Chemical Constituents from the Wild Atractylodes macrocephala Koidz and Acetylcholinesterase Inhibitory Activity Evaluation as Well as Molecular Docking Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Activity and Docking Studies
3. Materials and Methods
3.1. Chemistry
3.2. Biological Activity
3.3. Acetylcholinesterase Activity Assay
3.4. Molecular Docking
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Sample Availability
References
- Mucke, L. Neuroscience: Alzheimer’s disease. Nature 2009, 461, 895–897. [Google Scholar] [CrossRef]
- Selkoe, D.J. Alzheimer’s disease: Genes, proteins, and therapy. Physiol. Rev. 2001, 8, 741–766. [Google Scholar] [CrossRef]
- Sanabria-Castro, A.; Alvarado-Echeverría, I.; Monge-Bonilla, C. Molecular Pathogenesis of Alzheimer’s Disease: An Update. Ann. Neurosci. 2017, 24, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Sussman, J.L.; Harel, M.; Frolow, F.; Oefner, C.; Goldman, A.; Toker, L.; Silman, I. Atomic structure of acetylcholinesterase from Torpedo californica: A prototypic acetylcholine-binding protein. Science 1991, 253, 872–879. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, A.; Bronfman, F.; Pérez, C.A.; Vicente, M.; Garrido, J.; Inestrosa, N.C. Acetylcholinesterase, a senile plaque component, affects the fibrillogenesis of amyloid-beta-peptides. Neurosci. Lett. 1995, 201, 49–52. [Google Scholar] [CrossRef]
- Inestrosa, N.C.; Sagal, J.P.; Colombres, M. Acetylcholinesterase interaction with Alzheimer amyloid beta. Subcell Biochem. 2005, 38, 299–317. [Google Scholar]
- Zhang, W.; Xie, Q.; Chen, L.K.; Chen, J.X.; Qiu, Z.B. Dual binding site acetylcholinesterase inhibitors. Prog. Chem. 2013, 25, 1973–1980. [Google Scholar]
- Jiangsu New Medical College. Dictionary of Chinese Traditional Medicines; Shanghai Scientific and Technologic Press: Shanghai, China, 1988. [Google Scholar]
- Peng, H.S.; Wang, D.Q. Medicinal Customs and Distribution of Wild Plant Atractylodes macrocephala Koidz in Anhui Province. Chin. Wild Plant Resour. 2004, 24, 19–21. [Google Scholar]
- Li, Y.Z.; Bai, X. Preliminary study on similarity of chemical constituents between semi wild, wild and the cultivated Atractyodes macrocephala. Lishizhen Med. Mater. Med. Res. 2012, 23, 2241–2242. [Google Scholar]
- Yang, E.; Zhong, Y.M.; Feng, Y.F. Advance on the chemical constituents and pharmacological effects of Atractylodes macrocephala Koidz. J. Guangdong Pharm. Univ. 2012, 28, 218–221. [Google Scholar]
- Li, Y.Z.; Dai, M.; Peng, D.Y. New bisesquiterpenoid lactone from the wild rhizome of Atractylodes macrocephala Koidz grown in Qimen. Nat. Prod. Res. 2017, 20, 2381–2386. [Google Scholar] [CrossRef]
- Yang, B. The Study on Extraction and the Mechanism of Inhibiting AChE of Biatractylolide. Master’s Thesis, Hunan Normal University, Changsha, China, 2015. [Google Scholar]
- Huang, B.S.; Sun, J.S.; Chen, Z.L. Isolation and identification of atractyenolide IV from Atractylodes macrocephala Koidz. Acta Bot. Sin. 1992, 31, 614–617. [Google Scholar]
- Li, W. Study on the Effective Constituents and Quality of Atractylodes macrocephala Koidz. Ph.D. Thesis, Nanjing University of Traditional Chinese Medicine, Nanjing, China, 2001. [Google Scholar]
- Duan, J.A.; Wang, L.Y.; Qian, S.H.; Su, S.; Tang, Y. A new cytotoxic prenylated dihydrobenzofuran derivative and other chemical constituents from the rhizomes of Atractylodes lancea DC. Arch Pharm. Res. 2008, 31, 965–969. [Google Scholar] [CrossRef] [PubMed]
- Nisikawa, Y.; Watanabe, Y.; Seto, T.; Yasuda, I. Studies on the components of Atractylodes. I. New sesquiterpenoids in the rhizome of Atractylodes lancea De Candolle. Yakugaku Zasshi 1976, 96, 1089–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aydogmuş, Z.; Yeşilyurt, V.; Topcu, G. Constituents of Salvia microphylla. Nat. Prod. Res. 2006, 20, 775–781. [Google Scholar] [CrossRef]
- Lin, Y.C.; Jin, T.; Yuan, Z.M.; Wu, X.Y.; Fan, J.S.; Huang, Z.Q. A unique bisesquiterpenoid from the Chinese herb medicine Atractylodes marocephala Koidz. Acta Sci. Nat. Univ. Sunyatseni 1996, 35, 75–76. [Google Scholar]
- Wang, B.D.; Yu, Y.H.; Teng, N.N.; Jiang, S.H.; Zhu, D.Y. Structural elucidation of biepiasterolid. Acta Chim. Sin. 1999, 57, 1022–1025. [Google Scholar]
- Tori, M.; Otose, K.; Fukuyama, H.; Murata, J.; Shiotani, Y.; Takaoka, S.; Nakashima, K.; Sono, M.; Tanaka, M. New eremophilanes from Farfugium japonicum. Tetrahedron 2010, 66, 5235–5243. [Google Scholar] [CrossRef]
- Feng, X.; Wang, Z.L.; Lin, Y.C.; Zhou, Y.; Liu, Y.Z.; Yang, H.Z. Effects of biatractylolide on the AD rats induced by Aβ1–40. Chin. Pharm. Bull. 2009, 25, 951–954. [Google Scholar]
- Ji, Z.H.; Liu, C.; Zhao, H.; Yu, X.Y. Neuroprotective effect of biatractylenolide against memory impairment in D-galactose-induced aging mice. J. Mol. Neurosci. 2015, 55, 678–683. [Google Scholar] [CrossRef]
- Ozgun, D.O.; Yamalı, C.; Gul, H.I.; Taslimi, P.; Gulcin, I.; Yanik, T.; Supuran, C.T. Inhibitory effects of isatin Mannich bases on carbonic anhydrases, acetylcholinesterase, and butyrylcholinesterase. J. Enzym Inhib. Med. Chem. 2016, 31, 1498–1501. [Google Scholar] [CrossRef] [Green Version]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanner, M.F. Python: A programming language for software integration and development. J. Mol. Graph. Model. 1999, 17, 57–61. [Google Scholar] [PubMed]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Q.; Lin, M.; Zhuo, W.; Li, Y. Chemical Constituents from the Wild Atractylodes macrocephala Koidz and Acetylcholinesterase Inhibitory Activity Evaluation as Well as Molecular Docking Study. Molecules 2021, 26, 7299. https://doi.org/10.3390/molecules26237299
Zhu Q, Lin M, Zhuo W, Li Y. Chemical Constituents from the Wild Atractylodes macrocephala Koidz and Acetylcholinesterase Inhibitory Activity Evaluation as Well as Molecular Docking Study. Molecules. 2021; 26(23):7299. https://doi.org/10.3390/molecules26237299
Chicago/Turabian StyleZhu, Qiannan, Min Lin, Wanying Zhuo, and Yunzhi Li. 2021. "Chemical Constituents from the Wild Atractylodes macrocephala Koidz and Acetylcholinesterase Inhibitory Activity Evaluation as Well as Molecular Docking Study" Molecules 26, no. 23: 7299. https://doi.org/10.3390/molecules26237299
APA StyleZhu, Q., Lin, M., Zhuo, W., & Li, Y. (2021). Chemical Constituents from the Wild Atractylodes macrocephala Koidz and Acetylcholinesterase Inhibitory Activity Evaluation as Well as Molecular Docking Study. Molecules, 26(23), 7299. https://doi.org/10.3390/molecules26237299