Staphylococcus aureus in liquid and vapor phases. Plants 2021, 10, 393. [Google Scholar]
- Adam, M.; Dobiáš, P.; Pavlíková, P.; Ventura, K. Comparison of solid-phase and single-drop microextractions for headspace analysis of herbal essential oils. Open Chem. 2009, 7, 303–311. [Google Scholar] [CrossRef]
- Soleimani, M.; Daryasari, A.P.; Ghorbani, A.; Hejri, O.M.; Mazaheri, R. Analysis of the volatile compounds in Thymus vulgaris L. using improved HS-SPME-GC/MS and comparison with conventional methods. J. Essent. Oil-Bear. Plants 2014, 17, 1233–1240. [Google Scholar] [CrossRef]
- Nezhadali, A.; Akbarpour, M.; Shirvan, B.Z.; Mousavi, M. Comparison of volatile organic compounds of Thymus vulgaris using hydrodistillation and headspace solid phase microextraction gas chromatography mass spectrometry. J. Chin. Chem. Soc. 2010, 57, 40–43. [Google Scholar] [CrossRef]
- Leggio, A.; Leotta, V.; Belsito, E.L.; Di Gioia, M.L.; Romio, E.; Santoro, I.; Taverna, D.; Sindona, G.; Liguori, A. Aromatherapy: Composition of the gaseous phase at equilibrium with liquid bergamot essential oil. Chem. Cent. J. 2017, 11, 111. [Google Scholar] [CrossRef] [PubMed]
- Coleman, W.M.; Lawrence, B.M. A Comparison of selected analytical approaches to the analysis of an essential oil. Flavour Fragr. J. 1997, 12, 1–8. [Google Scholar] [CrossRef]
- Cui, S.; Tan, S.; Ouyang, G.; Jiang, S.; Pawliszyn, J. Headspace solid-phase microextraction gas chromatography–mass spectrometry analysis of Eupatorium odoratum extract as an oviposition Repellent. J. Chromatogr. B 2009, 877, 1901–1906. [Google Scholar] [CrossRef] [PubMed]
- Chialva, F.; Gabri, G.; Liddle, P.A.P.; Ulian, F. Qualitative evaluation of aromatic herbs by direct headspace GC analysis. Applications of the method and comparison with the traditional analysis of essential oils. J. High. Resolut. Chromatogr. 1982, 5, 182–188. [Google Scholar] [CrossRef]
- Wang, T.-H.; Hsia, S.-M.; Wu, C.-H.; Ko, S.-Y.; Chen, M.Y.; Shih, Y.-H.; Shieh, T.-M.; Chuang, L.-C.; Wu, C.-Y. Evaluation of the antibacterial potential of liquid and vapor phase phenolic essential oil compounds against oral microorganisms. PLoS ONE 2016, 11, e0163147. [Google Scholar] [CrossRef] [Green Version]
- EDQM (Council of Europe). European Pharmacopoeia, 10th ed.; EDQM: Strasbourg, France, 2019. [Google Scholar]
- Thymi Aetheroleum. Available online: https://www.ema.europa.eu/en/medicines/herbal/thymi-aetheroleum (accessed on 16 February 2021).
Supplier | Bacterium/Growth Medium/Minimum Inhibitory Concentration | ||||||||
---|---|---|---|---|---|---|---|---|---|
Staphylococcus aureus | Streptococcus pyogenes | Haemophilus influenzae | |||||||
Broth | Agar | Broth | Agar | Broth | Agar | ||||
(µg/mL) | (µg/mL) | (µg/cm3) | (µg/mL) | (µg/mL) | (µg/cm3) | (µg/mL) | (µg/mL) | (µg/cm3) | |
A | 1024 | 1024 | 256 | 1024 | 1024 | 256 | 512 | 512 | 128 |
B | 1024 | 1024 | 256 | 512 | 512 | 128 | 512 | 512 | 128 |
C | 512 | 512 | 128 | 512 | 512 | 128 | 512 | 512 | 128 |
Positive antibiotic control | |||||||||
Oxacillin | 0.25 | >2 | >0.5 | NT | NT | NT | NT | NT | NT |
Amoxicilin | NT | NT | NT | 0.06 | >2 | >0.5 | NT | NT | NT |
Ampicilin | NT | NT | NT | NT | NT | NT | 0.5 | >16 | >4 |
RI a | Compound | Cl. b | Supplier/Column/Content (%) | Identification e | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C c | |||||||||
Obs. | Lit | HP-5MS | DB-WAX | HP-5MS | DB-WAX | HP-5MS | DB-WAX | HP-5MS | DB-WAX | ||
761 | 783 d | Methyl α-methylbutanoate | OA | 0.08 | - g | 0.08 | - | 0.05 ± 0.01 | - | GC/MS | - |
923 | 924 | α-Thujene | MH | 0.10 | 0.08 | 0.10 | 0.13 | 0.26 ± 0.02 | 0.24 ± 0.06 | RI, GC/MS | GC/MS |
929 | 939 | α-Pinene | MH | 0.62 | 0.38 | 0.61 | 0.62 | 0.43 ± 0.03 | 0.38 ± 0.07 | RI, GC/MS | GC/MS |
944 | 945 | Camphene | MH | 0.44 | 0.26 | 0.43 | 0.43 | 0.19 ± 0.01 | 0.18 ± 0.03 | RI, GC/MS | GC/MS |
972 | 969 | Sabinene | MH | 0.09 | 0.05 | 0.08 | 0.09 | 0.10 ± 0.01 | 0.09 ± 0.02 | RI, GC/MS | GC/MS |
977 | 979 | 1-octen-3-ol | OA | 0.31 | 0.20 | 0.32 | 0.30 | 0.35 ± 0.02 | 0.35 ± 0.06 | RI, GC/MS | GC/MS |
989 | 988 | β-Myrcene | MH | 0.31 | 0.21 | 0.31 | 0.35 | 0.58 ± 0.04 | 0.58 ± 0.11 | RI, GC/MS | GC/MS |
994 | 996 | 3-Octanol | OA | 0.05 | - | tr.f | - | tr. | - | RI, GC/MS | - |
1002 | 1002 | α-Phellandrene | MH | 0.06 | - | 0.06 | 0.05 | 0.10 ± 0.01 | 0.08 ± 0.02 | RI, GC/MS | GC/MS |
1007 | 1008 | 3-Carene | MH | - | - | - | - | tr. | - | RI, GC/MS | - |
1014 | 1014 | α-Terpinene | MH | 0.62 | - | 0.61 | - | 1.07 ± 0.07 | - | RI, GC/MS | - |
1025 | 1020 | p-Cymene | AH | 22.15 | 16.43 | 22.03 | 25.35 | 12.75 ± 0.84 | 12.90 ± 2.55 | RI, GC/MS | GC/MS |
1027 | 1031 | D-Limonene | MH | - | 0.16 | - | 0.25 | 0.41 ± 0.03 | 0.23 ± 0.04 | RI, GC/MS | GC/MS |
1028 | 1023 | m-Cymene | AH | 0.46 | - | 0.47 | - | - | 0.18 ± 0.17 | RI, GC/MS | GC/MS |
1030 | 1032 | 1,8-Cineole | OM | 0.69 | 0.51 | 0.70 | 0.76 | 0.39 ± 0.03 | 0.47 ± 0.10 | RI, GC/MS | GC/MS |
1058 | 1054 | γ-Terpinene | MH | 2.82 | 2.02 | 2.78 | 2.90 | 5.22 ± 0.33 | 5.40 ± 1.11 | RI, GC/MS | GC/MS |
1065 | 1068 | cis-thujanol | OM | 0.17 | 0.06 | 0.18 | 0.07 | 0.37 ± 0.03 | 0.14 ± 0.03 | RI, GC/MS | GC/MS |
1071 | 1078 | cis-Linalool oxide | F | tr. | - | tr. | - | - | - | RI, GC/MS | - |
1087 | 1086 | Terpinolene | MH | 0.18 | - | 0.17 | - | 0.11 ± 0.01 | - | RI, GC/MS | - |
1096 | 1102 | trans-thujanol | OM | - | 0.09 | - | 0.13 | tr. | 0.37 ± 0.08 | RI, GC/MS | GC/MS |
1100 | 1095 | Linalool | OM | 1.80 | 1.08 | 1.82 | 1.77 | 1.53 ± 0.07 | 1.38 ± 0.24 | RI, GC/MS | GC/MS |
1149 | 1141 | Camphor | OM | 0.32 | 0.23 | 0.18 | 0.34 | 0.06 ± 0.01 | 0.16 ± 0.03 | RI, GC/MS | GC/MS |
1165 | 1165 | Endo-borneol | OM | 1.14 | - | 1.15 | - | 0.63 ± 0.03 | - | RI, GC/MS | - |
1176 | 1174 | Terpinen-4-ol | OM | 0.61 | - | 0.61 | - | 0.62 ± 0.04 | - | RI, GC/MS | - |
1186 | 1180 | m-Cymen-8-ol | OM | 0.05 | - | - | - | - | - | RI, GC/MS | - |
1190 | 1183 | p-Cymen-8-ol | OM | 0.14 | 0.11 | 0.12 | 0.16 | - | - | RI, GC/MS | GC/MS |
1196 | 1189 | α-Terpineol | OM | 0.14 | - | 0.14 | - | 0.16 ± 0.02 | - | RI, GC/MS | - |
1204 | 1195 | cis-Dihydrocarvone | OM | tr. | - | tr. | - | tr. | - | RI, GC/MS | - |
1235 | 1235 | Thymol methyl ether | OPM | 1.15 | 2.11 | 1.15 | 3.01 | 0.76 ± 0.05 | 3.17 ± 0.67 | RI, GC/MS | GC/MS |
1244 | 1241 | Carvacrol methyl ether | OPM | 0.91 | 0.86 | 0.91 | 1.35 | 0.66 ± 0.04 | 1.09 ± 0.23 | RI, GC/MS | GC/MS |
1256 | 1242 | Carvone | OM | 1.39 | 1.05 | 1.40 | 1.38 | 1.01 ± 0.05 | 1.05 ± 0.24 | RI, GC/MS | GC/MS |
1269 | 1255 | Geraniol | MH | 0.05 | - | 0.05 | 0.09 | 0.05 ± 0.01 | tr. | RI, GC/MS | GC/MS |
1286 | 1282 | Anethole | OPP | 0.22 | 0.21 | 0.23 | 0.30 | 0.11 ± 0.06 | 0.07 ± 0.02 | RI, GC/MS | GC/MS |
1304 | 1290 | Thymol | PM | 38.42 | 29.52 | 38.93 | 41.31 | 48.09 ± 2.53 | 48.65 ± 10.80 | RI, GC/MS | GC/MS |
1310 | 1298 | Carvacrol | PM | 10.61 | 3.84 | 10.85 | 5.59 | 10.92 ± 3.50 | 3.60 ± 0.78 | RI, GC/MS | GC/MS |
1361 | 1357 | Estragole | OPP | - | - | 0.07 | 0.05 | tr. | 0.09 ± 0.02 | RI, GC/MS | GC/MS |
1379 | 1374 | α-Copaene | SH | 0.21 | - | 0.21 | - | 0.09 ± 0.01 | - | RI, GC/MS | - |
1388 | 1387 | β-Bourbonene | SH | 0.07 | tr. | 0.07 | - | tr. | - | RI, GC/MS | GC/MS |
1424 | 1418 | β-Caryophyllene | SH | 1.79 | - | 1.79 | - | 2.33 ± 0.13 | - | RI, GC/MS | - |
1433 | 1446 d | Isogermacrene D | SH | - | - | - | - | tr. | - | GC/MS | - |
1458 | 1452 | α-Humulene | SH | 0.09 | tr. | 0.08 | 0.07 | 0.11 ± 0.01 | 0.12 ± 0.02 | RI, GC/MS | GC/MS |
1475 | 1475 | Geranyl propionate | OM | 0.06 | 0.06 | 0.10 | 0.14 | 0.10 ± 0.01 | 0.11 ± 0.03 | RI, GC/MS | GC/MS |
1480 | 1478 | γ-Muurolene | SH | 0.19 | 0.15 | 0.21 | 0.22 | 0.21 ± 0.02 | 0.21 ± 0.04 | RI, GC/MS | GC/MS |
1483 | 1493 | α-Amorphene | SH | - | - | tr. | - | tr. | - | RI, GC/MS | - |
1498 | 1495 | Valencene | SH | 0.09 | - | 0.09 | - | 0.11 ± 0.01 | - | RI, GC/MS | - |
1503 | 1499 | α-Muurolene | SH | 0.10 | - | 0.10 | - | 0.09 ± 0.01 | - | RI, GC/MS | - |
1510 | 1509 | β-Bisabolene | SH | 0.06 | - | 0.06 | - | 0.06 ± 0.01 | - | RI, GC/MS | - |
1518 | 1513 | γ-Cadinene | SH | 0.38 | 0.43 | 0.39 | 0.58 | 0.33 ± 0.02 | 0.73 ± 0.16 | RI, GC/MS | GC/MS |
1527 | 1524 | δ-Cadinene | SH | 0.48 | - | 0.48 | - | 0.50 ± 0.03 | - | RI, GC/MS | - |
1561 | 1564 | Nerolidol | OS | tr. | - | - | - | tr. | - | RI, GC/MS | - |
1585 | 1578 | Spathulenol | OS | - | - | tr. | - | tr. | - | RI, GC/MS | - |
1591 | 1581 | Caryophyllene oxide | OS | 1.31 | 0.92 | 1.32 | 1.24 | 0.68 ± 0.03 | 0.66 ± 0.15 | RI, GC/MS | GC/MS |
1617 | 1606 | Humulene epoxide II | OS | 0.06 | tr. | 0.06 | 0.05 | tr. | - | RI, GC/MS | GC/MS |
1621 | 1627 | Epicubenol | OS | 0.06 | tr. | 0.06 | - | tr. | tr. | RI, GC/MS | GC/MS |
1628 | 1630 | γ-Eudesmol | OS | 0.13 | 0.10 | 0.13 | 0.13 | 0.13 ± 0.01 | 0.13 ± 0.03 | RI, GC/MS | GC/MS |
1634 | 1642 | Cubenol | OS | tr. | - | - | 0.09 | tr. | - | RI, GC/MS | GC/MS |
1648 | 1640 | α-epi-Cadinol | OS | 0.48 | tr. | 0.49 | - | 0.36 ± 0.03 | 0.05 ± 0.05 | RI, GC/MS | GC/MS |
1652 | 1645 | δ-Cadinol | OS | - | 0.06 | - | - | tr. | tr. | RI, GC/MS | GC/MS |
1661 | 1653 | α-Cadinol | OS | 0.05 | - | 0.05 | - | 0.07 ± 0.02 | - | RI, GC/MS | - |
1682 | 1677 | Cadalene | SH | 0.12 | - | 0.14 | - | tr. | - | RI, GC/MS | - |
1844 | 1844 | Perhydrofarnesyl acetone | OM | tr. | - | tr. | - | tr. | - | RI, GC/MS | - |
h | 1001 | 4-Carene | MH | - | - | - | 0.64 | - | 1.05 ± 0.23 | - | GC/MS |
h | NA | 4-Pentenyl butyrate | OM | - | tr. | - | 0.06 | - | - | - | GC/MS |
h | 1351 | α-Cubebene | SH | - | 0.06 | - | 0.10 | - | 0.07 ± 0.01 | - | GC/MS |
h | 1290 | Isobornyl acetate | OM | - | 0.08 | - | 0.11 | - | - | - | GC/MS |
h | 1521 | Calamenene | SH | - | - | - | 0.19 | - | tr. | - | GC/MS |
h | 1156 | Isoborneol | OM | - | 0.86 | - | 1.17 | - | 0.74 ± 0.16 | - | GC/MS |
h | 1455 | Aromandendrene | SH | - | tr. | - | 0.05 | - | tr. | - | GC/MS |
h | NA | Lavandulyl butyrate | OM | - | 0.05 | - | 0.07 | - | tr. | - | GC/MS |
h | 1372 | p-Cymen-7-ol | OM | - | tr. | - | 0.05 | - | - | - | GC/MS |
h | 2105 | Phytol | OD | - | 0.07 | - | 0.23 | - | tr. | - | GC/MS |
Total identified (%) | 99.55 | 99.30 | 99.65 | 99.68 | 99.62 | 99.61 |
RI a | Compounds | Cl. b | Supplier/Time (h)/Content (%) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C c | ||||||||||||||||
Obs. | Lit. | 0 | 3 | 6 | 9 | 12 | 0 | 3 | 6 | 9 | 12 | 0 | 3 | 6 | 9 | 12 | ||
921 | 921 | Tricyclene | MH | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | tr. e | tr. | 0.05 | 0.07 | 0.07 | 0.08 ± 0.02 | 0.08 ± 0.01 | 0.07 ± 0.02 | 0.10 ± 0.01 | 0.08 ± 0.02 |
927 | 924 | α-Thujene | MH | 0.95 | 0.91 | 0.83 | 0.84 | 0.93 | 0.97 | 0.79 | 0.98 | 1.10 | 1.07 | 1.01 ± 0.05 | 1.00 ± 0.03 | 0.93 ± 0.03 | 0.94 ± 0.13 | 0.94 ± 0.05 |
933 | 939 | α-Pinene | MH | 2.37 | 2.25 | 2.18 | 2.11 | 2.37 | 1.97 | 1.60 | 2.23 | 2.45 | 2.41 | 2.73 ± 0.18 | 2.69 ± 0.13 | 2.57 ± 0.26 | 2.82 ± 0.30 | 2.70 ± 0.26 |
949 | 945 | Camphene | MH | 1.47 | 1.42 | 1.37 | 1.33 | 1.51 | 0.85 | 0.83 | 1.58 | 1.69 | 1.67 | 1.58 ± 0.56 | 1.56 ± 0.53 | 1.52 ± 0.58 | 2.13 ± 0.16 | 1.82 ± 0.57 |
976 | 969 | Sabinene | MH | tr. | tr. | - f | tr. | tr. | tr. | tr. | 0.05 | 0.06 | 0.06 | tr. | tr. | tr. | 0.07 ± 0.00 | 0.06 ± 0.02 |
978 | 974 | β-Pinene | MH | 0.49 | 0.47 | 0.42 | 0.45 | 0.48 | 0.43 | 0.40 | 0.49 | 0.51 | 0.53 | 0.45 ± 0.01 | 0.49 ± 0.06 | 0.48 ± 0.07 | 0.56 ± 0.04 | 0.51 ± 0.06 |
991 | 988 | 3-Octanone | OA | tr. | tr. | - | tr. | tr. | - | - | tr. | tr. | tr. | - | - | - | - | - |
995 | 988 | β-Myrcene | MH | 2.76 | 2.70 | 2.63 | 2.48 | 2.72 | 1.53 | 1.45 | 1.79 | 1.88 | 1.88 | 1.62 ± 0.32 | 1.53 ± 0.18 | 1.51 ± 0.29 | 1.83 ± 0.03 | 1.62 ± 0.26 |
1009 | 1002 | α-Phellandrene | MH | 0.36 | 0.35 | 0.34 | 0.33 | 0.35 | 0.19 | 0.19 | 0.20 | 0.20 | 0.20 | 0.26 ± 0.03 | 0.26 ± 0.02 | 0.25 ± 0.03 | 0.28 ± 0.01 | 0.24 ± 0.03 |
1013 | 1008 | 3-Carene | MH | 0.21 | 0.21 | 0.21 | 0.20 | 0.22 | 0.09 | 0.08 | 0.13 | 0.14 | 0.14 | 0.11 ± 0.04 | 0.10 ± 0.03 | 0.10 ± 0.03 | 0.14 ± 0.01 | 0.12 ± 0.03 |
1021 | 1014 | α-Terpinene | MH | 3.76 | 3.72 | 3.61 | 3.58 | 3.72 | 1.61 | 1.58 | 2.34 | 2.37 | 2.38 | 2.20 ± 0.66 | 2.17 ± 0.64 | 2.14 ± 0.65 | 2.92 ± 0.05 | 2.46 ± 0.64 |
1036 | 1020 | p-Cymene | AH | 58.61 | 56.24 | 55.41 | 54.57 | 56.35 | 74.22 | 74.50 | 71.03 | 71.16 | 69.91 | 67.21 ± 7.03 | 66.38 ± 7.46 | 65.89 ± 6.38 | 58.38 ± 0.23 | 60.62 ± 6.81 |
1055 | 1023 | m-Cymene | AH | tr. | 0.05 | 0.05 | tr. | tr. | - | - | - | - | - | - | - | - | tr. | tr. |
1067 | 1054 | γ-Terpinene | MH | 19.7 | 20.45 | 20.30 | 20.23 | 20.18 | 7.07 | 7.23 | 9.30 | 9.18 | 9.17 | 12.37 ± 2.86 | 12.51 ± 2.64 | 12.67 ± 3.02 | 16.18 ± 0.16 | 14.14 ± 2.88 |
1094 | 1086 | Terpinolene | MH | 0.31 | 0.33 | 0.31 | 0.32 | 0.32 | 0.10 | 0.11 | 0.24 | 0.24 | 0.24 | 0.16 ± 0.10 | 0.16 ± 0.10 | 0.17 ± 0.10 | 0.27 ± 0.01 | 0.21 ± 0.09 |
1101 | 1089 | p-Cymenene | MH | 0.20 | 0.25 | 0.19 | 0.21 | 0.22 | 0.15 | 0.14 | 0.19 | 0.21 | 0.20 | 0.12 ± 0.06 | 0.10 ± 0.04 | 0.09 ± 0.02 | 0.14 ± 0.01 | 0.11 ± 0.03 |
1115 | 1095 | Linalool | OM | 0.27 | 0.26 | 0.25 | 0.26 | 0.33 | 0.13 | 0.10 | 0.28 | 0.34 | 0.34 | 0.23 ± 0.21 | 0.16 ± 0.12 | 0.16 ± 0.13 | 0.29 ± 0.03 | 0.19 ± 0.10 |
1153 | 1141 | Camphor | OM | 0.05 | tr. | tr. | 0.05 | 0.05 | tr. | tr. | 0.06 | 0.06 | 0.06 | tr. | tr. | 0.06 ± 0.04 | 0.09 ± 0.01 | 0.08 ± 0.04 |
1186 | 1165 | Endo-borneol | OM | tr. | tr. | tr. | tr. | tr. | 0.08 | 0.07 | tr. | 0.05 | 0.05 | 0.11 ± 0.02 | 0.09 ± 0.01 | 0.08 ± 0.01 | 0.07 ± 0.01 | 0.08 ± 0.01 |
1192 | 1174 | Terpinen-4-ol | OM | 0.06 | 0.08 | 0.08 | 0.10 | 0.10 | tr. | tr. | 0.08 | 0.08 | 0.09 | tr. | tr. | 0.06 ± 0.05 | 0.10 ± 0.01 | 0.09 ± 0.04 |
1213 | 1195 | Estragole | OPP | tr. | tr. | tr. | tr. | tr. | - | - | - | - | tr. | 0.10 ± 0.06 | 0.13 ± 0.09 | 0.11 ± 0.04 | 0.17 ± 0.03 | 0.18 ± 0.06 |
1247 | 1235 | Thymol methyl ether | OPM | 1.78 | 2.48 | 2.68 | 2.82 | 2.44 | 3.05 | 3.77 | 2.68 | 2.24 | 2.58 | 1.83 ± 0.13 | 2.41 ± 0.17 | 2.77 ± 0.41 | 2.61 ± 0.17 | 2.91 ± 0.34 |
1257 | 1241 | Carvacrol methyl ether | OPM | 1.15 | 1.52 | 1.68 | 1.68 | 1.51 | 1.67 | 2.02 | 1.55 | 1.40 | 1.49 | 1.08 ± 0.12 | 1.37 ± 0.11 | 1.50 ± 0.14 | 1.54 ± 0.03 | 1.69 ± 0.11 |
1293 | 1287 | Bornyl acetate | OM | 0.17 | 0.24 | 0.29 | 0.33 | 0.21 | 0.05 | 0.08 | 0.15 | 0.11 | 0.14 | tr. | 0.15 ± 0.08 | 0.15 ± 0.06 | 0.25 ± 0.04 | 0.24 ± 0.11 |
1306 | 1284 | Anethol | OPP | tr. | tr. | tr. | 0.05 | tr. | - | - | - | - | - | tr. | tr. | 0.08 ± 0.00 | 0.12 ± 0.02 | 0.12 ± 0.03 |
1339 | 1290 | Thymol | PM | 2.61 | 2.80 | 3.14 | 3.36 | 3.12 | 5.25 | 3.50 | 2.13 | 2.64 | 3.15 | 5.27 ± 1.27 | 4.57 ± 0.81 | 4.62 ± 0.84 | 3.72 ± 0.07 | 5.05 ± 0.45 |
1368 | 1298 | Carvacrol | PM | tr. | tr. | tr. | tr. | tr. | - | - | - | - | - | - | tr. | tr. | tr. | tr. |
1381 | 1372 | p-Cymen-7-ol | OM | tr. | tr. | tr. | tr. | tr. | - | - | tr. | tr. | tr. | - | - | - | tr. | tr. |
1386 | 1374 | α-Copaene | SH | 0.09 | 0.13 | 0.17 | 0.19 | 0.12 | tr. | tr. | 0.11 | 0.07 | 0.11 | tr. | tr. | 0.07 ± 0.08 | 0.16 ± 0.01 | 0.19 ± 0.05 |
1395 | 1387 | β-Bourbonene | SH | tr. | tr. | 0.05 | 0.07 | tr. | tr. | tr. | tr. | tr. | 0.05 | tr. | tr. | tr. | 0.09 ± 0.01 | 0.10 ± 0.01 |
1434 | 1418 | β-Caryophyllene | SH | 1.59 | 2.14 | 2.74 | 3.09 | 1.94 | 0.26 | 0.32 | 1.59 | 1.13 | 1.49 | 0.77 ± 0.82 | 1.19 ± 1.26 | 1.28 ± 1.29 | 2.94 ± 0.32 | 2.40 ± 1.59 |
1442 | 1446 d | isogermacrene D | SH | tr. | 0.06 | 0.09 | tr. | tr. | - | - | tr. | tr. | tr. | - | tr. | tr. | 0.08 ± 0.06 | tr. |
1469 | 1452 | α-Humulene | SH | tr. | tr. | 0.07 | 0.07 | tr. | - | tr. | tr. | tr. | tr. | tr. | tr. | tr. | 0.07 ± 0.01 | 0.06 ± 0.03 |
1475 | 1465 | cis-muurola-4(14),5-diene | SH | - | tr. | tr. | tr. | - | - | - | tr. | - | tr. | - | - | - | tr. | tr. |
1482 | 1475 | Geranyl propionate | OM | tr. | tr. | tr. | tr. | - | - | - | - | - | - | - | - | - | - | tr. |
1491 | 1478 | γ-Muurolene | SH | 0.06 | 0.08 | 0.12 | 0.14 | 0.07 | tr. | tr. | 0.06 | tr. | 0.06 | tr. | 0.07 ± 0.04 | 0.08 ± 0.05 | 0.12 ± 0.01 | 0.11 ± 0.05 |
1509 | 1480 | Germacrene D | SH | tr. | tr. | tr. | tr. | - | - | - | tr. | - | - | - | - | - | tr. | tr. |
1512 | 1491 | Valencene | SH | - | tr. | tr. | tr. | - | - | - | - | - | - | - | - | - | tr. | tr. |
1515 | 1499 | α-Muurolene | SH | tr. | tr. | tr. | tr. | tr. | - | - | tr. | tr. | tr. | - | - | - | tr. | tr. |
1520 | 1509 | β-Bisabolene | SH | tr. | tr. | tr. | tr. | tr. | - | - | tr. | - | tr. | - | - | - | tr. | tr. |
1532 | 1513 | γ-Cadinene | SH | 0.08 | 0.08 | 0.12 | 0.14 | 0.07 | tr. | tr. | 0.07 | tr. | 0.07 | tr. | 0.10 ± 0.04 | 0.08 ± 0.03 | 0.12 ± 0.02 | 0.12 ± 0.05 |
1538 | 1524 | δ-Cadinene | SH | 0.1 | 0.1 | 0.15 | 0.17 | 0.09 | tr. | tr. | 0.05 | tr. | 0.05 | tr. | 0.07 ± 0.04 | 0.08 ± 0.04 | 0.12 ± 0.02 | 0.11 ± 0.05 |
1541 | 1521 | Calamenene | SH | tr. | tr. | - | 0.07 | tr. | tr. | 0.05 | 0.05 | 0.03 | 0.05 | tr. | 0.07 ± 0.01 | 0.06 ± 0.01 | 0.07 ± 0.01 | 0.07 ± 0.01 |
1605 | 1581 | Caryophyllene oxide | OS | tr. | tr. | tr. | tr. | tr. | - | - | - | tr. | tr. | - | - | tr. | tr. | tr. |
Total identified (%) | 99.68 | 99.83 | 99.91 | 99.77 | 99.85 | 99.89 | 99.18 | 99.72 | 99.64 | 99.89 | 99.33 | 99.87 | 99.87 | 99.74 | 99.63 |
RI a | Compounds | Cl. b | Supplier/Time (h)/Content (%) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C c | ||||||||||||||||
Obs. | Lit. | 0 | 3 | 6 | 9 | 12 | 0 | 3 | 6 | 9 | 12 | 0 | 3 | 6 | 9 | 12 | ||
- | NA | 2-Ethyl furan | F | tr. d | tr. | tr. | -e | tr. | 0.09 | 0.09 | 0.09 | 0.07 | 0.04 | 0.09 ± 0.05 | 0.07 ± 0.01 | 0.08 ± 0.04 | 0.08 ± 0.02 | 0.07 ± 0.00 |
778 | NA | Methyl α-methylbutyrate | OA | 0.08 | 0.10 | 0.13 | 0.08 | 0.12 | 0.22 | 0.17 | 0.23 | 0.16 | 0.11 | 0.10 ± 0.07 | 0.08 ± 0.02 | 0.10 ± 0.04 | 0.07 ± 0.01 | 0.09 ± 0.00 |
912 | 921 | Tricyclene | MH | 0.11 | 0.20 | 0.16 | 0.12 | 0.19 | 0.17 | 0.15 | 0.06 | 0.20 | 0.18 | 0.19 ± 0.01 | 0.17 ± 0.02 | 0.19 ± 0.01 | 0.20 ± 0.04 | 0.24 ± 0.00 |
918 | 924 | α-Thujene | MH | 2.01 | 2.17 | 2.03 | 1.75 | 2.23 | 2.09 | 2.03 | 2.11 | 2.38 | 2.34 | 1.97 ± 0.24 | 1.89 ± 0.07 | 1.95 ± 0.15 | 1.91 ± 0.17 | 2.30 ± 0.00 |
924 | 939 | α-Pinene | MH | 6.19 | 5.70 | 6.83 | 4.63 | 5.74 | 8.98 | 7.75 | 7.84 | 6.79 | 6.34 | 7.96 ± 2.05 | 6.94 ± 1.11 | 6.90 ± 1.73 | 7.20 ± 0.33 | 7.11 ± 0.00 |
939 | 945 | Camphene | MH | 3.40 | 3.21 | 3.57 | 2.69 | 3.28 | 4.59 | 4.04 | 4.07 | 3.81 | 3.71 | 4.59 ± 0.91 | 4.22 ± 0.35 | 4.16 ± 0.76 | 4.24 ± 0.03 | 4.45 ± 0.00 |
953 | 969 | Sabinene | MH | - | - | - | 0.07 | - | - | - | - | - | - | tr. | tr. | 0.05 ± 0.02 | 0.13 ± 0.19 | 0.06 ± 0.00 |
967 | 980 | β-Pinene | MH | 0.91 | 0.83 | 0.85 | 0.78 | 0.87 | 1.07 | 0.88 | 0.99 | 0.89 | 0.81 | 0.75 ± 0.37 | 0.94 ± 0.04 | 0.91 ± 0.11 | 0.74 ± 0.25 | 0.81 ± 0.00 |
984 | 988 | β-Myrcene | MH | 2.88 | 2.80 | 3.14 | 3.13 | 2.88 | 1.88 | 1.89 | 1.98 | 1.90 | 2.06 | 1.82 ± 0.06 | 1.96 ± 0.24 | 1.88 ± 0.08 | 1.63 ± 0.15 | 2.09 ± 0.00 |
998 | 1002 | α-Phellandrene | MH | 0.31 | 0.35 | 0.23 | 0.20 | 0.35 | 0.05 | 0.11 | 0.11 | 0.10 | 0.07 | 0.13 ± 0.05 | 0.23 ± 0.06 | 0.20 ± 0.10 | 0.19 ± 0.03 | 0.22 ± 0.00 |
1002 | 1008 | 3-Carene | MH | 0.28 | 0.25 | 0.36 | 0.13 | 0.26 | 0.30 | 0.12 | 0.11 | 0.08 | 0.05 | 0.14 ± 0.10 | 0.10 ± 0.05 | 0.13 ± 0.08 | 0.13 ± 0.05 | 0.16 ± 0.00 |
1010 | 1014 | α-Terpinene | MH | 3.64 | 3.57 | 2.57 | 4.17 | 3.80 | 2.21 | 2.06 | 1.93 | 2.12 | 2.34 | 2.57 ± 0.18 | 2.87 ± 0.50 | 2.77 ± 0.33 | 2.41 ± 0.18 | 2.88 ± 0.00 |
1028 | 1020 | p-Cymene | AH | 45.93 | 47.05 | 47.48 | 50.73 | 48.78 | 52.28 | 54.29 | 56.81 | 57.30 | 57.41 | 44.80 ± 1.03 | 49.19 ± 2.67 | 49.20 ± 3.00 | 46.10 ± 2.10 | 49.28 ± 0.00 |
1044 | 1023 | m-Cymene | AH | tr. | tr. | 0.27 | 0.28 | tr. | - | - | - | - | - | 0.07 ± 0.07 | 0.09 ± 0.06 | tr. | 0.06 ± 0.08 | tr. |
1058 | 1054 | γ-Terpinene | MH | 13.40 | 13.90 | 15.46 | 17.54 | 14.80 | 5.76 | 6.22 | 6.58 | 6.69 | 6.99 | 9.54 ± 1.00 | 11.77 ± 1.52 | 11.82 ± 1.70 | 10.32 ± 0.68 | 11.85 ± 0.00 |
1083 | 1086 | Terpinolene | MH | 0.18 | 0.19 | 0.23 | 0.26 | 0.20 | 0.10 | 0.12 | 0.14 | 0.14 | 0.14 | 0.13 ± 0.02 | 0.18 ± 0.04 | 0.18 ± 0.03 | 0.14 ± 0.02 | 0.17 ± 0.00 |
1089 | 1089 | p-Cymenene | MH | 0.10 | 0.09 | 0.13 | 0.14 | 0.09 | 0.08 | 0.09 | 0.10 | 0.09 | 0.09 | 0.06 ± 0.00 | 0.08 ± 0.01 | 0.07 ± 0.01 | 0.06 ± 0.02 | 0.06 ± 0.00 |
1103 | 1095 | Linalool | OM | 0.09 | 0.08 | 0.15 | 0.16 | 0.10 | 0.08 | 0.06 | 0.12 | 0.11 | 0.10 | 0.09 ± 0.03 | 0.09 ± 0.03 | 0.09 ± 0.01 | 0.06 ± 0.03 | 0.08 ± 0.00 |
1133 | 1141 | Camphor | OM | tr. | tr. | tr. | tr. | tr. | tr. | tr. | tr. | tr. | tr. | tr. | tr. | tr. | tr. | tr. |
1171 | NA | 2-Ethyl-5-methylfuran | F | tr. | tr. | tr. | tr. | tr. | tr. | - | tr. | - | tr. | tr. | tr. | tr. | tr. | tr. |
1180 | 1174 | Terpinen-4-ol | OM | tr. | tr. | tr. | tr. | tr. | tr. | tr. | tr. | tr. | tr. | tr. | tr. | tr. | tr. | tr. |
1200 | 1195 | Estragole | OPP | - | - | tr. | tr. | - | - | - | - | - | - | tr. | tr. | tr. | tr. | tr. |
1234 | 1235 | Thymol methyl ether | OPM | 0.34 | 0.34 | 0.62 | 0.67 | 0.43 | 0.24 | 0.39 | 0.45 | 0.43 | 0.49 | 0.31 ± 0.12 | 0.53 ± 0.15 | 0.57 ± 0.12 | 0.43 ± 0.08 | 0.50 ± 0.14 |
1244 | 1241 | Carvacrol methyl ether | OPM | 0.21 | 0.19 | 0.38 | 0.40 | 0.25 | 0.13 | 0.23 | 0.25 | 0.25 | 0.28 | 0.19 ± 0.08 | 0.30 ± 0.09 | 0.33 ± 0.08 | 0.24 ± 0.05 | 0.29 ± 0.08 |
1281 | 1287 | Bornyl acetate | OM | tr. | tr. | 0.05 | 0.05 | tr. | - | tr. | tr. | tr. | tr. | tr. | tr. | tr. | tr. | tr. |
1328 | 1290 | Thymol | PM | 0.50 | 0.27 | 0.58 | 0.60 | 0.28 | 0.25 | 0.10 | 0.28 | 0.26 | 0.22 | 0.46 ± 0.31 | 0.51 ± 0.36 | 0.55 ± 0.30 | 0.25 ± 0.10 | 0.58 ± 0.37 |
1372 | 1374 | α-Copaene | SH | tr. | tr. | tr. | tr. | tr. | - | tr. | tr. | - | tr. | tr. | tr. | tr. | tr. | tr. |
1381 | 1387 | β-Bourbonene | SH | - | - | tr. | tr. | - | - | - | - | - | - | - | tr. | tr. | - | tr. |
1417 | 1418 | β-Caryophyllene | SH | 0.17 | 0.17 | 0.38 | 0.34 | 0.19 | 0.07 | 0.11 | 0.14 | 0.13 | 0.15 | 0.21 ± 0.11 | 0.37 ± 0.15 | 0.41 ± 0.00 | 0.28 ± 0.08 | 0.39 ± 0.20 |
1475 | 1478 | γ-Muurolene | SH | - | - | tr. | tr. | - | - | - | - | - | tr. | tr. | tr. | tr. | tr. | tr. |
1513 | 1513 | γ-Cadinene | SH | - | - | tr. | tr. | - | - | - | - | - | - | - | tr. | tr. | - | tr. |
1521 | 1524 | δ-Cadinene | SH | - | - | tr. | tr. | - | - | - | - | - | - | - | tr. | tr. | - | tr. |
Total identified (%) | 99.95 | 99.80 | 99.94 | 99.94 | 99.95 | 99.98 | 99.86 | 99.90 | 99.92 | 99.71 | 99.87 | 99.83 | 99.90 | 99.90 | 99.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antih, J.; Houdkova, M.; Urbanova, K.; Kokoska, L. Antibacterial Activity of Thymus vulgaris L. Essential Oil Vapours and Their GC/MS Analysis Using Solid-Phase Microextraction and Syringe Headspace Sampling Techniques. Molecules 2021, 26, 6553. https://doi.org/10.3390/molecules26216553
Antih J, Houdkova M, Urbanova K, Kokoska L. Antibacterial Activity of Thymus vulgaris L. Essential Oil Vapours and Their GC/MS Analysis Using Solid-Phase Microextraction and Syringe Headspace Sampling Techniques. Molecules. 2021; 26(21):6553. https://doi.org/10.3390/molecules26216553
Chicago/Turabian StyleAntih, Julien, Marketa Houdkova, Klara Urbanova, and Ladislav Kokoska. 2021. "Antibacterial Activity of Thymus vulgaris L. Essential Oil Vapours and Their GC/MS Analysis Using Solid-Phase Microextraction and Syringe Headspace Sampling Techniques" Molecules 26, no. 21: 6553. https://doi.org/10.3390/molecules26216553
APA StyleAntih, J., Houdkova, M., Urbanova, K., & Kokoska, L. (2021). Antibacterial Activity of Thymus vulgaris L. Essential Oil Vapours and Their GC/MS Analysis Using Solid-Phase Microextraction and Syringe Headspace Sampling Techniques. Molecules, 26(21), 6553. https://doi.org/10.3390/molecules26216553