Physicochemical Characterization and Paper Spray Mass Spectrometry Analysis of Myrciaria Floribunda (H. West ex Willd.) O. Berg Accessions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Characteristics
2.2. Total Phenolic Compounds
2.3. Chemical Profile by Paper Spray Mass Spectrometry
No | Identification | Formula | m/z [ ] | MS/MS | Accession | Ref. | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AC67 | AC92 | AC112 | AC132 | AC136 | AC137 | AC153 | AC156 | AC160 | ||||||
Flavonoids | ||||||||||||||
1 | Reynoutrin | C20H18O11 | 433 | 301 | X | X | X | X | [25] | |||||
2 | quercetin pentoside | - | 433 | 301 | X | X | X | X | [26] | |||||
3 | quercetin 3-O-ramnoside (quercitrin) | C21H20O11 | 447 | 301 | X | X | X | X | [21] | |||||
4 | myricetin-arabinoside/ xylopyranoside isomer | C20H17O12 | 449 | 316, 317 | X | X | [25] | |||||||
5 | quercetin-3-glucoside | C21H20O12 | 463 | 301 | X | X | X | X | X | X | X | X | X | [21] |
6 | hyperinine | C21H19O12 | 463 | 300, 301 | X | X | X | X | X | X | X | X | X | [25] |
7 | myricetin-ramnoside | C21H20O12 | 463 | 317 | X | X | X | X | X | X | X | X | X | [24] |
8 | myricitrin | C21H19O12 | 463 | 445, 316, 317, 301 | X | X | X | X | X | X | X | X | X | [21] |
9 | quercitrin | C21H20O11 | 477 | 301 | X | X | X | X | [25] | |||||
10 | myricetin hexoside isomer | - | 479 | 316, 317 | X | X | X | X | X | X | X | [25] | ||
11 | Myricetin glucoside | - | 479 | 317 | X | X | X | X | X | X | X | [24] | ||
12 | Kaempferol-3-O-malonylglucoside | - | 533 | - | X | X | X | X | [27] | |||||
13 | procyanidin A2 | C30H24O12 | 577 | 577 | X | [28] | ||||||||
14 | cyanidin-3-O-rutinoside | C27H31O15+ | 593 | - | X | [27] | ||||||||
15 | methyl-dihydromyricetin diglucoside | - | 657 | 495 | X | [24] | ||||||||
16 | quercetin derivate | - | 867 | - | X | X | ||||||||
Phenylpropanoids | ||||||||||||||
17 | caffeic acid | C9H8O4 | 179 | 179, 135 | X | X | X | X | X | X | [29] | |||
18 | caftaric acid | C13H12O9 | 311 | - | X | X | X | X | X | X | X | X | [27] | |
19 | p-coumaric acid hexoside | - | 325 | 183 | X | X | X | X | X | X | X | X | [27] | |
20 | caffeoyl-D-glucose | - | 339 | - | X | X | X | X | X | [5,27] | ||||
21 | caffeoyl hexose | C15H18O9 | 341 | 179 | X | X | X | [29] | ||||||
22 | chlorogenic acid | C16H18O9 | 353 | 353 | X | [21,30] | ||||||||
Benzoic acid derivates | ||||||||||||||
23 | ellagic acid glycoside | C20H16O13 | 721 | - | X | [27] | ||||||||
24 | ellagic acid pentoside | - | 895 | - | X | [27] | ||||||||
25 | syringic acid hexoside | - | 359 | 197 | X | [27] | ||||||||
26 | O-pentosyl ellagic acid | - | 433 | 301 | X | X | X | X | ||||||
27 | ellagic acid pentoside | - | 433 | 301 | X | X | X | X | [25] | |||||
28 | digaloyl acid | - | 339 | 339 | X | X | X | X | X | [30] | ||||
29 | ellagic acid derivate | - | 585 | 415 | X | X | X | [25] | ||||||
Fatty acids | ||||||||||||||
30 | eicosanoic acid | C20H40O2 | 311 | 293 | X | X | X | X | X | X | X | X | [29] | |
Phenolic acids | ||||||||||||||
31 | dimethyl ellagic acid hexoside | C22H22O13 | 491 | 475 | X | X | X | [27] | ||||||
Carboxylic acid | ||||||||||||||
32 | citric acid | C6H8O7 | 191 | 111 | X | X | X | X | X | X | X | X | X | [2,30] |
Galotanin | ||||||||||||||
33 | Quercetin galloyl hexoside isomer | - | 615 | 463 | X | X | X | X | X | [25] | ||||
Ellagitannins | ||||||||||||||
34 | galoyl hexoside ellagic acid | - | 615 | 463, 301 | X | X | X | X | X | [21] | ||||
35 | pedunculagin isomer I | - | 783 | 419 | X | X | [31] | |||||||
36 | teligramadine I | C34H26O22 | 785 | 301 | X | X | X | X | [21] | |||||
Lignans | ||||||||||||||
37 | cyclo-lariciresinol Hexoside | - | 521 | 359 | X | X | [29] | |||||||
38 | conidendrin | C20H20O6 | 355 | 337 | X | X | X | X | X | X | X | X | [29] | |
39 | pinoresinol | C20H22O6 | 357 | 311 | X | X | [31] | |||||||
Cyclitol | ||||||||||||||
40 | quinic acid | C7H12O6 | 191 | 111, 173 | X | X | X | X | X | X | X | X | X | [32] |
Sugars | ||||||||||||||
41 | sucrose | C12H22O11 | 377 | 341 | X | X | [27] | |||||||
42 | hexose | C6H12O6 | 215 | 179 | X | [27] |
No. | Identification | Formula | m/z [ ]+ | MS/MS | Accession | Ref. | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AC67 | AC92 | AC112 | AC132 | AC136 | AC137 | AC153 | AC156 | AC160 | ||||||
Flavonoids | ||||||||||||||
1 | catechin | C15H14O6 | 290 | - | X | X | X | X | X | X | X | [33] | ||
2 | catechin | C15H14O6 | 291 | 273 | X | [22] | ||||||||
3 | peonidine 3-O-glucoside | C22H23O11+ | 301 | - | X | [29] | ||||||||
4 | diosmetin | C16H12O6 | 301 | - | X | [22] | ||||||||
5 | quercetin | C15H10O7 | 302 | - | X | [33] | ||||||||
6 | petunidin | C16H13O7+(Cl−) | 317 | - | X | X | X | X | X | X | X | [29] | ||
7 | miricetin | C15H10O8 | 318 | - | X | X | X | X | X | [33] | ||||
8 | stigmasterol | C29H48O | 413 | - | X | [29] | ||||||||
9 | quercetin derivate | - | 867 | - | X | X | [34] | |||||||
10 | epicatechin gallate | - | 442 | - | X | [21] | ||||||||
11 | cyanidin 3-galactoside | - | 449 | - | X | X | X | X | [22] | |||||
12 | myricetin pentoside | - | 450 | - | X | X | [35] | |||||||
13 | epigallocatechin gallate | C22H18O11 | 457 | - | X | X | X | X | [21] | |||||
14 | delphinidine hexoside | - | 465 | 303 | X | [21] | ||||||||
15 | myricetin-ramnoside | - | 465 | 303 | X | [27] | ||||||||
16 | myricetin-glucoside | - | 481 | - | X | X | X | X | X | X | [22] | |||
17 | myricetin-3-glucoside | - | 481 | - | X | X | X | X | X | X | [29] | |||
18 | myricetin-3-glcA | - | 495 | - | X | [22] | ||||||||
19 | catechin dimer | - | 579 | - | X | [21] | ||||||||
20 | apigenin neohesperidoside I | - | 579 | - | X | [29] | ||||||||
21 | quercetin-3-O-[6-(3-hydroxy-3- methyl) glutaroyl-â-galactoside | - | 593 | - | X | X | [29] | |||||||
22 | rutin | C27H30O16 | 611 | - | X | [33] | ||||||||
23 | petunidin-diglucoside | 641 | - | X | X | X | X | X | [36] | |||||
24 | cyanidin-3-(p-hydroxybenzoyl)- (oxaloyl)diglucoside-5-glucoside | 970 | - | X | [35] | |||||||||
Benzoic acid derivates | ||||||||||||||
25 | Galloylpyrogallol | - | 279 | - | X | [29] | ||||||||
26 | galloyl-glucose esther | - | 355 | - | X | [22] | ||||||||
27 | ellagic acid hexoside | - | 927 | - | X | X | [21] | |||||||
Sugars | ||||||||||||||
28 | glucose | C6H12O6 | 219 | - | X | X | X | X | X | X | X | X | X | [27] |
29 | sucrose/hexose | - | 381 | 219 | X | X | X | X | X | X | X | X | [27] | |
Steroids | ||||||||||||||
30 | stigmasterol | C29H48O | 413 | - | X | [35] | ||||||||
Phenylpropanoids | ||||||||||||||
31 | dihydrosynapic acid | - | 475 | 457 | X | [22] | ||||||||
Amines | ||||||||||||||
32 | gomfrenin | - | 551 | - | X | X | X | X | [37] |
3. Materials and Methods
3.1. Sample Acquisition
3.2. Physicochemical Characterization
3.3. Total Phenolic Compounds and Paper Spray Mass Spectrometry
3.3.1. Total Phenolics
3.3.2. Paper Spray Mass Spectrometry
3.4. Statistics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- García, Y.M.; Ramos, A.L.C.C.; De Paula, A.C.C.F.F.; Do Nascimento, M.H.; Augusti, R.; De Araújo, R.L.B.; De Lemos, E.E.P.; Melo, J.O.F. Chemical Physical Characterization and Profile of Fruit Volatile Compounds from Different Accesses of Myrciaria floribunda (H. West Ex Wild.) O. Berg through Polyacrylate Fiber. Molecules 2021, 26, 5281. [Google Scholar] [CrossRef]
- De Araujo, D.R.; De Lucena, E.M.P.; Gomes, J.P.; de Figueirêdo, R.M.F.; Silva, E. Características físicas, químicas e físico-químicas dos frutos da murta. Rev. Verde Agroecol. E Desenvolv. Sustentável 2015, 10, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.V.C.; Nascimento, A.L.S.; Muniz, E.N. Fruiting and quality attributes of cambui (Myrciaria floribunda (West ex Willd.) O. Berg in the Atlantic Forest of northeast Brazil. Rev. Agro@Mbiente Line 2020, 14. [Google Scholar] [CrossRef]
- García, Y.M.; Rufini, J.; Campos, M.P.; Guedes, M.N.; Augusti, R.; Melo, J.O. SPME fiber evaluation for volatile organic compounds extraction from acerola. J. Braz. Chem. Soc. 2019, 30, 247–255. [Google Scholar] [CrossRef]
- Silva, M.R.; Freitas, L.G.; Souza, A.G.; Araújo, R.L.; Lacerda, I.C.; Pereira, H.V.; Augusti, R.; Melo, J.O. Antioxidant activity and metabolomic analysis of cagaitas (Eugenia dysenterica) using paper spray mass spectrometry. J. Braz. Chem. Soc. 2019, 30, 1034–1044. [Google Scholar] [CrossRef]
- Tietbohl, L.A.; Barbosa, T.; Fernandes, C.P.; Santos, M.G.; Machado, F.P.; Santos, K.T.; Rocha, L. Laboratory evaluation of the effects of essential oil of Myrciaria floribunda leaves on the development of Dysdercus peruvianus and Oncopeltus fasciatus. Rev. Bras. De Farmacogn. 2014, 24, 316–321. [Google Scholar] [CrossRef] [Green Version]
- Rezende, L.; Almeida, C.S.; Da Silva, A.V. Diversidade genética de uma população natural de cambuizeiro e avaliação pós-colheita de seus frutos. Sci. Plena 2011, 7. Available online: https://www.scientiaplena.org.br/sp/article/view/184 (accessed on 10 November 2021).
- Da Silva, A.V.C.; Rabbani, A.R.C.; Costa, T.S.; Clivati, D. Fruit and seed biometry of cambuí (Myciaria tenella O. Berg). Rev. Agro@ Mbiente Line 2012, 6, 258–262. [Google Scholar] [CrossRef]
- Dos Santos, E.F.; De Lemos, E.E.P.; De Lima Sanvador, T.; De Araújo, R.R. Caracterização físico-química, compostos bioativos e atividade antioxidante total de frutos de cambuizeiro (Myrciaria floribunda O. Berg). Rev. Ouricuri 2017, 7, 064–079. [Google Scholar]
- Figueiredo, M.A.D.; Pio, R.; Silva, T.C.; Silva, K.N. Características florais e carpométricas e germinação In Vitro de grãos de pólen de cultivares de amoreira-preta. Pesqui. Agropecuária Bras. 2013, 48, 731–740. [Google Scholar] [CrossRef] [Green Version]
- Araújo, R.R.D. Qualidade e potencial de utilização de frutos de genótipos de Cambuí, Guajiru e Maçaranduba nativos da vegetação litorânea de Alagoas. 174 f. Tese. Ph.D. Thesis, Universidade Federal Rural do Semi-Árido, Mossoró, Brazil, 2012. Available online: https://repositorio.ufersa.edu.br/handle/tede/152 (accessed on 20 January 2021).
- Semensato, L.R.; Vendruscolo, E.P.; Seleguini, A.; Batista Filho, P.A.; da Silva, E.C.M.; da Silva, T.P. Fenologia, produtividade e qualidade de frutos de jabuticabeiras de diferentes idades das plantas. Iheringia. Série Botânica. 2020, 75. [Google Scholar] [CrossRef]
- Bianchini, F.G.; Balbi, R.V.; Pio, R.; Silva, D.F.D.; Pasqual, M.; Vilas Boas, E.V.D.B. Caracterização morfológica e química de frutos de cambucizeiro. Bragantia 2015, 75, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Almeida, E.S.; Silva, R.J.N.; Gonçalves, E.M. Compostos fenólicos totais e características físico-químicas de frutos de jabuticaba. Gaia Sci. 2018, 12, 81–89. [Google Scholar] [CrossRef] [Green Version]
- De Mendonga, V.Z.; Vieites, R.L. Physical-chemical properties of exotic and native Brazilian fruits. Acta Agronómica 2019, 68, 175–181. [Google Scholar] [CrossRef]
- Da Conceição Souza, J.L.; Borges, L.; Reges, N.P.R.; Mota, E.E.S.; Leonídio, R.L. Caracterização física e química de gabiroba e murici. Rev. Ciências Agrárias 2019, 42, 792–800. [Google Scholar] [CrossRef]
- Aguirre-Neira, J.C.; Reis, M.S.D.; Cardozo, M.A.R.; Raz, L.; Clement, C.R. Physical and chemical variability of Camu-camu fruits in cultivated and uncultivated areas of the Colombian Amazon. Rev. Bras. De Frutic. 2020, 42. [Google Scholar] [CrossRef]
- Lattuada, D.S.; Pezzi, E.; de Souza, P.V.D. Caracterização de frutos em diferentes estádios de maturação de um Guapuritizeiro. Pesqui. Agropecuária Gaúcha 2018, 24, 37–45. [Google Scholar] [CrossRef]
- Jáuregui, A.M.M.; Ramos-Escudero, D.F.; Ureta, C.A.-O.; Castañeda, B.C. Evaluación de la capacidad antioxidante y contenido de compuestos fenólicos en recursos vegetales promisorios. Rev. Soc. Química Perú 2007, 73, 142–149. [Google Scholar]
- De Souza, A.G.; Fassina, A.C.; Saraiva, F.R.d.S.; De Souza, L. Caracterização físico-química de frutos nativos da região Sul do Brasil. Evidência 2018, 18, 81–94. [Google Scholar] [CrossRef]
- Teixeira, L.D.L.; Bertoldi, F.C.; Lajolo, F.M.; Hassimotto, N.M.A. Identification of ellagitannins and flavonoids from Eugenia brasilienses Lam.(Grumixama) by HPLC-ESI-MS/MS. J. Agric. Food Chem. 2015, 63, 5417–5427. [Google Scholar] [CrossRef]
- Ramos, A.L.C.C.; Mendes, D.D.; Silva, M.R.; Augusti, R.; Melo, J.O.F.; de Araújo, R.L.B.; Lacerda, I.C.A. Chemical profile of Eugenia brasiliensis (Grumixama) pulp by PS/MS paper spray and SPME-GC/MS solid-phase microextraction. Res. Soc. Dev. 2020, 9, e318974008. [Google Scholar] [CrossRef]
- Pereira, P.; Cebola, M.J.; Oliveira, M.C.; Gil, M.G.B. Antioxidant capacity and identification of bioactive compounds of Myrtus communis L. extract obtained by ultrasound-assisted extraction. J. Food Sci. Technol. 2017, 54, 4362–4369. [Google Scholar] [CrossRef]
- Faria, A.F.; Marques, M.C.; Mercadante, A.Z. Identification of bioactive compounds from jambolão (Syzygium cumini) and antioxidant capacity evaluation in different pH conditions. Food Chem. 2011, 126, 1571–1578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, L.D.S. Compilação de dados de composição nutricional e quimiotaxonomia de espécies da família myrtaceae por UPLC-MS acoplada à quimiometria. Tese de Doutorado, Universidade Federal da Paraíba. Centro de Ciências Agrárias (CCA)—Programa de Pós-Graduação em Agronomia, Joao Pessoa, Brazil, 2019. [Google Scholar]
- Nicacio, A.E.; Rotta, E.M.; Boeing, J.S.; Barizao, E.O.; Kimura, E.; Visentainer, J.V.; Maldaner, L. Antioxidant activity and determination of phenolic compounds from Eugenia involucrata DC. Fruits by UHPLC-MS/MS. Food Anal. Methods 2017, 10, 2718–2728. [Google Scholar] [CrossRef]
- Rodrigues, D.; Mendonça, H.; Nogueira, L. Caracterização de compostos voláteis e compostos bioativos da polpa e geleia de cagaita por microextração em fase sólida no modo headspace e espectrometria de massa por paper spray. Res. Soc. Dev. 2021, 10, e25610111735. [Google Scholar] [CrossRef]
- Cuadrado-Silva, C.T.; Pozo-Bayón, M.Á.; Osorio, C. Targeted metabolomic analysis of polyphenols with antioxidant activity in sour guava (Psidium friedrichsthalianum Nied.) fruit. Molecules 2017, 22, 11. [Google Scholar] [CrossRef] [Green Version]
- Mariano, A.P.X.; Ramos, A.L.C.C.; Augusti, R.; Araújo, R.L.B.; Melo, J.O.F. Analysis of the chemical profile of cerrado pear fixed compounds by mass spectrometry with paper spray and volatile ionization by SPME-HS CG-MS. Res. Soc. Dev. 2020, 9, e949998219. [Google Scholar] [CrossRef]
- Santos, E.F.D. Caracterização fenológica e morfológica de plantas e qualidade pós-colheita de frutos de acessos de cambuizeiro (Myrciaria floribunda O. Berg) do banco ativo de germoplasma do CECA-UFAL. Dissertação de Mestrado, Universidade Federal de alagoas—Programa de Pós-Guaduação em Agronomia, 2018. Available online: http://www.repositorio.ufal.br/handle/riufal/3327 (accessed on 10 November 2021).
- Mena, P.; Calani, L.; Dall’Asta, C.; Galaverna, G.; García-Viguera, C.; Bruni, R.; Crozier, A.; Del Rio, D. Rapid and comprehensive evaluation of (poly) phenolic compounds in pomegranate (Punica granatum L.) juice by UHPLC-MSn. Molecules 2012, 17, 14821–14840. [Google Scholar] [CrossRef] [Green Version]
- Salvador, M.J.; De Lourenço, C.C.; Andreazza, N.L.; Pascoal, A.C.; Stefanello, M.É.A. Antioxidant capacity and phenolic content of four Myrtaceae plants of the south of Brazil. Nat. Prod. Commun. 2011, 6, 1934578X1100600713. [Google Scholar] [CrossRef] [Green Version]
- Siebert, D.A.; Bastos, J.; Spudeit, D.A.; Micke, G.A.; Alberton, M.D. Determination of phenolic profile by HPLC-ESI-MS/MS and anti-inflammatory activity of crude hydroalcoholic extract and ethyl acetate fraction from leaves of Eugenia brasiliensis. Rev. Bras. Farmacogn. 2017, 27, 459–465. [Google Scholar] [CrossRef]
- Alves, A.M.; Dias, T.; Hassimotto, N.M.A.; Naves, M.M.V. Ascorbic acid and phenolic contents, antioxidant capacity and flavonoids composition of Brazilian Savannah native fruits. Food Sci. Technol. 2017, 37, 564–569. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.J.; Gupta, R.C.; Bansal, A.K.; Singh, I.P. Metabolite Fingerprinting of Eugenia jambolana Fruit Pulp Extracts using NMR, HPLC-PDA-MS, GC-MS, MALDI-TOF-MS and ESI-MS/MS Spectrometry. Nat. Prod. Commun. 2015, 10, 1934578X1501000644. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Zhang, Y.; Seeram, N.P. Structure of anthocyanins from Eugenia jambolana fruit. Nat. Prod. Commun. 2009, 4, 1934578X0900400210. [Google Scholar] [CrossRef] [Green Version]
- García-Cruz, L.; Guerra-Ramírez, D.; Martínez-Damián, M.T.; Zuleta-Prada, H.; Valle-Guadarrama, S. Shelf Life of Pitaya (Stenocereus pruinosus) Fruits Affected by Temperature and The Use Of Biopolymers Of Guar Gum. Acta Agrícola Y Pecu. 2021, 7. [Google Scholar] [CrossRef]
- de Oliveira Júnior, A.H.; Ramos, A.L.C.C.; Guedes, M.N.S.; Fagundes, M.C.P.; Augusti, R.; Melo, J.O.F. Chemical profile and bioprospecting of cocoa beans analyzed by paper spray mass spectrometry. Res. Soc. Dev. 2020, 9, e975986882. [Google Scholar] [CrossRef]
- Do Nascimento, C.D.; De Paula, A.C.; De Oliveira, A.H., Jr.; Mendonça, H.D.O.; Reina, L.D.C.; Augusti, R.; Figueiredo-Ribeiro, R.d.C.L.; Melo, J.O. Paper Spray Mass Spectrometry on the Analysis of Phenolic Compounds in Rhynchelytrum repens: A Tropical Grass with Hypoglycemic Activity. Plants 2021, 10, 1617. [Google Scholar] [CrossRef]
- García, Y.M.; de Lemos, E.E.P.; Augusti, R.; Melo, J.O.F. Optimization of extraction and identification of volatile compounds from Myrciaria floribunda. Rev. Ciência Agronômica 2021, 52, 1–8. [Google Scholar] [CrossRef]
- Silva, M.R.; De Souza, A.G.; De Araújo, R.L.B.; Lacerda, I.C.A.; Augusti, R.; Melo, J.O.F.; Mendonça, H.D.O.P. Análise metabolômica de cagaitas utilizando a espectrometria de massas com ionização por paper spray. Avanços Ciência E Tecnol. Alimentos. Científica 2020, 1, 25–41. [Google Scholar] [CrossRef]
- Branco, L.A.; de Oliveira, H.L.M.; de Campos Bortolucci, W.; Fernandez, C.M.M.; Gonçalves, J.E.; Gazim, Z.C.; Junior, R.P. Control of bovine tick (Rhipicephalus microplus) with essential oil from Psidium rufum DC leaves. Res. Soc. Dev. 2020, 9, e409119550. [Google Scholar] [CrossRef]
- Guedes, M.N.S.; Pio, R.; Maro, L.A.C.; Lage, F.F.; Abreu, C.M.P.D.; Saczk, A.A. Antioxidant activity and total phenol content of blackberries cultivated in a highland tropical climate. Acta Scientiarum. Agron. 2017, 39, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Grzesik, M.; Naparło, K.; Bartosz, G.; Sadowska-Bartosz, I. Antioxidant properties of catechins: Comparison with other antioxidants. Food Chem. 2018, 241, 480–492. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Celli, G.B.; Brooks, M.S. Natural sources of anthocyanins. R. Soc. Chem. 2019, 1–33. [Google Scholar] [CrossRef]
- Balaguera-López, H.E.; Herrera Arevalo, A. Biochemical changes during growth and until harvest of champa (Campomanesia lineatifolia R. & P. Myrtaceae family) fruit. Rev. Bras. Frutic. 2012, 34, 460–468. [Google Scholar] [CrossRef] [Green Version]
- Barboza, J.N. Potencial anti-inflamatório e perfil antioxidante do eugenol: Uma revisão. Trabalho de Conclusão de Curso, Universidade federal da Paraíba, João Pessoa, Brasil, 2018. [Google Scholar]
- Hýsková, V.; Ryšlavá, H. Antioxidant Properties of Phenylpropanoids. Biochem Anal. Biochem 2019, 8, e171. [Google Scholar] [CrossRef] [Green Version]
- Costa, M.D.S.; Oliveira-Júnior, J.F.D.; Santos, P.J.D.; Correia Filho, W.L.F.; Gois, G.D.; Blanco, C.J.C.; Teodoro, P.E.; Da Silva, C.A., Jr.; Santiago, D.d.B.; Souza, E.d.O.; et al. Rainfall extremes and drought in Northeast Brazil and its relationship with El Niño–Southern Oscillation. Int. J. Climatol. 2021, 41, E2111–E2135. [Google Scholar] [CrossRef]
- Do Socorro, M.R.M.; Alves, R.E.; De Brito, E.S.; Pérez-Jiménez, J.; Saura-Calixto, F.; Mancini-Filho, J. Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil. Food Chem. 2010, 121, 996–1002. [Google Scholar] [CrossRef] [Green Version]
- Silva, E.F.R.; Santos, B.R.d.S.; Brandão, G.C.; Silva, M.V.L.; Da Silva, E.G.P.; Dos Santos, W.P.C.; Dos Santos, W.N.L.; Dos Santos, A.M.P. Screening of minerals, proximate composition and physico-chemical characteristics in the discrimination of Oiti (Licania tomentosa (Benth.) Fritsch.) using Kohonen self-organizing maps, PCA and HCA. Braz. J. Dev. 2020, 6, 21576–21597. [Google Scholar] [CrossRef]
Accessions | Parameters | |||||||
---|---|---|---|---|---|---|---|---|
FW (g) | SW (g) | PW (g) | NS | LD (mm) | TD (mm) | Shape (mm) | Firmness (N) | |
AC-67 | 0.73 a | 0.18 b | 0.55 a | 1.37 a | 10.71 b | 9.75 b | 1.10 c | 1.53 a |
AC-92 | 0.61 a | 0.14 a | 0.47 a | 1.52 b | 9.86 a | 8.56 a | 1.15 e | 2.36 b |
AC-112 | 0.83 a | 0.24 c | 0.58 a | 1.73 b | 10.96 b | 10.02 b | 1.09 c | 4.16 c |
AC-132 | 1.18 b | 0.30 d | 0.88 a | 1.67 b | 12.76 d | 11.32 c | 1.13 d | 1.75 a |
AC-136 | 0.76 a | 0.18 b | 0.59 a | 1.52 b | 11.03 b | 9.84 b | 1.12 d | 5.93 d |
AC-137 | 1.32 b | 0.20 b | 1.12 a | 1.71 b | 11.06 b | 9.61 b | 1.15 e | 3.56 c |
AC-153 | 0.56 a | 0.14 a | 0.42 a | 1.15 a | 9.75 a | 9.12 a | 1.07 b | 4.50 c |
AC-156 | 1.18 b | 0.29 c | 0.89 a | 1.78 b | 12.00 c | 11.59 c | 1.04 a | 2.80 b |
AC-160 | 0.57 a | 0.13 a | 0.45 a | 1.01 a | 9.94 a | 8.85 a | 1.12 c | 4.17 c |
Mean | 0.86 | 0.20 | 0.66 | 1.49 | 10.90 | 9.85 | 1.11 | 3.42 |
CV (%) | 43.62 | 17.08 | 57.43 | 14.12 | 4.08 | 4.50 | 1.04 | 16.80 |
Standard Error | 0.19 | 0.02 | 0.19 | 0.11 | 0.22 | 0.22 | 0.01 | 0.29 |
Accessions | pH | SS | AT | SS/AT |
---|---|---|---|---|
AC-67 | 3.40 a | 14.10 c | 3.80 b | 3.84 c |
AC-92 | 3.58 b | 13.13 b | 4.23 b | 3.11 b |
AC-112 | 3.70 b | 12.90 b | 4.13 b | 3.13 b |
AC-132 | 3.26 a | 11.30 a | 4.78 c | 2.38 a |
AC-136 | 3.43 a | 14.80 c | 3.35 a | 4.45 d |
AC-137 | 3.61 b | 14.80 c | 3.78 b | 3.95 c |
AC-153 | 3.48 a | 13.18 b | 5.65 d | 2.34 a |
AC-156 | 3.61 b | 12.85 b | 3.48 a | 3.71 c |
AC-160 | 3.70 b | 13.70 c | 3.05 a | 4.55 d |
Mean | 3.53 | 13.42 | 4.03 | 3.49 |
CV (%) | 3.27 | 7.30 | 9.01 | 14.48 |
Standard Error | 0.06 | 0.49 | 0.18 | 0.25 |
Accessions | Total Phenolics (mg Gallic Acid. 100 g−1 of Fresh Matter) |
---|---|
AC-67 | 162.33 ± 1.52 |
AC-92 | 136.79 ± 4.97 |
AC-112 | 78.79 ± 1.52 |
AC-132 | 202.85 ± 6.35 |
AC-136 | 204.77 ± 0.88 |
AC-137 | 254.70 ± 8.19 |
AC-153 | 128.91 ± 2.30 |
AC-156 | 115.95 ± 8.35 |
AC-160 | 279.01 ± 11.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García, Y.M.; Ramos, A.L.C.C.; de Oliveira Júnior, A.H.; de Paula, A.C.C.F.F.; de Melo, A.C.; Andrino, M.A.; Silva, M.R.; Augusti, R.; de Araújo, R.L.B.; de Lemos, E.E.P.; et al. Physicochemical Characterization and Paper Spray Mass Spectrometry Analysis of Myrciaria Floribunda (H. West ex Willd.) O. Berg Accessions. Molecules 2021, 26, 7206. https://doi.org/10.3390/molecules26237206
García YM, Ramos ALCC, de Oliveira Júnior AH, de Paula ACCFF, de Melo AC, Andrino MA, Silva MR, Augusti R, de Araújo RLB, de Lemos EEP, et al. Physicochemical Characterization and Paper Spray Mass Spectrometry Analysis of Myrciaria Floribunda (H. West ex Willd.) O. Berg Accessions. Molecules. 2021; 26(23):7206. https://doi.org/10.3390/molecules26237206
Chicago/Turabian StyleGarcía, Yesenia Mendoza, Ana Luiza Coeli Cruz Ramos, Afonso Henrique de Oliveira Júnior, Ana Cardoso Clemente Filha Ferreira de Paula, Angelita Cristine de Melo, Moacir Alves Andrino, Mauro Ramalho Silva, Rodinei Augusti, Raquel Linhares Bello de Araújo, Eurico Eduardo Pinto de Lemos, and et al. 2021. "Physicochemical Characterization and Paper Spray Mass Spectrometry Analysis of Myrciaria Floribunda (H. West ex Willd.) O. Berg Accessions" Molecules 26, no. 23: 7206. https://doi.org/10.3390/molecules26237206
APA StyleGarcía, Y. M., Ramos, A. L. C. C., de Oliveira Júnior, A. H., de Paula, A. C. C. F. F., de Melo, A. C., Andrino, M. A., Silva, M. R., Augusti, R., de Araújo, R. L. B., de Lemos, E. E. P., & Melo, J. O. F. (2021). Physicochemical Characterization and Paper Spray Mass Spectrometry Analysis of Myrciaria Floribunda (H. West ex Willd.) O. Berg Accessions. Molecules, 26(23), 7206. https://doi.org/10.3390/molecules26237206