Inverse Vulcanization of a Natural Monoene with Sulfur as Sustainable Electrochemically Active Materials for Lithium-Sulfur Batteries
Abstract
:1. Introduction
2. Experimental Section
2.1. Sample Preparation
2.2. Materials Characterization
2.3. Computational Analysis
2.4. Measurement of Electrochemical Performances
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Griebel, J.J.; Namnabat, S.; Kim, E.T.; Himmelhuber, R.; Moronta, D.H.; Chung, W.J.; Simmonds, A.G.; Kim, K.J.; Laan, J.V.D.; Nguyen, N.A.; et al. New infrared transmitting material via inverse vulcanization of elemental sulfur to prepare high refractive index polymers. Adv. Mater. 2014, 26, 3014–3018. [Google Scholar] [CrossRef] [PubMed]
- Düsselberg, D.; Verreault, D.; Koelsch, P.; Staudt, C. Synthesis and characterization of novel, soluble sulfur-containing copolyimides with high refractive indices. J. Mater. Sci. 2011, 46, 4872–4879. [Google Scholar] [CrossRef]
- ElAkemi, E.; Jaballah, N.; Ouada, H.B.; Majdoub, M. Electrical properties of a new sulfur-containing polymer for optoelectronic application. Appl. Phys. A 2015, 119, 1335–1342. [Google Scholar] [CrossRef]
- Griebel, J.J.; Nguyen, N.A.; Astashkin, A.V.; Glass, R.S.; Mackay, M.E.; Char, K.; Pyun, J. Preparation of dynamic covalent polymers via inverse vulcanization of elemental sulfur. ACS Macro Lett. 2014, 3, 1258–1261. [Google Scholar] [CrossRef]
- Pope, J.M.; Oyama, N. Organosulfur/conducting polymer composite cathodes. J. Electrochem. Soc. 2002, 149, 1893–1901. [Google Scholar] [CrossRef]
- Hong, L.H.; Wang, J.Y.; Sun, J.Y.; Hu, W.X.; Ni, X.F. Progress of polymeric organosulfides anode materials of lithium batteries with high energy density. Polym. Mater. Sci. Eng. 2004, 20, 33–36. [Google Scholar]
- Liang, L.; Tao, Z.L.; Chen, J. Organic electrode materials for rechargeable lithium batteries. Adv. Energy Mater. 2012, 2, 742–769. [Google Scholar] [CrossRef]
- Zhao, F.L.; Li, Y.; Feng, W. Recent advances in applying vulcanization/inverse vulcanization methods to achieve high-performance sulfur-containing polymer cathode materials for Li-S batteries. Small Methods 2018, 2, 1800156–1800190. [Google Scholar] [CrossRef]
- Griebel, J.J.; Glass, R.S.; Char, K.; Pyun, J. Polymerizations with elemental sulfur: A novel route to high sulfur content polymers for sustainability. Prog. Polym. Sci. 2016, 58, 90–125. [Google Scholar] [CrossRef] [Green Version]
- Sinsel, S.R.; Riemke, R.L.; Hoffmann, V.H. Challenges and solution technologies for the integration of variable renewable energy sources—A review. Renew. Energ. 2020, 145, 2271–2285. [Google Scholar] [CrossRef]
- Zhao, F.; Feng, Y.; Wang, Y.; Zhang, X.; Liang, X.; Li, Z.; Zhang, F.; Wang, T.; Gong, J.; Feng, W. Two-dimensional gersiloxenes with tunable bandgap for photocatalytic H2 evolution and CO2 photoreduction to CO. Nat. Commun. 2020, 11, 1443. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Wang, Y.; Zhang, X.; Liang, X.; Zhang, F.; Wang, L.; Li, Y.; Feng, Y.; Feng, W. Few-layer methyl-terminated germanene-graphene nanocomposite with high capacity for stable lithium storage. Carbon 2020, 161, 287–298. [Google Scholar] [CrossRef]
- Wang, X.F.; Qian, Y.M.; Wang, L.; Yang, H.; Li, H.; Zhao, Y.; Liu, T.X. Sulfurized polyacrylonitrile cathodes with high compatibility in both ether and carbonate electrolytes for ultrastable lithium-sulfur batteries. Adv. Funct. Mater. 2019, 29, 1902929–1902941. [Google Scholar] [CrossRef]
- Chen, W.J.; Li, B.Q.; Zhao, C.X.; Zhao, M.; Yuan, T.Q.; Sun, R.C.; Huang, J.Q.; Zhang, Q. Electrolyte regulation towards stable lithium-metal anodes in lithium-sulfur batteries with sulfurized polyacrylonitrile cathodes. Angew. Chem. Int. Edit. 2020, 59, 10732–10745. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, H.Y.; Zhao, F.L.; Wang, T.X.; Ding, X.; Han, B.H.; Feng, W. Three-dimensional covalent organic frameworks as host materials for lithium-sulfur batteries. Chin. J. Polym. Sci. 2020, 38, 550–557. [Google Scholar] [CrossRef]
- Gomez, I.; Mecerreyes, D.; Blazquez, J.A.; Leonet, O.; Youcef, H.B.; Li, C.; Gómez-Cámer, J.L.; Bondarchuk, O.; Rodriguez-Martinez, L. Inverse vulcanization of sulfur with divinylbenzene: Stable and easy processable cathode material for lithium-sulfur batteries. J. Power Sources 2016, 329, 72–78. [Google Scholar] [CrossRef]
- Dirlam, P.T.; Simmonds, A.G.; Kleine, T.S.; Nguyen, N.A.; Anderson, L.E.; Klever, A.O.; Florian, A.; Costanzo, P.J.; Theato, P.; Mackay, M.E.; et al. Inverse vulcanization of elemental sulfur with 1,4-diphenylbutadiyne for cathode materials in Li-S batteries. RSC Adv. 2015, 5, 24718–24722. [Google Scholar] [CrossRef]
- Yamabuki, K.; Itaoka, K.; Kim, I.T.; Yoshimoto, N.; Tsutsumi, H. Electrochemically active copolymers prepared from elemental sulfur and bis(alkenyl) compounds having crown ether unit. Polymer 2016, 91, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Arslan, M.; Kiskan, B.; Cengiz, E.C.; Demir-Cakan, R.; Yagci, Y. Inverse vulcanization of bismaleimide and divinylbenzene by elemental sulfur for lithium sulfur batteries. Eur. Polym. J. 2016, 80, 70–77. [Google Scholar] [CrossRef]
- Kim, E.T.; Chung, W.J.; Lim, J.; Johe, P.; Glass, R.S.; Pyun, J.; Char, K. One-pot synthesis of PbS NP/sulfur-oleylamine copolymer nanocomposites via the copolymerization of elemental sulfur with oleylamine. Polym. Chem. 2014, 5, 3617–3623. [Google Scholar] [CrossRef]
- Zhang, Y.; Griebel, J.J.; Dirlam, P.T.; Nguyen, N.A.; Glass, R.S.; Mackay, M.E.; Char, K.; Pyun, J. Inverse vulcanization of elemental sulfur and styrene for polymeric cathodes in Li-S batteries. J. Polym. Sci. Pol. Chem. 2016, 55, 107–116. [Google Scholar] [CrossRef]
- Yamabuki, K.; Itaoka, K.; Shinchi, T.; Yoshimoto, N.; Ueno, K.; Tsutsumi, H. Soluble sulfur-based copolymers prepared from elemental sulfur and alkenyl alcohol as positive active material for lithium-sulfur batteries. Polymer 2017, 117, 225–230. [Google Scholar] [CrossRef]
- Worthington, M.J.H.; Kucera, R.L.; Chalker, J.M. Green chemistry and polymers made from sulfur. Green Chem. 2017, 19, 2748–2761. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Li, Y.; Li, S.; Long, P.; Cao, C.; Cao, Y.; Wang, W.; Feng, Y.; Feng, W. A low cost ultra-microporous carbon scaffold with confined chain-like sulfur molecules as a superior cathode for lithium-sulfur batteries. Sustain. Energ. Fuels 2018, 2, 2187–2196. [Google Scholar] [CrossRef]
- Steudel, R. (Ed.) Liquid Sulfur. In Elemental Sulfur and Sulfur-Rich Compounds I; Springer: Heidelberg/Berlin, Germany, 2003; pp. 81–116. [Google Scholar]
- Luo, X.F.; Hu, X.; Zhao, X.Y.; Goh, S.H.; Li, X.D. Miscibility and interactions in blends and complexes of poly(4-methyl-5-vinylthiazole) with proton-donating polymers. Polymer 2003, 44, 5285–5291. [Google Scholar] [CrossRef]
- Rao, M.; Song, X.; Liao, H.; Cairns, E.J. Carbon nanofiber-sulfur composite cathode materials with different binders for secondary Li/S cells. Electrochim. Acta 2012, 65, 228–233. [Google Scholar] [CrossRef]
- Doan, T.N.L.; Ghaznavi, M.; Zhao, Y.; Zhang, Y.; Konarov, A.; Sadhu, M.; Tangirala, R.; Chen, P. Binding mechanism of sulfur and dehydrogenated polyacrylonitrile in sulfur/polymer composite cathode. J. Power Sources 2013, 241, 61–69. [Google Scholar] [CrossRef]
- Xu, C.; Wu, Y.; Zhao, X.; Wang, X.; Du, G.; Zhang, J.; Tu, J. Sulfur/three-dimensional graphene composite for high performance lithium-sulfur batteries. J. Power Sources 2015, 275, 22–25. [Google Scholar] [CrossRef]
- Wei, S.; Ma, L.; Hendrickson, K.E.; Tu, Z.; Archer, L.A. Metal-sulfur battery cathodes based on PAN-Sulfur composites. J. Am. Chem. Soc. 2015, 137, 12143–12152. [Google Scholar] [CrossRef]
- Zeng, S.; Li, L.; Xie, L.; Zhao, D.; Wang, N.; Chen, S. Conducting polymers crosslinked with sulfur as cathode materials for high-rate, ultralong-life lithium-sulfur batteries. Chem. Sus. Chem. 2017, 10, 3378–3386. [Google Scholar] [CrossRef]
- Guo, J.; Yang, Z.; Yu, Y.; Abruna, H.D.; Archer, L.A. Lithium-sulfur battery cathode enabled by lithium-nitrile interaction. J. Am. Chem. Soc. 2013, 135, 763–767. [Google Scholar] [CrossRef]
- Chen, J.J.; Yuan, R.M.; Feng, J.M.; Zhang, Q.; Huang, J.X.; Fu, G.; Zheng, M.S.; Ren, B.; Dong, Q.F. Conductive lewis base matrix to recover the missing link of Li2S8 during the sulfur redox cycle in Li-S battery. Chem. Mater. 2015, 27, 2048–2055. [Google Scholar] [CrossRef]
- Yan, J.; Li, B.; Liu, X. Nano-porous sulfur-polyaniline electrodes for lithium-sulfurbatteries. Nano Energy 2015, 18, 245–252. [Google Scholar] [CrossRef]
- Zeng, S.; Li, L.; Yu, J.; Wang, N.; Chen, S. Highly crosslinked organosulfur copolymer nanosheets with abundant mesopores as cathode materials for efficient lithium-sulfur batteries. Electrochim. Acta 2018, 263, 53–59. [Google Scholar] [CrossRef]
- Simmonds, A.G.; Griebel, J.J.; Park, J.; Kim, K.R.; Chung, W.J.; Oleshko, V.P.; Kim, J.; Kim, E.T.; Glass, R.S.; Soles, C.L.; et al. Inverse vulcanization of elemental sulfur to prepare polymeric electrode materials for Li-S batteries. ACS Macro Lett. 2014, 3, 229–232. [Google Scholar] [CrossRef]
- Kim, H.; Lee, J.; Ahn, H.; Kim, O.; Park, M.J. Synthesis of three-dimensionally interconnected sulfur-rich polymers for cathode materials of high-rate lithium-sulfur batteries. Nat. Commun. 2015, 6, 7278–7288. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.; Kim, H.; Park, M.J. Sulfur-rich polymers with functional linkers for high-capacity and fast-charging lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1802423–1802431. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, J.; Liu, Z.; Zhang, W.; Deng, N.; Liu, J.; Zhao, F. Inverse Vulcanization of a Natural Monoene with Sulfur as Sustainable Electrochemically Active Materials for Lithium-Sulfur Batteries. Molecules 2021, 26, 7039. https://doi.org/10.3390/molecules26227039
Xiao J, Liu Z, Zhang W, Deng N, Liu J, Zhao F. Inverse Vulcanization of a Natural Monoene with Sulfur as Sustainable Electrochemically Active Materials for Lithium-Sulfur Batteries. Molecules. 2021; 26(22):7039. https://doi.org/10.3390/molecules26227039
Chicago/Turabian StyleXiao, Jian, Zhicong Liu, Wangnian Zhang, Ning Deng, Jijun Liu, and Fulai Zhao. 2021. "Inverse Vulcanization of a Natural Monoene with Sulfur as Sustainable Electrochemically Active Materials for Lithium-Sulfur Batteries" Molecules 26, no. 22: 7039. https://doi.org/10.3390/molecules26227039
APA StyleXiao, J., Liu, Z., Zhang, W., Deng, N., Liu, J., & Zhao, F. (2021). Inverse Vulcanization of a Natural Monoene with Sulfur as Sustainable Electrochemically Active Materials for Lithium-Sulfur Batteries. Molecules, 26(22), 7039. https://doi.org/10.3390/molecules26227039