Assessment of Anti-Inflammatory and Antimicrobial Potential of Ethanolic Extract of Woodfordia fruticosa Flowers: GC-MS Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. GC-MS Analysis
2.2. Antimicrobial Activity
2.3. Time–Kill Study
2.4. Estimation of Phytochemicals and Their Antioxidant Activity
2.5. Anti-Inflammatory Properties
3. Materials and Methods
3.1. Preparation of Flower Extract
3.2. GC-MS Analysis of the Extract
3.3. In Vitro Antimicrobial Assay
3.4. Time–Kill Study
3.5. Quantification of Bioactive Compounds
3.5.1. Total Phenolic Content
3.5.2. Total Flavonoid Content
3.5.3. The Total Ascorbic Acid Content
3.5.4. β-Carotene and Lycopene Determination
3.6. Antioxidant Activity
DPPH Free Radical Scavenging Assay
3.7. Anti-Inflammatory Properties
3.7.1. HRBC Membrane Stabilization Assay
3.7.2. Albumin Denaturation Assay
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Abbreviations
GC-MS | Gas chromatography–mass spectroscopy |
HRBC | Human red blood cell |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
BHA | Butylated hydroxyanisole |
BHT | Butylated hydroxytoluene |
MTCC | Microbial Type Culture Collection |
References
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018, 6, 7204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tottoli, E.M.; Dorati, R.; Genta, I.; Chiesa, E.; Pisani, S.; Conti, B. Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics 2020, 12, 735. [Google Scholar] [CrossRef] [PubMed]
- Edilova, M.I.; Akram, A.; Abdul-Sater, A.A. Innate immunity drives pathogenesis of rheumatoid arthritis. Biomed. J. 2021, 2, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, M.D.; Busquets-Cortés, C.; Capo, X.; Tejada, S.; Tur, J.A.; Pons, A.; Sureda, A. Cyclooxygenase-2 inhibitors as a therapeutic target in inflammatory diseases. Cur. Med. Chem. 2019, 26, 3225–3241. [Google Scholar] [CrossRef]
- Grosser, T.; Smyth, E.; FitzGerald, G.A. Anti-inflammatory, antipyretic, and analgesic agents; pharmacotherapy of gout. Goodman Gilman’s Pharmacol. Basis Ther. 2011, 12, 959–1004. [Google Scholar]
- Karthikeyan, G.; Swamy, M.K.; Viknesh, M.R.; Shurya, R.; Sudhakar, N. Bioactive Phytocompounds to Fight Against Antimicrobial Resistance. In Plant-Derived Bioactives; Swamy, M.K., Ed.; Springer: Cham, Switzerland, 2020; pp. 335–381. [Google Scholar]
- Baravalia, Y.; Vaghasiya, Y.; Chanda, S. Brine shrimp cytotoxicity, anti-inflammatory and analgesic properties of Woodfordia fruticosa Kurz flowers. Iran. J. Pharm. Res. 2012, 11, 851. [Google Scholar]
- Hiralal Ghante, M.; Bhusari, K.P.; Duragkar, N.J.; Ghiware, N.B. Pharmacological evaluation for anti-asthmatic and anti-inflammatory potential of Woodfordia fruticosa flower extracts. Pharmaceut. Biol. 2014, 52, 804–813. [Google Scholar] [CrossRef]
- Roy, A.; Janbandhu, S. An ethnobotanical analysis on flora-medicine continuum among the tribal inhabitants of Ratnagiri and Palghar district, Maharashtra, India. Ethnobot. Res. Appl. 2020, 20, 1–23. [Google Scholar] [CrossRef]
- Shubha, J.R.; Bhatt, P. Functional attributes of polyphenol-rich Woodfordia fruticosa extract: An active ingredient in traditional Indian medicine with nutraceutical potential. J. Herb. Med. 2021, 29, 100488. [Google Scholar] [CrossRef]
- Verma, N.; Amresh, G.; Sahu, P.K.; Mishra, N.; Rao, C.V.; Singh, A.P. Wound healing potential of flowers extracts of Woodfordia fruticosa Kurz. Indian J. Biochem. Biophys. 2013, 50, 296–304. [Google Scholar]
- Bains, A.; Chawla, P. In vitro bioactivity, antimicrobial and anti-inflammatory efficacy of modified solvent evaporation assisted Trametes versicolor extract. Biotech 2020, 10, 404. [Google Scholar] [CrossRef]
- Bains, A.; Chawla, P.; Tripathi, A.; Sadh, P.K. A comparative study of antimicrobial and anti-inflammatory efficiency of modified solvent evaporated and vacuum oven dried bioactive components of Pleurotus floridanus. J. Food Sci. Technol. 2021, 58, 3328–3337. [Google Scholar] [CrossRef]
- Malik, A.; Najda, A.; Bains, A.; Nurzyńska-Wierdak, R.; Chawla, P. Characterization of Citrusnobilis Peel Methanolic Extract for Antioxidant, Antimicrobial, and Anti-Inflammatory Activity. Molecules 2021, 26, 4310. [Google Scholar] [CrossRef]
- Bains, A.; Tripathi, A. Evaluation of antioxidant and anti-inflammatory properties of aqueous extract of wild mushrooms collected from Himachal Pradesh. Asian J. Pharm. Clin. Res. 2017, 10, 467–472. [Google Scholar] [CrossRef] [Green Version]
- Dubey, D.; Patnaik, R.; Ghosh, G.; Padhy, R.N. In vitro antibacterial activity, gas chromatography–mass spectrometry analysis of Woodfordia fruticosa Kurz. leaf extract and host toxicity testing with in vitro cultured lymphocytes from human umbilical cord blood. Osong. Public Health Res. Perspect. 2014, 5, 298–312. [Google Scholar] [CrossRef] [Green Version]
- Kebede, T.; Gadisa, E.; Tufa, A. Antimicrobial activities evaluation and phytochemical screening of some selected medicinal plants: A possible alternative in the treatment of multidrug-resistant microbes. PLoS ONE 2021, 16, e0249253. [Google Scholar] [CrossRef]
- Kaur, R.; Kaur, H. The Antimicrobial activity of essential oil and plant extracts of Woodfordia fruticosa. Arch. Appl. Sci. Res. 2010, 2, 302–309. [Google Scholar]
- Kepiro, I.E.; Marzuoli, I.; Hammond, K.; Ba, X.; Lewis, H.; Shaw, M.; Ryadnov, M.G. Engineering chirally blind protein pseudocapsids into antibacterial persisters. ACS Nano 2019, 14, 1609–1622. [Google Scholar] [CrossRef]
- Venter, H. Reversing resistance to counter antimicrobial resistance in the World Health Organisation’s critical priority of most dangerous pathogens. Biosci. Rep. 2019, 39, BSR20180474. [Google Scholar] [CrossRef] [Green Version]
- Paraszkiewicz, K.; Moryl, M.; Płaza, G.; Bhagat, D.K.; Satpute, S.; Bernat, P. Surfactants of microbial origin as antibiofilm agents. Int. J. Environ. Health Res. 2021, 31, 401–420. [Google Scholar] [CrossRef]
- Banerjee, A.; De, B. Antioxidant activity of ethnomedicinally used flowers of West Bengal, India. Int. J. Pharmacogn. Phytochem. Res. 2014, 6, 622–635. [Google Scholar]
- Sharma, S.; Kota, K.; Ragavendhra, P. HRBC Membrane Stabilization as a study tool to explore the Anti Inflammatory activity of Alliumcepa Linn.–Relevance for 3R. J. Adv. Med. Dent. Sci. Res. 2018, 6, 30–34. [Google Scholar]
- Osman, N.I.; Sidik, N.J.; Awal, A.; Adam, N.A.M.; Rezali, N.I. In vitro xanthine oxidase and albumin denaturation inhibition assay of Barringtonia racemosa L. and total phenolic content analysis for potential anti-inflammatory use in gouty arthritis. J. Intercult. Ethnopharmacol. 2016, 5, 343. [Google Scholar] [CrossRef] [PubMed]
- Chawla, P.; Kumar, N.; Kaushik, R.; Dhull, S.B. Synthesis, characterization and cellular mineral absorption of nanoemulsions of Rhododendron arboreum flower extracts stabilized with gum arabic. J. Food Sci. Technol. 2019, 56, 5194–5203. [Google Scholar] [CrossRef]
- Chawla, P.; Najda, A.; Bains, A.; Nurzyńska-Wierdak, R.; Kaushik, R.; Tosif, M.M. Potential of Gum Arabic Functionalized Iron Hydroxide Nanoparticles Embedded Cellulose Paper for Packaging of Paneer. Nanomaterials 2021, 11, 1308. [Google Scholar] [CrossRef]
- Najda, A.; Klimek, K.; Piekarski, W. Zawartość wybranych metabolitów wtórnych i zdolność przeciwutleniająca ziela Mentha× piperita L. var. officinalis Sole f. pallescens Camus suszonego próżniowo. Przemysł Chemiczny. 2020, 99, 123–126. [Google Scholar] [CrossRef]
- Sadh, P.K.; Chawla, P.; Duhan, J.S. Fermentation approach on phenolic, antioxidants and functional properties of peanut press cake. Food Biosci. 2018, 22, 113–120. [Google Scholar] [CrossRef]
- Kaushik, R.; Chawla, P.; Kumar, N.; Janghu, S.; Lohan, A. Effect of premilling treatments on wheat gluten extraction and noodle quality. Food Sci. Technol. Int. 2018, 24, 627–636. [Google Scholar] [CrossRef]
Peak Number | Retention Time (Min) | Area % | Molecular Weight (g) | Molecular Formula | Compound |
---|---|---|---|---|---|
1 | 7.86 | 0.36 | 136 | C10H16 | γ-Terpinene |
2 | 8.20 | 0.10 | 196 | C12H20O2 | Dihydrocarvyl acetate |
3 | 10.47 | 1.26 | 152 | C10H16O | 1-Decalone (cis-trans) |
4 | 12.43 | 0.13 | 154 | C10H18O | cis-7-Decen-1-al |
5 | 13.39 | 1.35 | 196 | C12H20O2 | 2,6-Octadien-1-ol, 3,7-dimethyl-, acetate, (E)-(Geranyl acetate) |
6 | 16.51 | 0.30 | 220 | C15H24O | Caryophyllene Epoxide |
7 | 20.19 | 0.31 | 228 | C14H28O2 | Tetradecanoic acid |
8 | 22.85 | 19.12 | 494 | C32H62O3 | Palmitic anhydride |
9 | 23.50 | 22.67 | 282 | C11H20O2 | Cyclopropaneoctanoic acid |
10 | 24.75 | 2.42 | 242 | C15H30O2 | Pentadecanoic acid |
11 | 24.75 | 2.42 | 284 | C18H36O2 | Octadecanoic acid |
12 | 24.75 | 2.42 | 256 | C16H32O2 | n-Hexadecanoic acid |
13 | 25.16 | 7.46 | 154 | C10H18O | 3-Decyn-1-ol |
14 | 27.19 | 0.25 | 260 | C9H14O2 | 2H-1-Benzopyran-2-one |
15 | 30.23 | 1.64 | 204 | C15H24 | gamma-Elemene |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Najda, A.; Bains, A.; Chawla, P.; Kumar, A.; Balant, S.; Walasek-Janusz, M.; Wach, D.; Kaushik, R. Assessment of Anti-Inflammatory and Antimicrobial Potential of Ethanolic Extract of Woodfordia fruticosa Flowers: GC-MS Analysis. Molecules 2021, 26, 7193. https://doi.org/10.3390/molecules26237193
Najda A, Bains A, Chawla P, Kumar A, Balant S, Walasek-Janusz M, Wach D, Kaushik R. Assessment of Anti-Inflammatory and Antimicrobial Potential of Ethanolic Extract of Woodfordia fruticosa Flowers: GC-MS Analysis. Molecules. 2021; 26(23):7193. https://doi.org/10.3390/molecules26237193
Chicago/Turabian StyleNajda, Agnieszka, Aarti Bains, Prince Chawla, Anil Kumar, Sebastian Balant, Magdalena Walasek-Janusz, Dariusz Wach, and Ravinder Kaushik. 2021. "Assessment of Anti-Inflammatory and Antimicrobial Potential of Ethanolic Extract of Woodfordia fruticosa Flowers: GC-MS Analysis" Molecules 26, no. 23: 7193. https://doi.org/10.3390/molecules26237193
APA StyleNajda, A., Bains, A., Chawla, P., Kumar, A., Balant, S., Walasek-Janusz, M., Wach, D., & Kaushik, R. (2021). Assessment of Anti-Inflammatory and Antimicrobial Potential of Ethanolic Extract of Woodfordia fruticosa Flowers: GC-MS Analysis. Molecules, 26(23), 7193. https://doi.org/10.3390/molecules26237193