Amplification of Electronic Circular Dichroism—A Tool to Follow Self-Assembly of Chiral Molecular Capsules †
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Schalley, C. Analytical Methods in Suparmolecular Chemistry; Wiley-VCH: Weinheim, Germany, 2006. [Google Scholar]
- Pescitelli, G.; di Bari, L.; Berova, N. Application of electronic circular dichroism in the study of supramolecular systems. Chem. Soc. Rev. 2011, 40, 4603–4625. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Bousquet, B.; Mulatier, J.-C.; Pitrat, D.; Jean, M.; Vanthuyne, N.; Guy, L.; Dutasta, J.-P.; Martinez, A. Synthesis, Resolution, and Absolute Configuration of Chiral Tris(2-pyridylmethyl)amine-Based Hemicryptophane Molecular Cages. J. Org. Chem. 2017, 82, 6082–6088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koenis, M.A.J.; Osypenko, A.; Fuks, G.; Giuseppone, N.; Nicu, V.P.; Visscher, L.; Buma, W.J. Self-Assembly of Supramolecular Polymers of N-Centered Triarylamine Trisamides in the Light of Circular Dichroism: Reaching Consensus between Electrons and Nuclei. J. Am. Chem. Soc. 2020, 142, 1020–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, W.; Wang, G.-T.; Du, P.; Wang, R.-X.; Jiang, X.-K.; Li, Z.-T. Foldamer Organogels: A Circular Dichroism Study of Glucose-Mediated Dynamic Helicity Induction and Amplification. J. Am. Chem. Soc. 2008, 130, 13450–13459. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Cai, S.; Tan, J.; Zhang, J.; Yan, C.; Xu, T.; Wan, X. Induced Circular Dichroism of Isotactic Poly(2-vinylpyridine) with Diverse and Tunable “Sergeants-and-Soldiers” Type Chiral Amplification. ACS Macro Lett. 2019, 8, 789–794. [Google Scholar] [CrossRef]
- Palmans, A.R.A.; Meijer, E.W. Amplification of Chirality in Dynamic Supramolecular Aggregates. Angew. Chem. Int. Ed. 2007, 46, 8948–8968. [Google Scholar] [CrossRef] [PubMed]
- Mendicuti, F.; González-Álvarez, M.J. Supramolecular Chemistry: Induced Circular Dichroism to Study Host-Guest Geometry. J. Chem. Educ. 2010, 87, 965–968. [Google Scholar] [CrossRef]
- Zajac, G.; Kaczor, A.; Buda, S.; Młynarski, J.; Frelek, J.; Dobrowolski, J.C.; Baranska, M. Prediction of ROA and ECD Related to Conformational Changes of Astaxanthin Enantiomers. J. Phys. Chem. B 2015, 119, 12193–12201. [Google Scholar] [CrossRef] [PubMed]
- Padula, D.; Pescitelli, G. How and How Much Molecular Conformation Affects Electronic Circular Dichroism: The Case of 1,1-Diarylcarbinols. Molecules 2018, 23, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jędrzejewska, H.; Wierzbicki, M.; Cmoch, P.; Rissanen, K.; Szumna, A. Dynamic Formation of Hybrid Peptidic Capsules by Chiral Self-sorting and Self-assembly. Angew. Chem. Int. Ed. 2014, 53, 13760–13764. [Google Scholar] [CrossRef] [PubMed]
- Szymański, M.; Wierzbicki, M.; Gilski, M.; Jędrzejewska, H.; Sztylko, M.; Cmoch, P.; Shkurenko, A.; Jaskólski, M.; Szumna, A. Mechanochemical Encapsulation of Fullerenes in Peptidic Containers Prepared by Dynamic Chiral Self-Sorting and Self-Assembly. Chem. Eur. J. 2016, 22, 3148–3155. [Google Scholar] [CrossRef] [PubMed]
- Grajda, M.; Lewińska, M.J.; Szumna, A. The templation effect as a driving force for the self-assembly of hydrogen-bonded peptidic capsules in competitive media. Org. Biomol. Chem. 2017, 15, 8513–8517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szymański, M.P.; Czajka, J.S.; Cmoch, P.; Iwanek, W.; Szumna, A. Interlaced capsules by self-assembly of cavitands substituted with tripeptides and tetrapeptides. Supramol. Chem. 2018, 30, 430–437. [Google Scholar] [CrossRef]
- Eichstaedt, K.; Szpotkowski, K.; Grajda, M.; Gilski, M.; Wosicki, S.; Jaskólski, M.; Szumna, A. Self-assembly and ordering of peptide-based cavitands in water and DMSO—The power of hydrophobic effects combined with neutral hydrogen bonds. Chem. Eur. J. 2019, 25, 3091–3097. [Google Scholar] [CrossRef] [PubMed]
- Szymański, M.P.; Jędrzejewska, H.; Wierzbicki, M.; Szumna, A. On the mechanism of mechanochemical molecular encapsulation in peptidic capsules. Phys. Chem. Chem. Phys. 2017, 19, 15676–15680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frisch, M.J. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2013. [Google Scholar]
- Grajda, M.; Wierzbicki, M.; Cmoch, P.; Szumna, A. Inherently Chiral Iminoresorcinarenes through Regioselective Unidirectional Tautomerization. J. Org. Chem. 2013, 78, 11597–11601. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.S., Jr. Diffusion ordered nuclear magnetic resonance spectroscopy: Principles and applications. Prog. Nucl. Magn. Reson. Spectrosc. 1999, 34, 203–256. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szymański, M.P.; Grajda, M.; Szumna, A. Amplification of Electronic Circular Dichroism—A Tool to Follow Self-Assembly of Chiral Molecular Capsules. Molecules 2021, 26, 7100. https://doi.org/10.3390/molecules26237100
Szymański MP, Grajda M, Szumna A. Amplification of Electronic Circular Dichroism—A Tool to Follow Self-Assembly of Chiral Molecular Capsules. Molecules. 2021; 26(23):7100. https://doi.org/10.3390/molecules26237100
Chicago/Turabian StyleSzymański, Marek P., Marcin Grajda, and Agnieszka Szumna. 2021. "Amplification of Electronic Circular Dichroism—A Tool to Follow Self-Assembly of Chiral Molecular Capsules" Molecules 26, no. 23: 7100. https://doi.org/10.3390/molecules26237100
APA StyleSzymański, M. P., Grajda, M., & Szumna, A. (2021). Amplification of Electronic Circular Dichroism—A Tool to Follow Self-Assembly of Chiral Molecular Capsules. Molecules, 26(23), 7100. https://doi.org/10.3390/molecules26237100