Buffalo Yogurt Fortified with Eucalyptus (Eucalyptus camaldulensis) and Myrrh (Commiphora Myrrha) Essential Oils: New Insights into the Functional Properties and Extended Shelf Life
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. GC-MS Identification of Eucalyptus and Myrrh Oils Individual Compounds
2.2.2. Yogurt Manufacturing
2.2.3. Physical and Chemical Analysis of Yogurt
2.2.4. Determination of Whey Syneresis
2.2.5. Sensory Evaluation
2.2.6. Total Phenolic Content
2.2.7. Radical Scavenging Activity
2.2.8. Antibacterial Activity
2.2.9. Statistical Analysis
3. Results and Discussions
3.1. GC-MS of EOs
3.2. Sensory Evaluation
3.3. Physicochemical Analysis
3.4. Whey Syneresis
3.5. Total Phenolic Content (TPC)
3.6. Antioxidant Activity
3.7. Antibacterial Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ozturkoglu-Budak, S.; Akal, C.; Yetisemiyen, A. Effect of dried nut fortification on functional, physicochemical, textural, and microbiological properties of yogurt. J. Dairy Sci. 2016, 99, 8511–8523. [Google Scholar] [CrossRef] [Green Version]
- Das, K.; Choudhary, R.; Thompson-Witrick, K.A. Effects of new technology on the current manufacturing process of yogurt-to increase the overall marketability of yogurt. LWT-Food Sci. Technol. 2019, 108, 69–80. [Google Scholar] [CrossRef]
- Chadare, F.J.; Idohou, R.; Nago, E.; Affonfere, M.; Agossadou, J.; Fassinou, T.K.; Kénou, C.; Honfo, S.; Azokpota, P.; Linnemann, A.R.; et al. Conventional and food-to-food fortification: An appraisal of past practices and lessons learned. Food Sci. Nutr. 2019, 7, 2781–2795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, P.C. Milk nutritional composition and its role in human health. Nutrition 2014, 30, 619–627. [Google Scholar] [CrossRef]
- Öztürk, B. Nanoemulsions for food fortification with lipophilic vitamins: Production challenges, stability, and bioavailability. Eur. J. Lipid. Sci. Technol. 2017, 119, 1–18. [Google Scholar] [CrossRef]
- Rios, J.L.; Recio, M.C. Medicinal plants and antimicrobial activity. J. Ethnopharmacol. 2005, 100, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Tajkarimi, M.M.; Ibrahim, S.A.; Cliver, D.O. Antimicrobial herb and spice compounds in food. Food Control. 2010, 21, 1199–1218. [Google Scholar] [CrossRef]
- Hanuš, L.O.; Řezanka, T.; Dembitsky, V.M.; Moussaief, A. Myrrh-Commiphora chemistry. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub 2005, 149, 3–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.Y.; Kang, D.H.; Kim, J.K.; Ha, Y.G.; Hwang, J.Y.; Kim, T.; Lee, S.H. Antibacterial activity of plant extracts against Salmonella Typhimurium, Escherichia coliO157:H7, and Listeria monocytogeneson fresh lettuce. J. Food Sci. 2011, 76, M41–M46. [Google Scholar] [CrossRef]
- Mohamed, A.G.; Abbas, H.M.; Kassem, J.M.; Gafour, W.A.; Attalah, A.G. Impact of Myrrh essential oil as a highly effective antibacterial agent in processed cheese spreads. Int. J. Dairy Sci. 2016, 11, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Michie, C.A.; Cooper, E. Frankincense and Myrrh as remedies in children. J. R. Soc. Med. 1991, 84, 602–605. [Google Scholar]
- Stevenson, C.J. Aromatherapy in dermatology. Clin. Dermatol. 1998, l16, 689–694. [Google Scholar] [CrossRef]
- Rao, R.M.; Khan, Z.A.; Shah, A.H. Toxicity studies in mice of Commiphora molmololeo-gumresin. J. Ethnopharmacol. 2001, 76, 151–154. [Google Scholar] [CrossRef]
- El-Ashry, E.S.H.; Rashed, N.; Salama, O.M.; Saleh, A. Components, therapeutic value and uses of Myrrh. Pharmazie 2003, 58, 163–168. [Google Scholar] [PubMed]
- Kumar, T.A.; Bukvicki, D.; Gottardi, D.; Tabanelli, G.; Montanari, C.; Malik, A.; Guerzoni, M.E. Eucalyptus essential oil as a natural food preservative: In vivo and in vitro antiyeast potential. BioMed Res. Int. 2014, 2014, 969143. [Google Scholar]
- Khan, I.T.; Bule, M.; Rahman Ullah., M.N.; Asif, S.; Niaz, K. The antioxidant components of milk and their role in processing, ripening, and storage: Functional food. Vet. World 2019, 12, 12. [Google Scholar] [CrossRef] [Green Version]
- Moreira, M.R.; Ponce, A.G.; del Valle, C.E.; Roura, R.I. Inhibitory parameters of essential oils to reduce a food borne pathogen. Lebensm. Wiss. Technol. 2005, 38, 565–570. [Google Scholar] [CrossRef]
- Silva, J.; Abebe, W.; Sousa, S.M.; Duarte, V.G.; Machado, M.I.; Matos, F.J. Analgesic and anti-inflammatory effects of essential oils of Eucalyptus. J. Ethnopharmacol. 2003, 89, 277–283. [Google Scholar] [CrossRef]
- Dhakad, A.K.; Pandey, V.V.; Beg, S.; Rawat, J.M.; Singh, A. Biological, medicinal and toxicological significance of Eucalyptus leaf essential oil: A review. J. Sci. Food Agri. 2018, 98, 833–848. [Google Scholar] [CrossRef]
- Noy-Meir, I.; Gutman, M.; Kaplan, Y. Responses of Mediterranean grassland plants to grazing and protection. Ecology 1989, 77, 290–310. [Google Scholar] [CrossRef]
- Perrino, E.V.; Magazzini, P.; Musarella, C.M. Management of grazing “buffalo” to preserve habitats by Directive 92/43 EEC in a wetland protected area of the Mediterranean coast: PaludeFrattarolo, Apulia, Italy. EuroMediterr. J. Environ. Integr. 2021, 6, 32. [Google Scholar] [CrossRef]
- Bell, L.W.; Moore, A.D.; Kirkegaard, J.A. Evolution of crop–livestock integration systems that improve farm productivity and environmental performance in Australia. Agron. J. 2013, 57, 10–20. [Google Scholar] [CrossRef]
- Sraïri, M.T.; Benhouda, H.; Kuper, M.; Le Gal, P.Y. Effect of cattle management practices on raw milk quality on farms operating in a two-stage dairy chain. Trop. Anim. Health Prod. 2009, 41, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Hamed, A.M.; Aborass, M.; El-Kafrawy, I.; Safwat, G. Comparative study for the detection of Egyptian buffalo butter adulteration with vegetable oils using conventional and advanced methods. J. Food Saf. 2019, 39, e12655. [Google Scholar] [CrossRef]
- Farag, M.A.; Wessjohann, L.A. Volatiles profiling in medicinal licorice roots using steam distillation and solid-phase microextraction (SPME) coupled to chemometrics. J. Food Sci. 2012, 77, C1179–C1184. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 20th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2007. [Google Scholar]
- Joel, I.; Guonong, Z. Production and evaluation of some physicochemical parameters of peanut milk yogurt. LWT—Food Sci. Technol. 2009, 42, 1132–1138. [Google Scholar]
- Abdel-Hamid, M.; Huang, Z.; Suzuki, T.; Enomoto, T.; Hamed, A.M.; Li, L.; Romeih, E. Development of a Multifunction Set Yogurt Using Rubus suavissimus S. Lee (Chinese Sweet Tea) Extract. Foods 2020, 9, 1163. [Google Scholar] [CrossRef]
- Dhawi, F.; El-Beltagi, H.S.; Aly, E.; Hamed, A.M. Antioxidant, Antibacterial Activities and Mineral Content of Buffalo Yoghurt Fortified with Fenugreek and Moringa oleifera Seed Flours. Foods 2020, 9, 1157. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, A.L. Determination of total phenolics. In Handbook of Food Analytical Chemistry: Pigments, Colorants, Flavors, Texture, and Bioactive Food Components; Wrolstad, R.E., Acree, T.E., Decker, E.A., Penner, M.H., Reid, D.S., Schwartz, S.J., Shoemaker, C.F., Smith, D., Sporns, P., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2005; pp. 463–470. [Google Scholar]
- Huang, L.; Goda, H.A.; Abdel-Hamid, M.; Renye, J.J.A.; Yang, P.; Huang, Z.; Li, L. Partial characterization of probiotic lactic acid bacteria isolated from Chinese dairy products. Int. J. Food Prop. 2021, 24, 446–456. [Google Scholar] [CrossRef]
- Sanlidrer, A.; Öner, Z. Determination of antioxidant activity of bioactive peptide fractions obtained from yogurt. J. Dairy Sci. 2011, 94, 5305–5314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanuš, L.O.; Rosenthal, D.; Řezanka, T.; Dembitsky, V.M.; Moussaief, A. Fast and easy GC/MS identification of Myrrh resins. Pharma. Chem. J. 2008, 42, 719–720. [Google Scholar] [CrossRef]
- Marongiu, B.; Piras, A.; Porcedda, S.; Scorciapino, A. Chemical composition of the essential oil and supercritical CO2 extract of Commiphora myrrha (Nees) Engl. and of Acorus calamus L. J. Agri. Food Chem. 2005, 53, 7939–7943. [Google Scholar] [CrossRef] [PubMed]
- Hassan, L.K.; Haggag, H.F.; ElKalyoubi, M.H.; Abd EL-Aziz, M.; El-Sayed, M.M.; Sayed, A.F. Physico- chemical properties of yogurt containing cress seed mucilage or guar gum. Ann. Agric.Sci. 2015, 60, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Basiri, S.; Haidary, N.; Shekarforoush, S.S.; Niakousari, M. Flaxseed mucilage: A natural stabilizer in stirred yogurt. Carbohydr. Polym. 2018, 187, 59–65. [Google Scholar] [CrossRef]
- Ghalem, B.R.; Zouaoui, B. Evaluation of the quality of steamed yogurt treated by Lavandula and Chamaemelum speciesessential oils. J. Med. Plant. Res. 2013, 7, 3121–3126. [Google Scholar]
- Hamed, A.M.; Taha, S.H.; Darwish, A.A.; Aly, E. Antioxidant activity and some quality characteristics of buffalo yoghurt fortified with peanut skin extract powder. J. Food Sci. Technol. 2021, 58, 2431–2440. [Google Scholar] [CrossRef]
- Staff, M.C. Cultured milk and fresh cheese. In The Technology of Dairy Products; Early, R., Ed.; Chapman and Hall: New York, NY, USA, 1998; pp. 123–157. [Google Scholar]
- Dubeau, S.; Samson, G.; Tajmir-Riahi, H. Dual effects of milk on the antioxidant capacity of green: Darjeeling and English breakfast teas. Food Chem. 2010, 122, 539–545. [Google Scholar] [CrossRef]
- Muniandy, P.; Shori, A.B.; Baba, A.S. Influence of green, white and black tea addition on the antioxidant activity of probiotic yogurt during refrigerated storage. Food Packag. Shelf Life 2016, 8, 1–8. [Google Scholar] [CrossRef]
- Bandonian, D.; Murkovic, M. The detection of radical scavenging compounds in crude extract of borage (Boragoofficinalis, L.) by using an on-line HPLC-DPPH method. J. Biochem. Biophys. Methods. 2002, 53, 45–49. [Google Scholar] [CrossRef]
- Rodriguez-Garcia, I.; Silva-Espinoza, B.A.; Ortega-Ramirez, L.A.; Leyva, J.M.; Siddiqui, M.W.; Cruz-Valenzuela, M.R.; Gonzalez-Aguilar, G.A.; Ayala-Zavala, J.F. Oregano essential oil as an antimicrobial and antioxidant additive in food products. Crit. Rev. Food Sci. Nutr. 2016, 56, 717–727. [Google Scholar] [CrossRef]
- Zainoldin, K.H.; Baba, A.S. The Effect of Hylocereus polyrhizus and Hylocereus undatus on physicochemical, proteolysis, and antioxidant activity in yogurt. Int. J. Med. Sci. 2010, 1, 93–98. [Google Scholar]
- El Sayed, E.M.; Hamed, A.M.; Badran, S.M.; Mostafa, A.A. A survey of selective essential and toxic metals in milk in different regions of Egypt using ICP-AES. Int. J. Dairy Sci. 2011, 6, 158–164. [Google Scholar] [CrossRef]
- Bachir, R.G.; Benali, M. Antibacterial activity of the essential oils from the leaves of Eucalyptus globulus against Escherichia coli and Staphylococcus aureus. Asian Pac. J. Trop. Biomed. 2012, 2, 739–742. [Google Scholar] [CrossRef] [Green Version]
- Singh, G.; Kapoor, I.P.S.; Singh, P. Effect of volatile oil and oleoresin of anise on the shelf life of yogurt. J. Food Process. Preserv. 2011, 35, 778–783. [Google Scholar] [CrossRef]
- Yangilar, F.; Yildiz, P.O. Effects of using combined essential oils on quality parameters of bio-yogurt. J. Food Process. Preserv. 2017, 41, 1–9. [Google Scholar] [CrossRef]
Myrrh Oil | Eucalyptus Oil | |||
---|---|---|---|---|
Compound | Percentage (%) | Compound | Percentage % | |
1 | δ-elemene | 2.2 | α-pinene | 24.83 |
2 | β-elemene | 6.7 | 1,8-cineol | 47.8 |
3 | Germacrene B | 4.5 | Terpineol alpha | 5.55 |
4 | γ-elemene | 1.7 | pinocarveol | 3.42 |
5 | Germacrene D | 2.9 | 4-terpineol | 1.66 |
6 | isofuranogermacrene | 18.4 | Trans-Pinocarveol | 7.34 |
7 | T-cadinol | 2.9 | alpha-terpinyl acetate | 1.54 |
8 | Furanodiene | 21.3 | Limonene | 1.2 |
9 | Furanoeudesma-1,3-diene | 23.4 | Pinacarvone | 4.11 |
10 | Lindestrene | 7.5 | Guaiene | 1.53 |
11 | 2-methoxyfuranodiene | 2.3 | Spathulenol | 1.02 |
12 | 2-acetoxyfuranodiene | 6.2 |
Treatment | Storage Time | Appearance | Mouthfeel | Texture | Flavor | Overall Acceptability |
---|---|---|---|---|---|---|
C | D1 | 9.6 ± 0.10 A | 9.2 ± 0.10 A | 9.4 ± 0.10 A | 9.3 ± 0.10 A | 9.4 A |
D 14 | 9.4 ± 0.10 AB | 9.2 ± 0.10 A | 9.2 ± 0.10 A | 9.1 ± 0.09 AB | 9.2 B | |
E1 | D1 | 9.8 ± 0.10 A | 9.6 ± 0.10A | 9.4 ± 0.10 A | 9.5 ± 0.10 A | 9.6 A |
D 14 | 9.6 ± 0.10 AB | 9.4 ± 0.10 A | 9.6 ± 0.10 A | 9.3 ± 0.09 AB | 9.5 A | |
E2 | D1 | 9.4 ± 0.09 AB | 8.9 ± 0.09 A | 8.9 ± 0.09 A | 8.7 ± 0.09 AB | 9.0 C |
D 14 | 8.8 ± 0.09 AB | 8.4 ± 0.08 A | 9.1 ± 0.10 A | 8.5 ± 0.08 B | 8.7 C | |
E3 | D1 | 8.7 ± 0.09 AB | 8.5 ± 0.09 A | 9.3 ± 0.10 A | 8.6 ± 0.09 AB | 8.8 C |
D 14 | 8.5 ± 0.09AB | 8.4 ± 0.08 A | 9.2 ± 0.09 A | 8.5 ± 0.09 AB | 8.7 C | |
M1 | D1 | 9.0 ± 0.09 AB | 8.6 ± 0.09 A | 8.6 ± 0.09 A | 8.4 ± 0.09 AB | 88 C |
D 14 | 8.2 ± 0.09 AB | 8.1 ± 0.08 A | 8.9 ± 0.10 A | 8.1 ± 0.08B | 8.4 E | |
M2 | D1 | 8.2 ± 0.09 AB | 8.2 ± 0.09 A | 9.2 ± 0.10 A | 8.3 ± 0.09 AB | 8.6 D |
D 14 | 8.2 ± 0.09 AB | 8.0 ± 0.08 A | 8.8 ± 0.09 A | 8.2 ± 0.09 AB | 8.4 E | |
M3 | D1 | 8.6 ± 0.09 AB | 8.8 ± 0.09 A | 9.1 ± 0.09 A | 8.3 ± 0.09 AB | 8.8 C |
D 14 | 8.0 ± 0.08 B | 8.4 ± 0.09 A | 8.8 ± 0.09 A | 8.2 ± 0.09 AB | 8.4 E |
Treatment | TS (%) | pH | Syneresis (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
d 1 | d 7 | d 14 | d 1 | d 7 | d 14 | d 1 | d 7 | d 14 | |
C | 16.8 ± 0.32 ab | 17.1 ± 0.75a | 17.2 ± 0.61 a | 4.55 ± 0.1 b | 4.43 ± 0.14 b | 4.42 ± 0.13 b | 9.84 ± 0.62 f | 11.33 ± 0.71 b | 12.43 ± 0.78 a |
E1 | 17.1 ± 0.02 a | 17.3 ± 0.53 a | 17.5 ± 0.51 a | 4.64 ± 0.1 a | 4.56 ± 0.1 b | 4.55 ± 0.13 b | 8.72 ± 0.5 j | 9.61 ± 0.60 g | 10.83 ± 0.68 b |
E2 | 17.3 ± 0.64 a | 17.4 ± 0.42 a | 17.6 ± 0.61 a | 4.68 ± 0.15 a | 4.63 ± 0.14 a | 4.61 ± 0.14a | 8.65 ± 0.52 k | 8.66 ± 0.54 j | 10.2 ± 0.63 e |
E3 | 17.2 ± 0.33 a | 17.4 ± 0.54 ac | 17.5 ± 0.12 a | 4.70 ± 0.15 a | 4.58 ± 0.14 b | 4.53 ± 0.14 b | 8.44 ± 0.55 h | 9.50 ± 0.60 e | 9.75 ± 0.68 e |
M1 | 17.0 ± 0.42 ab | 17.2 ± 0.42 a | 17.3 ± 0.41 a | 4.58 ± 0.15 b | 4.47 ± 0.14 b | 4.44 ± 0.13 b | 9.12 ± 0.58 h | 9.89 ± 0.62 ef | 11.33 ± 0.71 b |
M2 | 17.0 ± 0.42 a | 17.2 ± 0.52 a | 17.5 ± 0.61 a | 4.64 ± 0.15 a | 4.55 ± 0.15 b | 4.55 ± 0.14 b | 8.83 ± 0.57 i | 9.51 ± 0.60 g | 10.66 ± 0.67 d |
M3 | 17.1 ± 0.42 a | 17.3 ± 0.51 a | 17.7 ± 0.81 a | 4.66 ± 0.15 a | 4.56 ± 0.15 b | 4.50 ± 0.14 b | 8.12 ± 23 h | 9.14 ± 21 e | 9.84 ± 51 e |
Treatment | Total Phenolic Content | Antioxidant Activity | ||||
---|---|---|---|---|---|---|
d 1 | d 7 | d 14 | d 1 | d 7 | d 14 | |
C | 7.12 ± 0.11 k | 6.22 ± 0.09 k | 5.12 ± 0.08 l | 15.33 ± 0.16 i | 14.44 ± 0.14 j | 13.82 ± 0.14 k |
E1 | 20.47 ± 0.31 f | 17.16 ± 0.26 h | 15.45 ± 0.24 i | 52.33 ± 0.52 f | 49.1 ± 0.49 g | 45.11 ± 0.45 h |
E2 | 28.60 ± 0.44 b | 25.48 ± 0.39 c | 23.58 ± 0.36 d | 73.12 ± 0.73 a | 62.04 ± 0.62 d | 56.84 ± 0.57 e |
E3 | 30.37 ± 0.34 a | 28.36 ± 0.28 b | 26.35 ± 0.25 c | 75.58 ± 0.76 a | 72.9 ± 0.73 b | 67.45 ± 0.67 b |
M1 | 18.21 ± 0.32 g | 16.32 ± 0.53 h | 14.31 ± 0.34 i | 50.11 ± 0.55 f | 46.21 ± 0.39 g | 43.72 ± 0.23 h |
M2 | 26.21 ± 0.21 c | 23.32 ± 0.21 d | 22.63 ± 0.32 f | 69.21 ± 0.13 b | 59.92 ± 0.33 d | 53.21 ± 0.32 e |
M3 | 28.53 ± 0.34 b | 26.22 ± 0.21 c | 25.33 ± 0.35 c | 71.21 ± 0.36 a | 69.01 ± 0.21 b | 63.21 ± 0.22 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamed, A.M.; Awad, A.A.; Abdel-Mobdy, A.E.; Alzahrani, A.; Salamatullah, A.M. Buffalo Yogurt Fortified with Eucalyptus (Eucalyptus camaldulensis) and Myrrh (Commiphora Myrrha) Essential Oils: New Insights into the Functional Properties and Extended Shelf Life. Molecules 2021, 26, 6853. https://doi.org/10.3390/molecules26226853
Hamed AM, Awad AA, Abdel-Mobdy AE, Alzahrani A, Salamatullah AM. Buffalo Yogurt Fortified with Eucalyptus (Eucalyptus camaldulensis) and Myrrh (Commiphora Myrrha) Essential Oils: New Insights into the Functional Properties and Extended Shelf Life. Molecules. 2021; 26(22):6853. https://doi.org/10.3390/molecules26226853
Chicago/Turabian StyleHamed, Ahmed Mohamed, Awad A. Awad, Ahmed E. Abdel-Mobdy, Abdulhakeem Alzahrani, and Ahmad Mohammad Salamatullah. 2021. "Buffalo Yogurt Fortified with Eucalyptus (Eucalyptus camaldulensis) and Myrrh (Commiphora Myrrha) Essential Oils: New Insights into the Functional Properties and Extended Shelf Life" Molecules 26, no. 22: 6853. https://doi.org/10.3390/molecules26226853
APA StyleHamed, A. M., Awad, A. A., Abdel-Mobdy, A. E., Alzahrani, A., & Salamatullah, A. M. (2021). Buffalo Yogurt Fortified with Eucalyptus (Eucalyptus camaldulensis) and Myrrh (Commiphora Myrrha) Essential Oils: New Insights into the Functional Properties and Extended Shelf Life. Molecules, 26(22), 6853. https://doi.org/10.3390/molecules26226853