Diatomaceous Earth for Arthropod Pest Control: Back to the Future
Abstract
:1. Introduction
2. Which Is the Mode of Action of DEs?
3. Why Use DEs for Arthropod Pest Control?
4. Any Dark Facets for DEs Use in Pest Control?
5. DEs to Control Stored Product Pests
5.1. Biotic and Abiotic Factors That Influence the Efficacy of DEs
5.2. Combinations with Contact Synthetic Insecticides
5.3. Combination with Fungal Agents
5.4. Combination with Botanicals
6. DEs and Their Application in Urban, Agricultural, and Medical Environments
6.1. DEs to Control Urban Pests
Pest Species | Family | Order | Developmental Stage | Tested DE | SiO2 Content (%) | Ø Particles (µm) | Formulation | Mortality Rates | References | Notes |
---|---|---|---|---|---|---|---|---|---|---|
Blatta lateralis | Blattidae | Blattodea | Nymph | Turco 000 | 83–95 | 1–10 | Dry | >90% after 12 h | [91] | Local commercialized DEs; 1 g/m2 of DEs |
Blatta lateralis | Blattidae | Blattodea | Nymph | Turco 004 | 83–95 | 10–30 | Dry | >90% after 20 h | [91] | Local commercialized DEs; 1 g/m2 of DEs |
Blatta lateralis | Blattidae | Blattodea | Nymph | Turco 020 | 83–95 | 43–65 | Dry | >90% after 24 h | [91] | Local commercialized DEs; 1 g/m2 of DEs |
Blatta orientalis | Blattidae | Blattodea | Adult + Nymph | Fossil Shield 90.0 S White® | 0.35% (w/v) | 5 | Dry | 70.6% on day 10 | [99] | |
Blattella germanica | Ectobiidae | Blattodea | Nymph | NA | NA | NA | Dry | LC50: 4.2380 g/m2(*) LC50: 5.2148 g/m2(**) LC50: 12.9034 g/m2 (***) | [96] | |
Blattella germanica | Ectobiidae | Blattodea | Adult (♂) | NA | NA | NA | Dry | LC50: 8.0307 g/m2 LC90: 167.7116 g/m2 | [96] | No report if the LC50/90 were at 24 h, 48 h, or 72 h |
Blattella germanica | Ectobiidae | Blattodea | Nymph 2nd stage | NA | NA | NA | Dry + Water (50 mL) | LC50: 20.0358 g/m2(*); LC50: 7.9173 g/m2 (**) LC50: 6.3729 g/m2 (***) | [96] | |
Blattella germanica | Ectobiidae | Blattodea | Adult (♂) | NA | NA | NA | Dry + Water (50 mL) | LC50: 7.4093 g/m2 LC90: 91.2063 g/m2 | [96] | No report if the LC50/90 were at 24 h, 48 h, or 72 h |
Blattella germanica | Ectobiidae | Blattodea | Adult | BGN-1 (Local Turkish DEs) | NA | NA | Dry | 100% mortality after 2 days (dose 5 g/m2 and 10 g/m2) on all type of floors | [102] | Ceramic tiles, Concrete floor, and parquet |
Blattella germanica | Ectobiidae | Blattodea | Adult + Nymph | Fossil Shield 90.0 S W | 0.35% (w/v) | 5 | Dry | 100% mortality on day 6 | [99] | |
Blattella germanica | Ectobiidae | Blattodea | Adult + Nymph | Diamol KMT SilicoSec® Fossil Shield 90.0® Fossil Shield 90.0 W® Fossil Shield 90.0 S® Fossil Shield 90.0 S W® Fossil Shield 95.0® | 0.35–0.40 (w/v) | 5–7 | Dry | Daily motility: control > Diamol KMT SilicoSec > FS 90.0 > FS 90.0 W > FS 90.0 S = FS 95.0 FS 90.0SW | [100] | |
Coptotermes formosanus | Rhinotermitidae | Blattodea | Adult | Local DE | NA | NA | Dry | 38.75% ± 6.60 | [104] | No decrease in tunneling behavior |
Coptotermes heimi | Rhinotermitidae | Blattodea | Adult | NA | NA | NA | Dry | At the highest dose of biofertilizer the mortality was lower than 40% | [103] | DEs were added to the soil + biofertilizers |
Lepisma saccharina | Lepismatidae | Thysanura | Adult | Fossil Shield 90.0 S White® | 0.35% (w/v) | 5 | Dry | 100% mortality on day 9 | [99] | |
Lepisma saccharina | Lepismatidae | Thysanura | Adult | Fossil Shield 90.0 S White® | 0.35% (w/v) | 5 | Dry | Low motility in both control and treated species | [99] | |
Monomorium pharaonis | Formicidae | Hymenoptera | Adult | Lumino® | NA | NA | Dry | Lethal time: 95 minutes | [106] | No evidence if LT50 or LT90 |
Periplaneta americana | Blattidae | Blattodea | Adult + Nymph | Fossil Shield 90.0 S White® | 0.35% (w/v) | 5 | Dry | 100% mortality on day 8 | [99] | |
Periplaneta americana | Blattidae | Blattodea | Adult | K14 (local turkish DEs) | NA | NA | Dry | 100% mortality after 11 days (dose 40 g/m2) on all type of floors | [107] | Ceramic tiles, Concrete floor, and laminate |
Reticulitermes chinensis | Rhinotermitidae | Blattodea | Adult workers | NA | 99 | 25–45 | Moisture and dry DEs | 100% after 6 hours when used dried DEs | [101] | 10% and 25% of moisture led to low mortality rates Tunneling behavior is reduced in DEs moisture at 10%, 25%, and 50% Worker termites cannot penetrate a 3 mm layer of DEs |
6.2. DEs to Control Arthropod Pests and Vectors of Medical and Veterinary Importance
Pest/Vector Species | Family | Order | Developmental Stage | Tested DE | SiO2 Content (%) | Ø particles (µm) | Formulation | Mortality Rates | References | Notes |
---|---|---|---|---|---|---|---|---|---|---|
Aedes aegypti | Culicidae | Diptera | Adults | Keep Dry® | 86 | NA | DE DE + NDE + GIP46 + DE IP46 + DE + NIP46 + DE+ G | DE LT50: 10.4 days DE + N LT50: 8.9 days DE + G LT50: 9.8 days IP46 + DE LT50: 5.8 days IP46 + DE + N LT50: 5.8 days IP46 + DE+ G LT50: 5.9 days | [109] | G: Graxol® (vegetable oil) N: Naturol® (mineral oil) |
Cimex lectularius | Cimicidae | Hemiptera | All stages | Alpine®Mother Earth®Pro-Active®DX13TM dust | NA | NA | Dry | LD50 (g m−2) Alpine®: 4.48 after 24 h LD50 (g m−2) Mother Earth®: 0.18 after 24 h LD50 (g m−2) Pro-Active®: 2.26 after 24 h LD50 (g m−2) DX13TM dust: 0.17 after 24 h | [90] | DX13TM was horizontally transferred from dead bed bugs to the untreated one |
Cimex lectularius | Cimicidae | Hemiptera | All stages | DX13TM aerosol | NA | NA | Aerosol | Residual mortality (%) DX13TM aerosol: 81% after 21 days (72 h) | [90] | Mortality of bugs on the treated mattress after 32 weeks was 75, 90, and 100% after 24, 48, and 72 h |
Cimex lectularius | Cimicidae | Hemiptera | Adult | DE 51 | NA | NA | Dry | LC50 (mg) 24.4 and 5.1 at 48 h and 216 h | [108] | LC50 was calculated based on the transmission from a treated bug to an untreated one |
Cimex lectularius | Cimicidae | Hemiptera | Nymph + Adult | DE 51 | NA | NA | Dry | LC50 (mg) unexposed nymph 8.1 LC50 (mg) treated adults 6.4 | [108] | Treated adults get in contact with untreated nymphs |
Cimex lectularius | Cimicidae | Hemiptera | Nymph/Females | NA | NA | NA | Dry | Low mortality rates | [115] | The addition of alarm pheromone increased the movement of bed bugs throughout the Petri dish |
Cimex lectularius | Cimicidae | Hemiptera | Adult | Bed Bug Killer® | NA | NA | Dry | (A) LT50 7.42 days (B) LT50 8.12 days | [113] | (A) Resistant strain (B) Susceptible strain |
Cimex lectularius | Cimicidae | Hemiptera | All stages | Mother-Earth D® | NA | NA | Dry | 94% of mortality after 10 days | [114] | Alpine® (0.25% Dinotefuran + 95% Diatomaceous Earth) has been also investigated, but its efficacy was lower than DE |
Triatoma infestans | Reduviidae | Hemiptera | Nymphs | Keep Dry® | 86 | NA | DE DE + oil DE + IP46 DE + IP46 + oil | DE: 7.5% after 10 days DE + oil: 5.0% after 10 days DE + IP46: 100% after 10 days DE + IP46 + oil: 100% after 10 days | [117] | Cumulative mortality DE + IP46: LT50 = 5.7 days DE + IP46 + oil: LT50 = 4.5 days |
Triatoma infestans | Reduviidae | Hemiptera | Eggs | Keep Dry® | 86 | NA | DE DE + oil DE + IP46 DE + IP46 + oil | DE + oil eclosion: 92.5% H.R. 75% DE + oil eclosion: 83% H.R. >98% DE + IP46 + oil eclosion: 95% H.R. 75% DE + IP46 + oil no eclosion H.R. > 98% | [119] | Oil: Graxol® |
Triatoma infestans | Reduviidae | Hemiptera | Nymphs | Keep Dry® | 86 | NA | M. anisopliae (IP 46) + DE + oil | (a) cumulative mortality: 100% (b) cumulative mortality: 5% | [119] | (a) H.R. > 98%, after 10 days and 24 h of exposition (b) H.R. = 75%, after 10 days and 24 h of exposition |
Triatoma infestans | Reduviidae | Hemiptera | All stages | NA | NA | NA | DE + B. bassiana | Nymph 89.5–100%, MLT 5.1–8.3 days Adult 87.5%, MLT 10 days | [120] | MLT = mean lethal time |
Ambloyomma americanum | Ixodidae | Ixodida | Larvae + Nymph | DeadZone | 85 | NA | Dry | Larval mortality: 100% after 6 h Nymphal mortality: 100% after 24 h | [128] | The DE was compared to a silica-gel based product |
Ambloyomma americanum | Ixodidae | Ixodida | Larvae + Nymph | DeadZone | 85 | NA | Dry | Larval mortality: 84% after 24 h Nymphal mortality: 44.0% after 24 h | [128] | Highest dose: 10% of DE |
Ceratophyllus idius | Ceratophyllidae | Siphonaptera | All stages | Drione Crawling Insect Killer | NA | NA | Dry | Lower number of fleas in nest treated with DE | [129] | 38.12% diatomaceous earth as well as 0.2% pyrethrins and 1.0% piperonyl butoxide |
Dermanyssus gallinae | Dermanyssidae | Acarina | All stages | FisiocontrolTM | 86.2 | <500 | DE in water suspension | Topical mortality 95.4% Residual mortality 97.39% | [111] | Highest dose (10% of DE) |
Dermanyssus gallinae | Dermanyssidae | Acarina | All stages | FisiocontrolTM | 86.2 | <500 | DE + mechanical cleaning | Gradual reduction of mite population, over 90% at days 21–28 | [111] | DE dose 10% |
Dermanyssus gallinae | Dermanyssidae | Acarina | All stages | PosturaSec® | 86.2 | 200 | DE in water suspension | Immature stages: 98.9% (both doses) Adults: 98.8% (5% DE) 100% (10% DE) | [110] | |
Dermanyssus gallinae | Dermanyssidae | Acarina | All stages | Silicosec®Ewazid® Silgur F46FS® Istant WFS 90.0 W | NA | NA | DE in water suspension | Silicosec® = 36.5% (24 h) Ewazid® Silgur F46 = 31% (24 h) Fossil Shied® Istant White = 100% (24 h) Fossil Shield® 90.0 White = 92.3% (24 h) | [112] | After 48 h, all the tested DE caused 100% of D. gallinae mortality |
Dermanyssus gallinae | Dermanyssidae | Acarina | All stages | Diamol KMTSilicoSec®FS 90.0®ProtectIt | NA | NA | Dry | Diamol KMT = 60% (LT50 = 3 days) SilicoSec® = 55% (LT50 = 3 days) Fossil Shield 90.0® = 30% (LT50: 3 days) ProtectIt® = 57% (LT50: 3 days) | [93] | The addition of the entomopathogenic fungi do not change the repellency of DEs |
Dermanyssus gallinae | Dermanyssidae | Acarina | All stages | Diamol | NA | NA | Dry DE + Beauveria bassiana | Mortality 89.1% (H.R. 75%) Mortality 78.6% (H.R. 85%) | [94] | Synergistic interactions when applied simultaneously |
Dermanyssus gallinae | Dermanyssidae | Acarina | Adult female | Diamol SilicoSec® | NA | NA | Dry | Low efficacy compared to a pure synthetic amorphous silica products | [130] | |
Menacanthus stramineus | Menoponidae | Phthiraptera | All stages | Organic D/Earth® | NA | NA | DE mixed with sand (1:9) | 60.4%–95.2% | [126] | |
Onythonyssus sylvarium | Macronyssidae | Acari | All stages | NA | NA | NA | DE suspended in deionized water | Low efficacy, it reduced the mite population only if applied for 2 consecutive weeks. | [125] | |
Onythonyssus sylvarium | Macronyssidae | Acari | All stages | Organic D/Earth® | NA | NA | DE mixed with sand (1:9) | 29.1–97.5% | [126] | Data refer to control over 4 weeks of dust box use |
Onythonyssus sylvarium | Macronyssidae | Acari | All stages | Food-grade DE | NA | NA | Food-Grade DE mixed with sand (1:9) | When dust boxes were used, the northern fowl mite populations on flocks grew slowly (<100 mites) | [127] | |
Protocalliphora spp. | Calliphoridae | Diptera | All stages | Drione Crawling Insect Killer | NA | NA | Drione Crawling Insect Killer | Lower number of fleas in nests treated with DE | [129] | 38.12% DE + 0.2% pyrethrins + 1.0% piperonyl butoxide |
Rhipicephalus microplus | Ixodidae | Ixodida | All stages | Keep Dry® | 86 | NA | IP 46 + DE (pellets) | The combination effectively suppressed the population of R. microplus and reduced the female oviposition period | [121] | Pellets: Vermiculite (AgroFloc) + DE (KeepDry®) + SiO2 |
6.3. DEs to Control Crop Pests
7. DEs in Real-Scale Pest Management
Pest Species | Family | Order | Developmental Stage | Tested DE | SiO2 Content (%) | Ø Particles (µm) | Formulation | Mortality Rates | References | Notes |
---|---|---|---|---|---|---|---|---|---|---|
Agrotis ipsilon | Noctuidae | Lepidoptera | IV instar larvae | Local Raw DE | NA | NA | DE suspended in water | Low concentration: 10% High concentration: 70% | [146] | Low concentration 1 g/L High concentration 4 g/L |
Aphis craccivora | Aphididae | Hemiptera | All stages | Fossil Shield® | 73 | 5–30 | DE suspended in water + neem oil | Mean number of aphids/plant 2.2 | [138] | Limited effects on the predator Menochilus sexmaculatus |
Atta sexdens rubropilosa | Formicidae | Hymenoptera | Ant colonies | NA | NA | NA | Dry | Inactivity of the nests: 5.26–31.57% | [147] | |
Bemisia argentifolii | Aleurodidae | Hemiptera | Nymphs | HYFLO® | NA | NA | DE + Isaria fumosorosea (612 strain) | Infected/dead nymphs ranged between 53% and 42.8%, day 4 and 6 respectively | [137] | |
Epilachna vigintioctopunctata | Coccinellidae | Coleoptera | Larvae + Adults | Fossil Shield 90.0 S® | 60–80 | 5–30 | DE | FS 90.0 Adult: ≈75%; Larvae: ≈40% | [148] | After 48 h |
Franklinella fusca | Thripidae | Thysanoptera | All stages | Celite®610 (Deadzone) | 85 | NA | DE DE + Orthene® | % of thrips/plant DE < DE + Orthene® | [149] | Average number of thrips per plant 2 days after insecticide application |
Franklinella occidentalis | Thripidae | Thysanoptera | Adults | Puliantagai® | 85 | NA | (i) DE + M. flavoridae (ii) DE + M. flavoridae + Imidacloprid | (i) LT50 3.77 days (ii) LT50 4.23 days | [92] | |
Franklinella occidentalis | Thripidae | Thysanoptera | Nymphs | Puliantagai® | 85 | NA | (i) DE + M. flavoridae (ii) DE + M. flavoridae + Imidacloprid | (i) LT50 4.26 days (ii) LT50 2.45 days | [92] | |
Myzus persicae | Aphididae | Hemiptera | All stages | NA | NA | NA | DE + Thymus capitatus EO | Mortality 97.84% | [136] | After 24 h |
Myzus persicae | Aphididae | Hemiptera | All stages | Fossil Shield® | 60–80 | 5–30 | DE alone DE + neem oil | Fossil-Shield 68.6% Fossil-Shield + neem oil: 96.4% | [139] | Limited effects on Chrysoperla carnea, Orius spp., Coccinella spp., and Scymnus spp. |
Myzus persicae | Aphididae | Hemiptera | All stages | Pyrisec® | NA | NA | DE DE + Paecilomyces lilacinus | DE: 35–40% after 8 days DE + P. lilacinus: 54.83% after 8 days | [42] | 25% pyrethrum, 3.1% pipronylbutaoxide, and 97.5% diatomaceous earth (SilicoSec®) |
Myzus persicae | Aphididae | Hemiptera | All stages | Pyrisec® | NA | NA | DE DE + Paecilomyces lilacinus | DE: ≈40% after 10 days DE + P. lilacinus: ≈60% after 10 days | [42] | 25% pyrethrum, 3.1% pipronylbutaoxide, and 97.5% diatomaceous earth (SilicoSec®) |
Rhopalosiphum padi | Aphididae | Hemiptera | All stages | NA | NA | 2.6 | DE suspended in water | Wheat plant dusted with different dosages of DE did not show any visible injury | [133] | Reduction in chlorophyll content was observed in them. |
Solenopsis invicta | Formicidae | Hymenoptera | Worker ants | NA | NA | NA | Dry + fungi | Thelohania solenopsae + DE: 89% Beauveria bassiana + DE: <50% | [131] | After 10 days |
Spodoptera eridiana | Noctuidae | Lepidoptera | II instar larvae | KeepDry® | 86 | 15 | DE suspended (alone) DE suspended + neem oil | DE: 46.6% DE + neem: 93.7% | [132] | DE highest dose non-additive synergistic |
Spodoptera exigua | Noctuidae | Lepidoptera | III instar larvae | Sayan® | 92 | 50 | DE suspended in water | Mortality: 59.25%, concentration of 20% | [150] | After 72 h |
Spodoptera frugipreda | Noctuidae | Lepidoptera | II instar larvae | Dezone | 85 | NA | DE suspended in water | High maize grain yield 7387 kg/ha. | [134] | |
Spodoptera frugiperda | Noctuidae | Lepidoptera | II instar larvae | KeepDry® | 86 | 15 | DE suspended (alone) DE suspended + neem oil | DE: 76.2% DE + neem: 66.6% | [132] | DE highest dose additive effect |
Spodoptera littura | Noctuidae | Lepidoptera | III instar larvae | Fossil Shield 90.0® | 60–80 | 5–30 | DE suspended in water | ≈70% after 48 h | [148] | |
Tetranychus urticae | Acarina | Tetranychidae | Adult (♀) | DE_cide | 67 | NA | DE suspended in water | Contact mortality: 24.6% | [140] | Limited impact on TSSM predators (Phytoseiulus persimilis, Neoseiulus fallacis and Stethorus punctillum). |
8. DE Applications for Structural Treatments
9. Other Relative Promising Substances
10. Conclusions and Future Challenges
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Korunić, Z. Diatomaceous earths, a group of natural insecticides. J. Stored Prod. Res. 1998, 34, 87–97. [Google Scholar] [CrossRef]
- Subramanyam, B.; Roesli, R. Inert Dusts. In Alternatives to Pesticides in Stored-Product IPM; Subramanyam, B., Hagstrum, D.W., Eds.; Kluwer Academic Publishers: Dordreecht, Netherlands, 2000; pp. 321–380. [Google Scholar]
- Fernandez, M.A.; Bellotti, N. Silica-based bioactive solids obtained from modified diatomaceous earths to be used as antimicrobial filler material. Mater. Lett. 2017, 194, 130–134. [Google Scholar] [CrossRef] [Green Version]
- Bellotti, N.; Deyá, C. Chapter 14. Natural products applied to antimicrobial coatings. Stud. Nat. Prod. Chem. 2019, 60, 485–508. [Google Scholar]
- Eroglu, N.; Emekci, M.; Athanassiou, C.G. Applications of natural zeolites on agriculture and food production. J. Sci. Food Agric. 2017, 97, 3487–3499. [Google Scholar] [CrossRef]
- Arthur, F.H.; Puterka, G.J. Evaluation of kaolinite-based particle films to control Tribolium species (Coleoptera: Tenebrionidae). J. Stored Prod. Res. 2002, 38, 341–348. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Kavallieratos, N.G.; Benelli, G.; Losić, D.; Usha Rani, P.; Desneux, N. Nanoparticles for pest control: Current status and future perspectives. J. Pest Sci. 2018, 91, 1–15. [Google Scholar] [CrossRef]
- Korunić, Z. Overview of undesirable effects of using diatomaceous earths for direct mixing with grains. Pestic. Fitomed. 2016, 31, 9–18. [Google Scholar] [CrossRef]
- Vayias, B.J.; Athanassiou, C.G.; Korunić, Z.; Rozman, V. Evaluation of natural diatomaceous earth deposits from south-eastern Europe for stored-grain protection: The effect of particle size. Pest Manag. Sci. 2009, 65, 1118–1123. [Google Scholar] [CrossRef]
- Korunić, Z. Rapid assessment of the insecticidal value of diatomaceous earths without conducting bioassays. J. Stored Prod. Res. 1997, 33, 219–229. [Google Scholar] [CrossRef]
- Baliota, G.V.; Athanassiou, C.G. Evaluation of a Greek diatomaceous earth for stored product insect control and techniques that maximize its insecticidal efficacy. Appl. Sci. 2020, 10, 6441. [Google Scholar] [CrossRef]
- Korunić, Z.; Fields, P.G.; Kovacs, M.I.P.; Noll, J.S.; Lukow, O.M.; Demianyk, C.J.; Shibley, K.J. The effect of diatomaceous earth on grain quality. Postharvest Biol. Technol. 1996, 9, 373–387. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Athanassiou, C.G.; Paschalidou, F.G.; Andris, N.S.; Tomanovic, Z. Influence of grain type on the insecticidal efficacy of two diatomaceous earth formulations against Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae). Pest Manag. Sci. 2005, 61, 660–666. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Kavallieratos, N.G. Insecticidal effect, and adherence of PyriSec® in different grain commodities. Crop Prot. 2005, 24, 703–710. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Kavallieratos, N.G.; Vayias, B.J.; Tomanović, Z.; Petrović, A.; Rozman, V.; Adler, C.; Korunić, Z.; Milovanović, D. Laboratory evaluation of diatomaceous earth deposits mined from several locations in central and southeastern Europe as potential protectants against coleopteran grain pests. Crop Prot. 2011, 30, 329–339. [Google Scholar] [CrossRef]
- Rigaux, M.; Haubruge, E.; Fields, P.G. Mechanisms for tolerance to diatomaceous earth between strains of Tribolium castaneum (Coleoptera: Tenebrionidae). Entomol. Exp. Appl. 2001, 101, 33–39. [Google Scholar] [CrossRef]
- Vayias, B.J.; Athanassiou, C.G.; Kavallieratos, N.G.; Buchelos, C.T. Susceptibility of different European populations of Tribolium confusum (Coleoptera: Tenebrionidae) to five diatomaceous earth formulations. J. Econ. Entomol. 2006, 99, 1899–1904. [Google Scholar] [CrossRef]
- Vayias, B.J.; Athanassiou, C.G.; Buchelos, C.T. Evaluation of resistance development by Tribolium confusum du Val (Coleoptera: Tenebrionidae) to diatomaceous earth under laboratory selection. J. Stored Prod. Res. 2008, 44, 162–168. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Kavallieratos, N.G.; Andris, N.S. Insecticidal effect of three diatomaceous earth formulations against adults of Sitophilus oryzae (Coleoptera: Curculionidae) and Tribolium confusum (Coleoptera: Tenebrionidae) on oat, rye, and triticale. J. Econ. Entomol. 2004, 97, 2160–2167. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Vayias, B.J.; Dimizas, C.B.; Kavallieratos, N.G.; Papagregoriou, A.S.; Buchelos, C.T. Insecticidal efficacy of diatomaceous earth against Sitophilus oryzae (L.) (Coleoptera: Curculionidae) and Tribolium confusum Du Val (Coleoptera: Tenebrionidae) on stored wheat: Influence of dose rate, temperature and exposure interval. J. Stored Prod. Res. 2005, 41, 47–55. [Google Scholar] [CrossRef]
- Nayak, M.K.; Daglish, G.J. Importance of Stored Product Insects. In Recent Advances in Stored Product Protection; Athanassiou, C.G., Arthur, F.H., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–19. [Google Scholar]
- Campbell, J.F.; Arthur, F.H.; Mullen, M.A. Insect management in food processing facilities. Adv. Food Nutr. Res. 2004, 48, 240–295. [Google Scholar]
- Stejskal, V.; Hubert, J.; Aulocky, R.; Kucerova, Z. Overview of present and past and pest-associated risks in stored food and feed products: European perspective. J. Stored Prod. Res. 2015, 64, 122–132. [Google Scholar] [CrossRef]
- Hagstrum, D.W.; Athanassiou, C.G. Improving stored product insect management: From theory to practice. Insects 2019, 10, 332. [Google Scholar] [CrossRef] [Green Version]
- Vayias, B.J.; Athanassiou, C.G. Factors affecting effcacy of the diatomaceous earth formulation SilicoSec against adults and larvae of the confused beetle Tribolium confusum Du Val (Coleoptera: Tenebrionidae). Crop Prot. 2004, 23, 565–573. [Google Scholar] [CrossRef]
- Pixton, S.W. Moisture content-its significance and measurement in stored products. J. Stored Prod. Res. 1967, 3, 35–47. [Google Scholar] [CrossRef]
- Pixton, S.W.; Warburton, S. Moisture content/relative humidity equilibrium of some cereal grains at different temperatures. J. Stored Prod. Res. 1971, 6, 283–293. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Korunić, Z. Evaluation of two new diatomaceous earth formulations, enhanced with abamectin and bitterbarkomycin, against four stored-grain beetle species. J. Stored Prod. Res. 2007, 43, 468–473. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Arthur, F.H. Bacterial Insecticides and Inert Materials. In Recent Advances in Stored Product Protection; Athanassiou, C.G., Arthur, F.H., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 83–98. [Google Scholar]
- Fields, P.; Korunić, Z. The effect of grain moisture content and temperature on the efficacy of diatomaceous earths from different geographical locations against stored product beetles. J. Stored Prod. Res. 2000, 36, 1–13. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Kavallieratos, N.G.; Tsakiri, J.B.; Xyrafidis, S.N.; Vayias, B.J. Effect of temperature and humidity on insecticidal effect of SilicoSec against Ephestia kuehniella (Lepidoptera: Pyralidae) larvae. J. Econ. Entomol. 2006, 99, 1520–1524. [Google Scholar] [CrossRef]
- Aldryhim, Y.N. Combination of classes of wheat and environmental factors affecting the efficacy of amorphous silica dust, dryacide, against Rhyzopertha dominica (F.). J. Stored Prod. Res. 1993, 29, 271–275. [Google Scholar] [CrossRef]
- Palyvos, N.E.; Athanassiou, C.G.; Kavallieratos, N.G. Acaricidal effect of a diatomaceous earth formulation against Tyrophagus putrescentiae (Astigmata: Acaridae) and its predator Cheyletus malaccensis (Prostigmata: Cheyletidae) in four grain commodities. J. Econ. Entomol. 2006, 99, 229–236. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Korunić, Z.; Vayias, B.J. Diatomaceous earths enhance the insecticidal effect of bitterbarkomycin against stored-grain insects. Crop Prot. 2009, 28, 123–127. [Google Scholar] [CrossRef]
- Rudolph, D. Occurrence, properties and biological implications of the active uptake of water vapour from the atmosphere in Psocoptera. J. Insect Physiol. 1982, 28, 111–121. [Google Scholar] [CrossRef]
- Rudolph, D. Site, process and mechanism of active uptake of water vapour from the atmosphere in the Psocoptera. J. Insect Physiol. 1982, 28, 205–212. [Google Scholar] [CrossRef]
- Mewis, I.; Ulrichs, C. Action of amorphous diatomaceous earth against different stages of the stored product pests Tribolium confusum (Coleoptera: Tenebrionidae), Tenebrio molitor (Coleoptera: Tenebrionidae), Sitophilus granarius (Coleoptera: Curculionidae) and Plodia interpunctella (Lepidoptera: Pyralidae). J. Stored Prod. Res. 2001, 37, 153–164. [Google Scholar] [PubMed]
- Arthur, F.H. Toxicity of diatomaceous earth to red flour beetles and confused flour beetles (Coleoptera: Tenebrionidae): Effects of temperature and relative humidity. J. Econ. Entomol. 2000, 93, 526–532. [Google Scholar] [CrossRef]
- Arthur, F.H. Impact of food source on survival of red flour beetles and confused flour beetles (Coleoptera: Tenebrionidae) exposed to diatomaceous earth. J. Econ. Entomol. 2000, 93, 1347–1356. [Google Scholar] [CrossRef] [Green Version]
- Athanassiou, C.G.; Kavallieratos, N.G.; Vayias, J.B.; Tsakiri, J.B.; Mikeli, N.H.; Meletsis, C.M. Tomanović, Ž. Persistence and efficacy of Metarhizium anisopliae (Metschnikoff) Sorokin (Deuteromycotina: Hyphomycetes) and diatomaceous earth against Sitophilus oryzae (L.) (Coleoptera: Curculionidae) and Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae) on wheat and maize. Crop Prot. 2008, 27, 1303–1311. [Google Scholar]
- Wakil, W.; Riasat, T.; Lord, J.C. Effects of combined thiamethoxam and diatomaceous earth on mortality and progeny production of four Pakistani populations of Rhyzopertha dominica (Coleoptera: Bostrichidae) on wheat, rice and maize. J. Stored Prod. Res. 2013, 52, 28–35. [Google Scholar] [CrossRef]
- Wakil, W.; Schmitt, T.; Kavallieratos, N.G. Performance of diatomaceous earth and imidacloprid as wheat, rice and maize protectants against four stored-grain insect pests. J Stored Prod Res 2021, 91, 101759. [Google Scholar] [CrossRef]
- Ceruti, F.C.; Lazzari, S.M.N. Combination of diatomaceous earth and powder deltamethrin for insect control in stored corn. Rev. Bras. Entomol. 2005, 49, 580–583. [Google Scholar] [CrossRef]
- Arthur, F.H. Evaluation of a new insecticide formulation (F2) as a protectant of stored wheat, maize, and rice. J. Stored Prod. Res. 2004, 40, 317–330. [Google Scholar] [CrossRef]
- Awais, M.; Mansoor-ul-Hasan; Sagheer, M.; Asif, M.U.; Ali, Q.; Zaman, S. Efficacy of diatomaceous earth and insect growth regulators against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Sci. Lett. 2019, 7, 59–67. [Google Scholar]
- Awais, M.; Zeeshan, M.; Mansoor-ul-Hasan; Sagheer, M.; Asif, M.U.; Ali, Q.; Zaman, S. Combined effect of diatomaceous earth and two insect growth regulators against Trogoderma granarium (Coleoptera: Dermestidae). Sci. Lett. 2020, 8, 55–60. [Google Scholar]
- Arthur, F.H. Evaluation of methoprene alone and in combination with diatomaceous earth to control Rhyzopertha dominica (Coleoptera: Bostrichidae) on stored wheat. J. Stored Prod. Res. 2004, 40, 485–498. [Google Scholar] [CrossRef]
- Athanassiou, C.G. Toxicity of beta cyfluthrin applied alone or in combination with diatomaceous earth against adults of Sitophilus oryzae (L.) (Coleoptera: Curculionidae) and Tribolium confusum DuVal (Coleoptera: Tenebrionidae) on stored wheat. Crop Prot. 2006, 25, 788–794. [Google Scholar] [CrossRef]
- Wakil, W.; Riasat, T.; Ashfaq, M. Residual efficacy of thiamethoxam, Beauveria bassiana (Balsamo) Vuillemin, and diatomaceous earth formulation against Rhyzopertha dominica F. (Coleoptera: Bostrychidae). J. Pest Sci. 2012, 85, 341–350. [Google Scholar] [CrossRef]
- Korunić, Z.; Kalinovic, I.; Liska, A.; Hamel, D. Long Term Effectiveness of the Mixture of Diatomaceous Earth and Deltamethrin on Wheat. In Proceedings of the Tenth International Working Conference on Stored Product Protection, Estoril, Portugal, 27 June–2 July 2010; Carvalho, M.O., Fields, P.G., Adler, C.S., Arthur, F.H., Athanassiou, C.G., Campbell, J.F., Fleurat-Lessard, F., Flinn, P.W., Hodges, R.J., Isikber, A.A., et al., Eds.; Julius-Kühn-Archiv: Berlin, Germany, 2010; pp. 857–861. [Google Scholar]
- Wakil, W.; Schmitt, T. Field trials on the efficacy of Beauveria bassiana, diatomaceous earth and Imidacloprid for the protection of wheat grains from four major stored grain insect pests. J. Stored Prod. Res. 2015, 64, 160–167. [Google Scholar] [CrossRef]
- Dhuyo, A.R.; Ahmad, S. Evaluation of fungus Beauveria bassiana (Bals.) infectivity to the larger grain borer Prostephanus truncatus (Horn). Pak. Entomol. 2007, 29, 77–82. [Google Scholar]
- Lord, J.C. Efficacy of Beauveria bassiana for control of Tribolium castaneum with reduced oxygen and increased carbon dioxide. J. Appl. Entomol. 2009, 133, 101–107. [Google Scholar] [CrossRef]
- Phillips, T.W.; Throne, J.E. Biorational approaches to managing stored-product insects. Annu. Rev. Entomol. 2010, 55, 375–397. [Google Scholar] [CrossRef]
- Ahmed, B.I. Potentials of entomopathogenic fungi in controlling the menace of maize weevil Sitophilus zeamais Motsch (Coleoptera: Curculionidae) on stored maize grain. Arch. Phytopathol. Pflanzenschutz 2010, 43, 107–115. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Athanassiou, C.G.; Aountala, M.M.; Kontodimas, D.C. Evaluation of the entomopathogenic fungi Beauveria bassiana, Metarhizium anisopliae, and Isaria fumosorosea for control of Sitophilus oryzae. J. Food Prot. 2014, 1, 4–17. [Google Scholar] [CrossRef]
- Batta, Y.A. Recent advances in formulation and application of entomopathogenic fungi for biocontrol of stored-grain insects. Biocontrol Sci. Technol. 2016, 26, 1171–1183. [Google Scholar] [CrossRef]
- Moore, D.; Lord, J.C.; Smith, S.M. Pathogens. In Alternatives to Pesticides in Stored-Product IPM; Subramanyam, B., Hagstrum, D.W., Eds.; Kluwer Academic Publishers: Dordreecht, Netherlands, 2000; pp. 193–227. [Google Scholar]
- Lord, J.C. Low humidity, moderate temperature and desiccant duct favor the efficacy of Beauveria bassiana (Hyphomycetes: Moniliales) for the lesser grain borer Rhyzopertha dominica (Coleoptera: Bostrychidae). Biol. Control 2005, 34, 180–186. [Google Scholar] [CrossRef]
- Akbar, W.; Lord, J.C.; Nechols, J.R.; Howard, R.W. Diatomaceous earth increases the efficacy of Beauveria bassiana against Tribolium castaneum larvae and increases conidia attachment. J. Econ. Entomol. 2004, 97, 273–280. [Google Scholar] [CrossRef]
- Michalaki, M.P.; Athanassiou, C.G.; Kavallieratos, N.G.; Batta, Y.A.; Balotis, G.N. Effectiveness of Metarhizium anisopliae (MetschinkoV) Sorokin applied alone or in combination with diatomaceous earth against Tribolium confusum Du Val larvae: Influence of temperature, relative humidity and type of commodity. Crop Prot. 2006, 25, 418–425. [Google Scholar] [CrossRef]
- Vassilakos, T.N.; Athanassiou, C.G.; Kavallieratos, N.G.; Vayias, B.J. Influence of temperature on the insecticidal effect of Beauveria bassiana in combination with diatomaceous earth against Rhyzopertha dominica and Sitophilus oryzae on stored wheat. Biol. Control 2006, 38, 270–281. [Google Scholar] [CrossRef]
- Hansen, L.S.; Steenberg, T. Combining larval parasitoids and an entomopathogenic fungus for biological control of Sitophilus granarius (Coleoptera: Curculionidae) in stored grain. Biol. Control 2007, 40, 237–242. [Google Scholar] [CrossRef]
- Wakil, W.; Ghazanfar, M.U. Entomopathogenic fungus as a biological control agent against Rhyzopertha dominica F. (Coleoptera: Bostrychidae) on stored wheat. Arch. Phytopathol. Pflanzenschutz 2010, 43, 1236–1242. [Google Scholar] [CrossRef]
- Lord, J.C. Desiccant dusts synergize the effect of Beauveria bassiana (Hyphomycetes: Moniliales) on stored-grain beetles. J. Econ. Entomol. 2001, 94, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.; Douro-Kpindou, O.K.; Jenkins, N.E.; Lomer, C.J. Effects of moisture content and temperature on storage of Metarhizium flavoviride conidia. Biocontrol Sci. Technol. 1996, 6, 51–61. [Google Scholar] [CrossRef]
- Sheeba, G.; Seshardi, S.; Raja, N.; Janarthanan, S.; Ignacinutha, S. Efficacy of Beauveria bassiana for control of the rice weevil Sitophilus oryzae (L.) (Coleoptera: Curculionidae). Appl. Entomol. Zool. 2001, 36, 117–120. [Google Scholar] [CrossRef] [Green Version]
- Batta, Y.A. Control of the lesser grain borer (Rhyzopertha dominica Fab., Coleoptera: Bostrichidae) by treatments with residual formulations of Metarhizium anisopliae (Metchnikoff) Sorokin (Deuteromycotina: Hyphomycetes). J. Stored Prod. Res. 2005, 41, 221–229. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Athanassiou, C.G.; Michalaki, M.P.; Batta, Y.A.; Rigatos, H.A.; Pashalidou, F.G.; Balotis, G.N.; Tomanović, Ž.; Vayias, B.J. Effect of the combined use of Metarhizium anisopliae (Metschinkoff) Sorokin and diatomaceous earth for the control of three stored-product beetle species. Crop Prot. 2006, 25, 1087–1094. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Steenberg, T. Insecticidal effect of Beauveria bassiana (Balsamo) Vuillemin (Ascomycota: Hypocreaes) in combination with three diatomaceous earth formulations against Sitophilus granarius (L.) (Coleoptera: Curculionidae). Biol. Control 2007, 40, 411–416. [Google Scholar] [CrossRef]
- Batta, Y.A. Control of main stored-grain insects with new formulations of entomopathogenic fungi in diatomaceous earth dusts. Int. J. Food Eng. 2008, 4, 1–16. [Google Scholar] [CrossRef]
- Riasat, T.; Wakil, W.; Ashfaq, M.; Sahi, S.T. Effect of Beauveria bassiana mixed with diatomaceous earth on mortality, mycosis and sporulation of Rhyzopertha dominica on stored wheat. Phytoparasitica 2011, 39, 325–331. [Google Scholar] [CrossRef]
- Wakil, W.; Riasat, T.; Ghazanfar, M.U.; Kwon, Y.J.; Shaheen, F.A. Aptness of Beauveria bassiana and enhanced diatomaceous earth (DEBBM) for control of Rhyzopertha dominica F. Entomol. Res. 2011, 41, 233–241. [Google Scholar] [CrossRef]
- Dal Bello, G.; Fusé, C.; Juarez, P.; Pedrini, N.; Imaz, A.; Padin, S. Insecticidal effect of fenitrothion, diatomaceous earth and Beauveria bassiana against Coleopteran pests on stored grain. Integr. Prot. Stored Prod. IOBC/WPRS Bull. 2011, 69, 175–180. [Google Scholar]
- Sedehi, A.; Sedaghatfar, E.; Modarres-Najafabadi, S.S. Studies on effect of the Beauveria bassiana on eggs and larvae of Plodia interpunctella. Can. J. Basic Appl. Sci. 2014, 2, 40–45. [Google Scholar]
- Shafighi, Y.; Ziaee, M.; Ghosta, Y. Diatomaceous earth used against insect pests, applied alone or in combination with Metarhizium anisopliae and Beauveria bassiana. J. Plant Prot. Res. 2014, 54, 62–66. [Google Scholar] [CrossRef]
- Rizwan, M.; Atta, B.; Rizwan, M.; Sabir, A.M.; Shah, Z.U.; Hussain, M. Effect of the entomopathogenic fungus, Beauveria bassiana, combined with diatomaceous earth on the red flour beetle, Tribolium castaneum (Herbst) (Tenebrionidae: Coleoptera). Egypt J Biol Pest Control 2019, 29, 27. [Google Scholar] [CrossRef] [Green Version]
- Michalaki, M.P.; Athanassiou, C.G.; Steenberg, T.; Buchelos, C.T. Effect of Paecilomyces fumosoroseus (Wise) Brown and Smith (Ascomycota: Hypocerales) alone or in combination with diatomaceous earth against Tribolium confusum Jacquelin du Val (Coleoptera: Tenebrionidae) and Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Biol. Control 2007, 40, 280–286. [Google Scholar]
- Sabbour, M.M.; Abd-El-Aziz, S.E.; Sherief, M.A. Efficacy of three entomopathogenic fungi alone or in combination with diatomaceous earth modifications for the control of three pyralid moths in stored grains. J. Plant Prot. Res. 2012, 52, 359–363. [Google Scholar] [CrossRef]
- Riasat, T.; Wakil, W.; Yasin, M.; Kwon, Y.J. Mixing of Isaria fumosorosea with enhanced diatomaceous earth and bitterbarkomycin for control of Rhyzopertha dominica. Entomol. Res. 2013, 43, 215–223. [Google Scholar] [CrossRef]
- Sabbour, M.M.; Abd-El-Aziz, S.E. Control of Bruchidius incarnatus and Rhyzopertha dominica using two entomopathogenic fungi alone or in combination with modified diatomaceous earth. Elixir Int. J. Ent. 2014, 68, 22239–22242. [Google Scholar]
- Athanassiou, C.G.; Rani, P.U.; Kavallieratos, N.G. The Use of Plant Extracts for Stored Product Protection. In Advances in Plant Biopesticides; Singh, D., Ed.; Springer: New Delhi, India, 2014; pp. 131–147. [Google Scholar]
- Campolo, O.; Giunti, G.; Russo, A.; Palmeri, V.; Zappalà, L. Essential Oils in Stored Product Insect Pest Control. J. Food Qual. 2018, 2018, 6906105. [Google Scholar] [CrossRef] [Green Version]
- Fisher, M.H.; Mrozik, H. Chemistry. In Ivermectin and Abamectin; Campbell, W.C., Ed.; Springer: New York, NY, USA, 1989; pp. 1–23. [Google Scholar]
- Yang, F.; Liang, G.; Xu, Y.; Lu, Y.; Zeng, L. Diatomaceous earth enhances the toxicity of garlic, Allium sativum, essential oil against stored-product pests. J. Stored Prod. Res. 2010, 46, 118–123. [Google Scholar] [CrossRef]
- Ziaee, M.; Moharramipour, S.; Francikowski, J. The synergistic effects of Carum copticum essential oil on diatomaceous earth against Sitophilus granarius and Tribolium confusum. J. Asia Pac. Entomol. 2014, 17, 817–822. [Google Scholar] [CrossRef]
- Korunić, Z.; Fields, P.G. Evaluation of three new insecticide formulations based on inert dusts and botanicals against four stored-grain beetles. J. Stored Prod. Res. 2020, 88, 101633. [Google Scholar] [CrossRef]
- Campolo, O.; Romeo, F.V.; Malacrinò, A.; Laudani, F.; Carpinteri, G.; Fabroni, S.; Rapisarda, P.; Palmeri, V. Effects of inert dusts applied alone and in combination with sweet orange essential oil against Rhyzopertha dominica (Coleoptera: Bostrichidae) and wheat microbial population. Ind. Crops Prod. 2014, 61, 361–369. [Google Scholar] [CrossRef]
- Paponja, I.; Rozman, V.; Liška, A. Natural formulation based on diatomaceous earth and botanicals against stored product insects. Insects 2020, 11, 613. [Google Scholar] [CrossRef]
- Akhtar, Y.; Isman, M.B. Efficacy of diatomaceous earth and a DE-aerosol formulation against the common bed bug, Cimex lectularius Linnaeus in the laboratory. J. Pest Sci. 2016, 89, 1013–1021. [Google Scholar] [CrossRef]
- Alkan, M.; Atay, T.; Ertürk, S.; Kepenekçi, I. Comparison of bioactivities of native diatomaceous earth against Turkestan cockroach [Blatta Lateralis Walker (Blattodea: Blattidae)] Nymphs. Appl. Ecol. Environ. Res. 2019, 17, 5897–5994. [Google Scholar] [CrossRef]
- Ge, W.; Du, G.; Zhang, L.; Li, Z.; Xiao, G.; Chen, B. The Time–Concentration–Mortality Responses of Western Flower Thrips, Frankliniella occidentalis, to the Synergistic Interaction of Entomopathogenic Fungus Metarhizium flavoviride, Insecticides, and Diatomaceous Earth. Insects 2020, 11, 93. [Google Scholar] [CrossRef] [Green Version]
- Kilpinen, O.; Steenberg, T. Repellent activity of desiccant dusts and conidia of the entomopathogenic fungus Beauveria bassiana when tested against poultry red mites (Dermanyssus gallinae) in laboratory experiments. Exp. Appl. Acarol. 2016, 70, 329–341. [Google Scholar] [CrossRef]
- Steenberg, T.; Kilpinen, O. Synergistic interaction between the fungus Beauveria bassiana and desiccant dusts applied against poultry red mites (Dermanyssus gallinae). Exp. Appl. Acarol. 2014, 62, 511–524. [Google Scholar] [CrossRef]
- Akhoundi, M.; Bruel, C.; Izri, A. A Harmful Effects of Bed Bug-Killing Method of Diatomaceous Earth on Human Health. J. Insect Sci. 2019, 19, 5. [Google Scholar] [CrossRef]
- Hosseini, S.A.; Bazrafkan, S.; Vatandoost, H.; Abaei, M.R.; Ahmadi, M.S.; Tavassoli, M.; Shayeghi, M. The insecticidal effect of diatomaceous earth against adults and nymphs of Blattella germanica. Asian Pac. J. Trop. Biomed. 2014, 4, S228–S232. [Google Scholar] [CrossRef] [Green Version]
- Di Giovanni, F.; Wilke, A.B.B.; Beier, J.C.; Pombi, M.; Mendoza-Roldan, J.A.; Desneux, N.; Canale, A.; Lucchi, A.; Dantas-Torres, F.; Otranto, D.; et al. Parasitic strategies of arthropods of medical and veterinary importance. Entomol. Gen. 2021, 41, 70176. [Google Scholar]
- Pan, X.; Wang, X.; Zhang, F. New Insights into Cockroach Control: Using Functional Diversity of Blattella germanica Symbionts. Insects 2020, 11, 696. [Google Scholar] [CrossRef]
- Faulde, M.K.; Scharninghausen, J.J.; Cavaljuga, S. Toxic and behavioural effects of different modified diatomaceous earths on the German cockroach, Blattella germanica (L.) (Orthoptera: Blattellidae) under simulated field conditions. J. Stored Prod. Res. 2006, 42, 253–263. [Google Scholar] [CrossRef]
- Faulde, M.K.; Tisch, M.; Scharninghausen, J.J. Efficacy of modified diatomaceous earth on different cockroach species (Orthoptera, Blattellidae) and silverfish (Thysanura, Lepismatidae). J. Pest Sci. 2006, 79, 155–161. [Google Scholar] [CrossRef]
- Gao, Y.; Yu, S.; Li, J.; Sun, P.; Xiong, M.; Lei, C.; Zhang, Z.; Huang, Q. Bioactivity of diatomaceous earth against the subterranean termite Reticulitermes chinensis Snyder (Isoptera: Rhinotermitidae). Environ. Sci. Pollut. Res. 2018, 25, 28102–28108. [Google Scholar] [CrossRef]
- Özcan, K.; Tunaz, H.; Işikber, A.A.; Kubilay, E.M. Lethal Effect of Turkısh Dıatomaceous Earth (Bgn-1) agaınst Adults of German Cockroaches (Blatella Germanıca L.). Contact Pesticides, Residual Products, and Plant Extracts. In In Proceedings of the 12th International Working Conference on Stored Product Protection (IWCSPP), Berlin, Germany, 7–11 October 2018. [Google Scholar]
- Ahmed, S.; Hassan, B.; Farooq, M.U. Effect of biofertilizers and diatomaceous earth on life and movement of subterranean termites under laboratory conditions. Int. J. Trop. Insect Sci. 2018, 38, 348–352. [Google Scholar] [CrossRef]
- Grace, J.K.; Yamamoto, R.T. Diatomaceous earth is not a barrier to Formosan subterranean termites (Isoptera: Rhinotermitidae). Sociobiology 1993, 23, 25–30. [Google Scholar]
- Lucky, A. Urban Ants of North America and Europe: Identification, Biology, and Management. Syst. Entomol. 2009, 34, 406–407. [Google Scholar] [CrossRef]
- Van Den Noortgate, H.; Sree, S.P.; Ostyn, N.; Lagrain, B.; Roefaers, M.; Wenseleers, T.; Martens, J.A. Material properties determining insecticidal activity of activated carbon on the pharaoh ant (Monomorium pharaonis). J. Pest Sci. 2018, 922, 643–652. [Google Scholar] [CrossRef]
- Al, N.; Tunaz, H.; Işikber, A.A.; Er, M.K. Lethal Effect Of Turkish Diatomaceous Earth (K14) Against Adults Of American Cockroaches (Periplaneta americana L.). In Proceedings of the International Biological, Agricultural And Life Science Congress, Lviv, Ukraine, 7–8 November 2019. [Google Scholar]
- Akhtar, Y.; Isman, M.B. Horizontal Transfer of Diatomaceous Earth and Botanical Insecticides in the Common Bed Bug, Cimex lectularius L.; Hemiptera: Cimicidae. PLoS ONE 2013, 8, 75626. [Google Scholar]
- Rodrigues, J.; Borges, P.R.; Fernandes, É.K.K.; Luz, C. Activity of additives and their effect in formulations of Metarhizium anisopliae s.l. IP 46 against Aedes aegypti adults and on post mortem conidiogenesis. Acta Trop 2019, 193, 192–198. [Google Scholar] [CrossRef]
- Alves, L.F.A.; Oliveira, D.G.P.; Kasburg, C.R.; Nardelli, M.S. Acaricidal Activity Of Inert Powders Against The Poultry Red Mite Dermanyssus gallinae (De Geer, 1778) (Mesostigmata: Dermanyssidae). Arch. Vet. Sci. 2019, 24, 81–92. [Google Scholar]
- Alves, L.F.A.; de Oliveira, D.G.P.; Pares, R.B.; Sparagano, O.A.E.; Godinho, R.P. Association of mechanical cleaning and a liquid preparation of diatomaceous earth in the management of poultry red mite, Dermanyssus gallinae (Mesostigmata: Dermanyssidae). Exp. Appl. Acarol. 2020, 81, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Ulrichs, C.; Han, Y.J.; Abdelhamid, M.T.; Mewis, I. Management of the poultry red mite, Dermanyssus gallinae, using silica-based acaricides. Exp. Appl. Acarol. 2020, 822, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Lilly, D.G.; Webb, C.E.; Doggett, S.L. Evidence of Tolerance to Silica-Based Desiccant Dusts in a Pyrethroid-Resistant Strain of Cimex lectularius (Hemiptera: Cimicidae). Insects 2016, 7, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, N.; Wang, C.; Wang, D.; Cooper, R.; Zha, C. Comparative Efficacy of Selected Dust Insecticides for Controlling Cimex lectularius (Hemiptera: Cimicidae). J. Econ. Entomol. 2016, 109, 1819–1826. [Google Scholar] [CrossRef]
- Benoit, J.B.; Phillips, S.A.; Croxall, T.J.; Christensen, B.S.; Yoder, J.A.; Denlinger, D.L. Addition of alarm pheromone components improves the effectiveness of desiccant dusts against Cimex lectularius. J. Med. Entomol. 2009, 46, 572–579. [Google Scholar] [CrossRef] [Green Version]
- Pedrini, N.; Mijailovsky, S.J.; Girotti, J.R.; Stariolo, R.; Cardozo, R.M.; Gentile, A.; Juárez, M.P. Control of pyrethroid-resistant chagas disease vectors with entomopathogenic fungi. PLoS Negl. Trop. Dis. 2009, 3, 434. [Google Scholar] [CrossRef] [Green Version]
- Luz, C.; Rodrigues, J.; Rocha, L.F.N. Diatomaceous earth and oil enhance effectiveness of Metarhizium anisopliae against Triatoma infestans. Acta Trop. 2012, 122, 29–35. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Palyvos, N.E. Laboratory evaluation of two diatomaceous earth formulations against Blattisocius keegani fox (Mesostigmata, Ascidae) and Cheyletus malaccensis Oudemans (Prostigmata, Cheyletidae). Biol. Control 2006, 38, 350–355. [Google Scholar] [CrossRef]
- Rodrigues, J.; Lobo, L.S.; Fernandes, E.K.K.; Luz, C. Effect of formulated Metarhizium anisopliae on eggs and eclosing nymphs of Triatoma infestans. J. Appl. Entomol. 2015, 139, 146–153. [Google Scholar] [CrossRef]
- Forlani, L.; Pedrini, N.; Juarez, M.P. Contribution of the horizontal transmission of the entomopathogenic fungus Beauveria bassiana to the overall performance of a fungal powder formulation against Triatoma infestans. Res. Rep. Trop. Med. 2011, 2, 135. [Google Scholar]
- Santos, T.R.; da Paixão, F.R.S.; Catão, A.M.L.; Muniz, E.R.; Ribeiro-Silva, C.S.; Taveira, S.F.; Luz, C.; Mascarin, G.M.; Fernandes, E.K.K.; Marreto, R.N. Inorganic pellets containing microsclerotia of Metarhizium anisopliae: A new technological platform for the biological control of the cattle tick Rhipicephalus microplus. Appl. Microbiol. Biotechnol. 2021, 105, 5001–5012. [Google Scholar] [CrossRef]
- Kilpinen, O.; Roepstorff, A.; Permin, A.; Nørgaard-Nielsen, G.; Lawson, L.G.; Simonsen, H.B. Influence of Dermanyssus gallinae and Ascaridia galli infections on behaviour and health of laying hens (Gallus gallus domesticus). Br. Poult. Sci. 2005, 46, 26–34. [Google Scholar] [CrossRef]
- Chu, T.T.H.; Murano, T.; Uno, Y.; Usui, T.; Yamaguchi, T. Molecular Detection of Avian Pathogens in Poultry Red Mite (Dermanyssus gallinae) Collected in Chicken Farms. J. Vet. Med. Sci. 2014, 76, 14–0253. [Google Scholar]
- Sparagano, O.A.E.; Ho, J. Parasitic Mite Fauna in Asian Poultry Farming Systems. Front. Vet. Sci. 2020, 7, 400. [Google Scholar] [CrossRef]
- Mullens, B.A.; Soto, D.; Martin, C.D.; Callaham, B.L.; Gerry, A.C. Northern fowl mite (Ornithonyssus sylviarum) control evaluations using liquid formulations of diatomaceous earth, kaolin, sulfur, azadirachtin, and Beauveria bassiana on caged laying hens. J. Appl. Poult. Res. 2012, 21, 111–116. [Google Scholar] [CrossRef]
- Martin, C.D.; Mullens, B.A. Housing and dustbathing effects on northern fowl mites (Ornithonyssus sylviarum) and chicken body lice (Menacanthus stramineus) on hens. Med. Vet. Entomol. 2012, 26, 323–333. [Google Scholar] [CrossRef]
- Murillo, A.C.; Mullens, B.A. Timing diatomaceous earth-filled dustbox use for management of northern fowl mites (Acari: Macronyssidae) in cage-free poultry systems. J. Econ. Entomol. 2016, 109, 2572–2579. [Google Scholar] [CrossRef]
- Showler, T.A.; Flores, N.; Caesar, R.M.; Mitchel, R.D.; Perez de Leon, A.A.P. Lethal Effects of a Commercial Diatomaceous Earth Dust Product on Amblyomma americanum (Ixodida: Ixodidae) Larvae and Nymphs. J. Med. Entomol. 2020, 57, 1575–1581. [Google Scholar] [CrossRef] [Green Version]
- Dawson, R.D. Efficacy of diatomaceous earth at reducing populations of nest-dwelling ectoparasites in tree swallows. J. Field Ornithol. 2004, 75, 232–238. [Google Scholar] [CrossRef]
- Kilpinen, O.; Steenberg, T. Inert dusts and their effects on the poultry red mite (Dermanyssus gallinae). Exp. Appl. Acarol. 2009, 481, 51–62. [Google Scholar] [CrossRef]
- Brinkman, M.A.; Gardner, W.A. Use of diatomaceous earth and entomopathogen combinations against the red imported fire ant (Hymenoptera: Formicidae). Florida Entomol. 2001, 84, 740–741. [Google Scholar] [CrossRef]
- Constanski, K.C.; Zorzetti, J.; Santoro, P.H.; Hoshino, A.T.; Oliveira Janiero Neves, P.M. Inert powders alone or in combination with neem oil for controlling Spodoptera eridania and Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae. Semin. Agrar. 2016, 37, 1801–1810. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Singh, V. Laboratory and field studies demonstrating the insecticidal potential of diatomaceous earth against wheat aphids in rice-wheat cropping system of Punjab (India). Cereal Res. Commun. 2016, 44, 435–443. [Google Scholar] [CrossRef] [Green Version]
- Aniwanou, C.T.S.; Sinzogan, A.A.C.; Deguenon, J.M.; Sikirou, R.; Stewart, D.A.; Ahanchede, A. Bio-efficacy of diatomaceous earth, household soaps, and neem oil against Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae in Benin. Insects 2021, 12, 18. [Google Scholar] [CrossRef]
- Constantinescu-Aruxandei, D.; Lupu, C.; Oancea, F. Siliceous Natural Nanomaterials as Biorationals—Plant Protectants and Plant Health Strengtheners. Agronomy 2020, 10, 1791. [Google Scholar] [CrossRef]
- Khaled, W.; Ben Fekih, I.; Harbaoui, I.; Boukhris-Bouhachem, S. Insecticidal activity assessment of Thymus capitatus essential oils in combination with natural abrasives against Myzus persicae. In Proceedings of the Second Africa-International Allelopathy Congress, Sousse, Tunisia, 16–19 November 2016. [Google Scholar]
- Lozano-Contreras, M.G.; Maldonado-Blanco, M.G.; Elías-Santos, M.; González-Hernández, A.; Nava-Camberos, U. Application of Isaria fumosorosea blastospores produced in liquid culture for control of Bemisia argentifolii on cotton plants. Southwest Entomol. 2013, 38, 57–66. [Google Scholar] [CrossRef]
- Ulrichs, C.H.; Mewis, I.; Schnitzler, W.H. Efficacy of neem and diatomaceous earth against cowpea aphids and their deleterious effect on predating Coccinelidae. J. Appl. Entomol. 2001, 125, 571–575. [Google Scholar] [CrossRef]
- El-Wakeil, N.E.; Saleh, S.A. Effects of neem and diatomaceous earth against Myzus persicae and associated predators in addition to indirect effects on artichoke growth and yield parameters. Arch. Phytopathol. Plant Prot. 2009, 42, 1132–1143. [Google Scholar] [CrossRef]
- Shah, R.; Appleby, M. Testing the contact and residual toxicity of selected low-risk pesticides to Tetranychus Urticae Koch and its Predators. Sarhad J. Agric. 2019, 35, 1113–1121. [Google Scholar] [CrossRef]
- Adams, C.T.; Banks, W.A.; Lofgren, C.S. Red Imported Fire Ant (Hymenoptera: Formicidae): Correlation of Ant Density with Damage to Two Cultivars of Potatoes (Solanum tuberosum L.). J. Econ. Entomol. 1988, 81, 905–909. [Google Scholar] [CrossRef]
- Hagstrum, D.W.; Phillips, T.W. Evolution of stored-product entomology: Protecting the world food supply. Annu. Rev. Entomol. 2017, 62, 379–397. [Google Scholar] [CrossRef] [PubMed]
- Parkin, E.A. Control of the granary weevil with finely ground mineral dusts. Ann. Appl. Biol. 1944, 31, 84–88. [Google Scholar] [CrossRef]
- Korunić, Z.; Cenkowski, S.; Fields, P.G. Grain bulk density as affected by diatomaceous earths and application method. Postharvest Biol. Technol. 1998, 13, 81–89. [Google Scholar] [CrossRef]
- Jackson, K.; Webley, D. Effects of Dryacide on the Physical Properties of Grains, Pulses and Oilseeds. In Stored Product Protection, Proceedings of the Sixth International Conference on Stored Product Protection, Canberra, Australia, 1994; Highley, E., Wright, E.J., Banks, H.J., Champ, B.R., Eds.; University Press: Cambridge, UK, 1994; pp. 635–637. [Google Scholar]
- Gesraha, M.A.; Ebeid, A.R.; Salem, N.Y.M.; Abdou, W.L. Comparative Study on Some Biological Indices of Agrotis ipsilon (Lepidoptera: Noctuidae) Larvae Treated with Three Control Agents under Laboratory Conditions. Annu. Res. Rev. Biol. 2017, 21, 1–8. [Google Scholar] [CrossRef]
- Ferreira-Filho, P.J.; Wilcken, C.F.; Neves, D.A.; Pogotto, M.H.F.A.D.; Carmo, J.B.; Guerreiro, J.C.; Serrao, J.E.; Zanuncio, J.C. Does Diatomaceous Earth Control Leaf-Cutter Ants (Hymenoptera: Formicidae) in the Eucalyptus Plantations? J. Ec. Entomol. 2015, 108, 1124–1128. [Google Scholar] [CrossRef]
- Mucha-Pelzer, T.; Debnath, N.; Goswami, A.; Mewis, I.; Ulrichs, C. Bekämpfung von Epilachna vigintioctopunctata (F.) und Spodoptera litura (F.) mit Silikaten. Gesunde Pflanzen 2008, 60, 23–28. [Google Scholar] [CrossRef]
- Mitchell, R.D.; Mott, D.W.; Dhammi, A.; Reisig, D.D.; Roe, R.M. Field Evaluation of a New Thrips Control Agent for Cotton: A Mechanical Insecticide. In Proceedings of the Beltwide Cotton Conferences, San Antonio, TX, USA, 3–5 January 2018. [Google Scholar]
- Ebadollahi, A.; Sadeghi, R. Diatomaceous Earth and Kaolin as Promising Alternatives to the Detrimental Chemicals in the Management of Spodoptera exigua. J. Entomol. 2018, 15, 101–105. [Google Scholar] [CrossRef] [Green Version]
- Desmarchelier, J.M.; Dines, J.C. Dryacide treatment of stored wheat: Its efficacy against insects, and after processing. Aust. J. Exp. Agric. 1987, 27, 309–312. [Google Scholar] [CrossRef]
- Aldryhim, Y.N. Efficacy of the amorphous silica dust, Dryacide, against Tribolium confusum Duv. and Sitophilus granarius (L.) (Coloptera: Tenebrionidae and Curculionidae). J. Stored Prod. Res. 1990, 26, 207–210. [Google Scholar] [CrossRef]
- McLaughlin, A. Laboratory Trials on Desiccant Dust Insecticides. In Stored Product Protection, Proceedings of the Sixth International Conference on Stored Product Protection; Highley, E., Wright, E.J., Banks, H.J., Champ, B.R., Eds.; University Press: Cambridge, UK, 1994; pp. 638–645. [Google Scholar]
- Subramanyam, B.H.; Hagstrum, D.W. Resistance Measurement and Management. In Integrated Management of Insects in Stored Products; Subramanyam, B.H., Hagstrum, D.W., Eds.; Marcel Dekker Inc.: New York, NY, USA, 1995; pp. 231–398. [Google Scholar]
- Musser, F.R.; Shelton, A.M. The influence of post-exposure temperature on the toxicity of insecticides to Ostrinia nubilalis (Lepidoptera: Crambidae). Pest Manag. Sci. 2005, 61, 508–510. [Google Scholar] [CrossRef]
- Khan, H.A.A.; Akram, W. The effect of temperature on the toxicity of insecticides against Musca domestica L.: Implications for the effective management of diarrhea. PLoS ONE 2014, 9, 95636. [Google Scholar] [CrossRef] [Green Version]
- Fields, P.; Dowdy, A.; Marcotte, M. Structural Pest Control: The Use of an Enhanced Diatomaceous Earth Product Combined with Heat Treatment for the Control of Insect Pests in Food Processing Facilities. Canada–United States Working Group on Methyl Bromide Alternatives. 1997. Available online: http://res.agr.ca/winn/Heat-DE.htm (accessed on 16 October 2021).
- Dowdy, A.K. Mortality of red four beetle, Tribolium castaneum (Coleoptera: Tenebrionidae) exposed to high temperature and diatomaceous earth combinations. J. Stored Prod. Res. 1999, 35, 175–182. [Google Scholar] [CrossRef]
- Dowdy, A.K.; Fields, P.G. Heat combined with diatomaceous earth to control the confused flour beetle (Coleoptera: Tenebrionidae) in a flour mill. J. Stored Prod. Res. 2002, 38, 11–22. [Google Scholar] [CrossRef]
- Cook, D.A.; Collins, D.A.; Collins, L.E. Efficacy of diatomaceous earths, applied as structural treatments, against stored product insects and mites. HGCA Proj. Re. 2004, 344, 50. [Google Scholar]
- Collins, D.A.; Cook, D.A. Laboratory evaluation of diatomaceous earths, when applied as dry dust and slurries to wooden surfaces, against stored-product insect and mite pests. J. Stored Prod. Res. 2006, 42, 197–206. [Google Scholar] [CrossRef]
- Collins, D.A.; Cook, D.A. Laboratory studies evaluating the efficacy of diatomaceous earths, on treated surfaces, against stored-product insect and mite pests. J. Stored Prod. Res. 2006, 42, 51–60. [Google Scholar] [CrossRef]
- Schöller, M.; Reichmuth, C. Field trials with the diatomaceous earth SilicoSec® for treatment of empty rooms and bulk grain. Julius-Kühn-Archiv 2010, 425, 899–905. [Google Scholar]
- Ertürk, S.; Atay, T.; Toprak, U.; Alkan, M. The efficacy of different surface applications of wettable powder formulation of Detech® diatomaceous earth against the rice weevil, Sitophilus oryzae (L.) (Coleoptera: Curculionidae). J. Stored Prod. Res. 2020, 89, 101725. [Google Scholar] [CrossRef]
- Gowers, S.L.; Le Patourel, G.N.J. Toxicity of deposits of an amorphous silica dust on different surfaces and their pick-up by Sitophilus granarius (Coleoptera: Curculionidae). J. Stored Prod. Res. 1984, 70, 25–29. [Google Scholar] [CrossRef]
- Cook, D.A. The Efficacy of High Temperature and Diatomaceous Earth Combinations Against Adults of the Red Flour Beetle Tribolium Castaneum (Coleoptera: Tenebrionidae) and the Grain Weevil Sitophilus Granarius (Coleoptera: Curculionidae). In Proceedings of the BCPC International Congress—Crop Science and Technology; The British Crop Protection Council: Alton, UK, 2003; pp. 445–450. [Google Scholar]
- Cox, P.D.; Parish, W.E. Effects of refuge content and food availability on refuge-seeking behavior in Cryptolestes ferrugineus (Stephens) (Coleoptera: Cucujdiae). J. Stored Prod. Res. 1991, 27, 135–139. [Google Scholar] [CrossRef]
- Vrba, C.H.; Arai, H.P.; Nosal, M. The effect of silica aerogel on the mortality of Tribolium confusum (Duval) as a function of exposure time and food deprivation. Can. J. Zool. 1983, 61, 1481–1486. [Google Scholar] [CrossRef]
- Loschiavo, S.R. Availability of food as a factor in the effectiveness of a silica aerogel against the merchant grain beetle (Coleoptera: Cucujidae). J. Econ. Entom. 1988, 81, 1237–1240. [Google Scholar] [CrossRef]
- White, N.D.G.; Loschiavo, S.R. Factors affecting survival of the merchant grain beetle (Coleoptera: Cucujidae) and the confused flour beetle (Coleoptera: Tenebrionidae) exposed to silica aerogel. J. Econ. Entom. 1989, 82, 960–969. [Google Scholar] [CrossRef]
- Bridgeman, B. Application technology and usage patterns of diatomaceous earth in stored product protection. Stored-product Protection. In Proceedings of the Seventh International Working Conference on Stored-product Protection, Beijing, China, 14–19 October 1998; Zuxun, J., Quan, L., Yongsheng, L., Xianchang, T., Lianghua, G., Eds.; pp. 785–789. [Google Scholar]
- Banks, J.H.; Fields, P.G. Physical Methods for Insect Control in Stored-Grain Ecosystems. In Stored-Grain Ecosystems; Jayas, D.S., White, N.D.G., Muir, W.E., Eds.; CRC Press: New York, NY, USA, 1995; pp. 353–409. [Google Scholar]
- Golob, P. Current status and future perspective for inert dusts for control of stored product insects. J. Stored Prod. Res. 1997, 33, 69–79. [Google Scholar] [CrossRef]
- Kljajić, P.; Andrić, G.; Adamović, M.; Bodroža-Solarov, M.; Marković, M.; Perić, I. Laboratory assessment of insecticidal effectiveness of natural zeolite and diatomaceous earth formulations against three stored-product beetle pests. J. Stored Prod. Res. 2010, 46, 1–6. [Google Scholar] [CrossRef]
- Kljajić, P.; Andrić, G.; Milan, A.; Golić, M.P. Possibilities of application of natural zeolites in stored wheat grain protection against pest insects. J. Process. Energy Agric. 2011, 15, 12–16. [Google Scholar]
- Bodroža-Solarov, M.; Kljajić, P.; Andrić, G.; Filipčev, B.; Šimurina, O.; Golić, P.M.; Adamovic, M. Application of principal component analysis in assessment of relation between the parameters of technological quality of wheat grains treated with inert dusts against rice weevil (Sitophilus oryzae L.). Pestic. Fitomed. 2011, 26, 385–390. [Google Scholar] [CrossRef]
- Rumbos, C.I.; Sakka, M.; Berillis, P.; Athanassiou, C.G. Insecticidal potential of zeolite formulations against three stored grain insects, particle size effect, adherence to kernels and influence on test weight of grains. J. Stored Prod. Res. 2016, 68, 93–101. [Google Scholar] [CrossRef]
- Floros, G.; Kokkari, A.; Kouloussis, N.; Kantiranis, N.; Damos, P.; Filippidis, A.; Koveos, D. Evaluation of the natural zeolite lethal effects on adults of the bean weevil under different temperatures and relative humidity regimes J. Econ. Entom. 2017, 111, 482–490. [Google Scholar] [CrossRef]
- Westwood, G.S.; Huang, S.W.; Keyhani, N.O. Molecular and immunological characterization of allergens from the entomopathogenic fungus Beauveria bassiana. Clin. Mol. Allergy. 2006, 4, 12. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.Y.; Chen, M.F. Susceptibility of field populations of the lesser grain borer, Rhyzopertha dominica (F.), to deltamethrin and spinosad on paddy rice in Taiwan. J. Stored Prod Res. 2013, 55, 124–127. [Google Scholar] [CrossRef]
- Daglish, G.J.; Nayak, M.K. Prevalence of resistance to deltamethrin in Rhyzopertha dominica (F.) in eastern Australia. J. Stored Prod Res. 2018, 78, 45–49. [Google Scholar] [CrossRef]
- Nayak, M.K.; Daglish, G.J.; Phillips, T.W.; Ebert, P.R. Resistance to the fumigant phosphine and its management in insect pests of stored products: A global perspective. Ann. Rev. Entomol. 2020, 65, 333–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeni, V.; Baliota, G.V.; Benelli, G.; Canale, A.; Athanassiou, C.G. Diatomaceous Earth for Arthropod Pest Control: Back to the Future. Molecules 2021, 26, 7487. https://doi.org/10.3390/molecules26247487
Zeni V, Baliota GV, Benelli G, Canale A, Athanassiou CG. Diatomaceous Earth for Arthropod Pest Control: Back to the Future. Molecules. 2021; 26(24):7487. https://doi.org/10.3390/molecules26247487
Chicago/Turabian StyleZeni, Valeria, Georgia V. Baliota, Giovanni Benelli, Angelo Canale, and Christos G. Athanassiou. 2021. "Diatomaceous Earth for Arthropod Pest Control: Back to the Future" Molecules 26, no. 24: 7487. https://doi.org/10.3390/molecules26247487
APA StyleZeni, V., Baliota, G. V., Benelli, G., Canale, A., & Athanassiou, C. G. (2021). Diatomaceous Earth for Arthropod Pest Control: Back to the Future. Molecules, 26(24), 7487. https://doi.org/10.3390/molecules26247487