Characterization of Fatty Acids, Polysaccharides, Amino Acids, and Minerals in Marine Macroalga Chaetomorpha crassa and Evaluation of Their Potentials in Skin Cosmetics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Chaetomorpha crassa
2.2. Characterization of Phycocompounds by GCMS Analysis
2.2.1. Extract Preparation
2.2.2. GCMS Characterization
2.3. Fatty Acids Characterization by GCMS Analysis
2.4. Characterization of Functional Groups by FTIR Study
2.5. Elemental Analysis by ICP AES
2.5.1. Chemical Preparation
2.5.2. Microwave-Assisted Digestion and Detection
2.6. Determination of Total Amino Acid Profile by HRLCMS-QTOF
Acid Hydrolysis Procedure
2.7. Carbohydrate Profiling
2.7.1. Acid Hydrolysis
2.7.2. HRLCMS Q-TOF Analysis
3. Results
3.1. Phycocompounds Characterization by GC-MS Analysis
3.2. Fatty Derivatives Characterization by GC-MS Analysis
3.3. Fourier Transform Infrared Spectrophotometer (FTIR) Analysis
3.4. Determination of Elements by ICP-AES Analysis
3.5. Determination of Amino Acids
3.6. Carbohydrate Derivatives Analysis by HRLCMS-QTOF Study
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Sample Availability
References
- Kligman, D. Cosmeceuticals. Dermatol. Clin. 2000, 18, 609–615. [Google Scholar] [CrossRef]
- Kerdudo, A.; Burger, P.; Merck, F.; Dingas, A.; Rolland, Y.; Michel, T.; Fernandez, X. Development of a natural ingredient—Natural preservative: A case study. Comptes Rendus Chim. 2016, 19, 1077–1089. [Google Scholar] [CrossRef] [Green Version]
- Barrett, J.R. Chemical Exposures: The Ugly Side of Beauty Products. Environ. Health Perspect. 2005, 113, 24. [Google Scholar] [CrossRef] [Green Version]
- Pereira, J.X.; Pereira, T.C. Cosmetics and its Health Risks. Glob. J. Med. Res. 2018, 18, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Ariede, M.B.; Candido, T.M.; Jacome, A.L.M.; Velasco, M.V.R.; De Carvalho, J.C.M.; Baby, A.R. Cosmetic attributes of algae—A review. Algal Res. 2017, 25, 483–487. [Google Scholar] [CrossRef]
- García-Poza, S.; Leandro, A.; Cotas, C.; Cotas, J.; Marques, J.C.; Pereira, L.; Gonçalves, A.M.M. The Evolution Road of Seaweed Aquaculture: Cultivation Technologies and the Industry 4.0. Int. J. Environ. Res. Public Health 2020, 17, 6528. [Google Scholar] [CrossRef]
- Wang, H.-M.D.; Chen, C.-C.; Huynh, P.; Chang, J.-S. Exploring the potential of using algae in cosmetics. Bioresour. Technol. 2015, 184, 355–362. [Google Scholar] [CrossRef]
- Thiyagarasaiyar, K.; Goh, B.-H.; Jeon, Y.-J.; Yow, Y.-Y. Algae Metabolites in Cosmeceutical: An Overview of Current Applications and Challenges. Mar. Drugs 2020, 18, 323. [Google Scholar] [CrossRef]
- European Chemicals Agency (ECHA). Hydrogen Peroxide, EC Number 231-765-0/CAS Number 7722-84-1. Last Updated 2017. Available online: http://echa.europa.eu/registrationdossier/-/registered-dossier/15701/1 (accessed on 21 November 2017).
- Fiume, M.M.; Eldreth, H.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; et al. Final Report of the Cosmetic Ingredient Review Expert Panel on the Safety Assessment of Dicarboxylic Acids, Salts, and Esters. Int. J. Toxicol. 2012, 31 (Suppl. 4), 5S–76S. [Google Scholar] [CrossRef]
- Johnson, W., Jr. Final report on the safety assessment of trilaurin, triarachidin, tribehenin, tricaprin, tricaprylin, trierucin, triheptanoin, triheptylundecanoin, triisononanoin, triisopalmitin, triisostearin, trilinolein, trimyristin, trioctanoin, triolein, tripalmitin, tripalmitolein, triricinolein, tristearin, triundecanoin, glyceryl triacetyl hydroxystearate, glyceryl triacetyl ricinoleate, and glyceryl stearate diacetate. Int. J. Toxicol. 2001, 20, 61–94. [Google Scholar] [PubMed]
- Rajamanikyam, M.; Vadlapudi, V.; Parvathaneni, S.P.; Koude, D.; Sripadi, P.; Misra, S.; Amanchy, R.; Upadhyayula, S.M. Isolation and characterization of phthalates from Brevibacterium mcbrellneri that cause cytotoxicity and cell cycle arrest. EXCLI J. 2017, 16, 375–387. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Patil, A.; Bhide, S.; Bookwala, M.; Soneta, B.; Shankar, V.; Almotairy, A.; Almutairi, M.; Murthy, S.N. Stability of Organoleptic Agents in Pharmaceuticals and Cosmetics. AAPS PharmSciTech 2017, 19, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Zhou, M.; Song, L. A review of fatty acids influencing skin condition. J. Cosmet. Dermatol. 2020, 19, 3199–3204. [Google Scholar] [CrossRef]
- Cui, L.; He, C.; Fan, L.; Jia, Y. Application of lipidomics to reveal differences in facial skin surface lipids between males and females. J. Cosmet. Dermatol. 2018, 17, 1254–1261. [Google Scholar] [CrossRef]
- Cochran, S.; Anthonavage, M. Fatty Acids, Fatty Alcohols, Synthetic Esters and Glycerin Applications in the Cosmetic Industry. In Lipids and Skin Health; Springer: Cham, Switzerland, 2015; pp. 311–319. [Google Scholar]
- Ahmad, S.; Ahmad, S.; Bibi, A.; Ishaq, M.S.; Afridi, M.S.; Kanwal, F.; Zakir, M.; Fatima, F. Phytochemical Analysis, Antioxidant Activity, Fatty Acids Composition, and Functional Group Analysis ofHeliotropium bacciferum. Sci. World J. 2014, 2014, 829076. [Google Scholar] [CrossRef]
- Das, A.J.; Khawas, P.; Miyaji, T.; Deka, S.C. Phytochemical Constituents, Attenuated Total Reflectance Fourier Transform Infrared Analysis and Antimicrobial Activity of Four Plant Leaves Used for Preparing Rice Beer in Assam, India. Int. J. Food Prop. 2016, 19, 2087–2101. [Google Scholar] [CrossRef] [Green Version]
- Janakiraman, N.; Sahaya Sathish, S.; Johnson, M. UV-VIS and FTIR spectroscopic studies on Peristrophe bicalyculata (Retz.) Nees. Asian J. Pharm. Clin. Res. 2011, 4, 125–129. [Google Scholar]
- Burman, S.; Bhattacharya, K.; Mukherjee, D.; Chandra, G. Antibacterial efficacy of leaf extracts of Combretum album Pers. against some pathogenic bacteria. BMC Complement. Altern. Med. 2018, 18, 213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambedkar, G.; Pragalathan, S.; Sabaridasan, A.; Gandhimaniyan, K.; Dineshkumar, S.; Balamurugan, V. FTIR Spectrum Analysis and Antibacterial Activity of Tribulus terrestris Leaves Extract. Res. Rev. A J. Microbiol. Virol. 2019, 9, 25–30. [Google Scholar]
- The European Parliament; The Council of the European Union. Regulation (EC) No. 1223/2009 of the European parliament and of the council of 30 November 2009 on cosmetic products. Off. J. Eur. Union L 2009, 342, 59. [Google Scholar]
- European Commission. Commission Regulation (EU) No 358/2014 of 9 April 2014 Amending Annexes II and V to Regulation (EC) No 1223/2009 of the European Parliament and of the Council on Cosmetic Products; 358/2014; European Commission: Brussels, Belgium, 2014. [Google Scholar]
- Ministry of Health, Labour and Welfare. Standard for Cosmetics; Notification No. 331; Ministry of Health, Labour and Welfare: Tokyo, Japan, 2000; pp. 1–8.
- Culler, M.; Bitman, J.; Thompson, M.; Robbins, W.; Dutky, S. Mastitis: I. In Vitro Antimicrobial Activity of Alkyl Amines Against Mastitic Bacteria. J. Dairy Sci. 1979, 62, 584–595. [Google Scholar] [CrossRef]
- Dinning, A.J.; Adham, A.; Eastwood, I.M.; Austin, P.; Collier, P.J. Pyrithione biocides as inhibitors of bacterial ATP synthesis. J. Appl. Microbiol. 1998, 85, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Al-Adham, I.; Haddadin, R.; Collier, P. Types of microbicidal and microbistatic agents. Russell, Hugo & Ayliffe’s: Principles and Practice of Disinfection, Preservation and Sterilization. Infect. Dis. Microbiol. 2013, 10, 5–70. [Google Scholar]
- do Couto, F.M.; do Nascimento, S.C.; Júnior, S.F.; da Silva, V.K.; Leal, A.F.; Neves, R.P. Antifungal activity of the piroctone olamine in experimental intra-abdominal candidiasis. SpringerPlus 2016, 5, 468. [Google Scholar] [CrossRef] [Green Version]
- U.S. Code. Regulations, Electronic Code of Federal Regulations (e-CFR). In Title 21: Food and Drugs; Legal Information Institute: Ithaca, NY, USA, 2016. [Google Scholar]
- Chiller, K.; Selkin, B.A.; Murakawa, G.J. Skin Microflora and Bacterial Infections of the Skin. J. Investig. Dermatol. Symp. Proc. 2001, 6, 170–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bremer, H.; Klein, W. Deodorants. In Cosmetics and Toiletries—Development, Production and Use, 1st ed.; Umbach, W., Ed.; Ellis Horwood: New York, NY, USA, 1991; pp. 115–121. [Google Scholar]
- Elias, P.M.; Ahn, S.K.; Denda, M.; Brown, B.E.; Crumrine, D.; Kimutai, L.K.; Kömüves, L.; Lee, S.H.; Feingold, K.R. Modulations in Epidermal Calcium Regulate the Expression of Differentiation-Specific Markers. J. Investig. Dermatol. 2002, 119, 1128–1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matz, H.; Orion, E.; Wolf, R. Balneotherapy in dermatology. Dermatol. Ther. 2003, 16, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Denda, M.; Katagiri, C.; Hirao, T.; Maruyama, N.; Takahashi, M. Some magnesium salts and a mixture of magnesium and calcium salts accelerate skin barrier recovery. Arch. Dermatol. Res. 1999, 291, 560–563. [Google Scholar] [CrossRef]
- Schempp, C.M.; Dittmar, H.C.; Hummler, D.; Simon-Haarhaus, B.; Schöpf, E.; Simon, J.C.; Schulte-Mönting, J. Magnesium ions inhibit the antigen-presenting function of human epidermal Langerhans cells in vivo and in vitro. Involvement of ATPase, HLA-DR, B7 molecules, and cytokines. J. Investig. Dermatol. 2000, 115, 680–686. [Google Scholar] [CrossRef] [Green Version]
- Food and Drug Administration, HHS. Skin protectant drug products for over-the-counter human use; final monograph. Final rule. Fed. Regist. 2003, 68, 33362–33381. [Google Scholar]
- Food and Drug Administration. Sunscreen Drug Products for Over-the-Counter Human Use. Amendment to the Tentative Final Monograph; Enforcement Policy. Fed. Regist. 2019, 63, 6204–6275. [Google Scholar]
- Higdon, J.; Drake, V.J. An Evidenced-Based Approach to Vitamins and Minerals, 2nd ed.; Georg Thieme Verlag: Stuttgart, Germany, 2012; pp. 157–168. [Google Scholar]
- Antoniou, C.; Stefanaki, C. Cosmetic camouflage. J. Cosmet. Dermatol. 2006, 5, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Pickart, L. The human tri-peptide GHK and tissue remodeling. J. Biomater. Sci. Polym. Ed. 2008, 19, 969–988. [Google Scholar] [CrossRef] [Green Version]
- Leandro, A.; Pereira, L.; Gonçalves, A. Diverse Applications of Marine Macroalgae. Mar. Drugs 2019, 18, 17. [Google Scholar] [CrossRef] [Green Version]
- Corsetti, G.; D’Antona, G.; Dioguardi, F.S.; Rezzani, R. Topical application of dressing with amino acids improves cutaneous wound healing in aged rats. Acta Histochem. 2010, 112, 497–507. [Google Scholar] [CrossRef]
- Veis, A.; Anesey, J. Modes of intermolecular cross-linking in mature insoluble collagen. J. Biol. Chem. 1965, 240, 3899–3908. [Google Scholar] [CrossRef]
- Choi, H.-R.; Kang, Y.-A.; Ryoo, S.-J.; Shin, J.-W.; Na, J.-I.; Huh, C.-H.; Park, K.-C. Stem cell recovering effect of copper-free GHK in skin. J. Pept. Sci. 2012, 18, 685–690. [Google Scholar] [CrossRef]
- Murakami, H.; Shimbo, K.; Inoue, Y.; Takino, Y.; Kobayashi, H. Importance of amino acid composition to improve skin collagen protein synthesis rates in UV-irradiated mice. Amino Acids 2011, 42, 2481–2489. [Google Scholar] [CrossRef] [Green Version]
- Kawashima, M.; Yokose, U.; Hachiya, A.; Fujimura, T.; Tsukahara, K.; Kawada, H.; Kitahara, T.; Takema, Y.; Terui, T.; Nakagawa, H. Improvement of crow’s feet lines by topical application of 1-carbamimidoyl-L-proline (CLP). Eur. J. Dermatol. 2013, 23, 195–201. [Google Scholar] [CrossRef]
- Yamane, T.; Morioka, Y.; Kitaura, Y.; Iwatsuki, K.; Shimomura, Y.; Oishi, Y. Branched-chain amino acids regulate type I tropocollagen and type III tropocollagen syntheses via modulation of mTOR in the skin. Biosci. Biotechnol. Biochem. 2018, 82, 611–615. [Google Scholar] [CrossRef] [Green Version]
- Puviani, M.; Agostinis, F.; Milani, M. Barrier repair therapy for facial atopic eczema with a non-steroidal emollient cream containing rhamnosoft, ceramides and iso-leucine. A six-case report series. Minerva Pediatr. 2014, 66, 307–311. [Google Scholar]
- Brenner, M.; Hearing, V.J. The Protective Role of Melanin Against UV Damage in Human Skin. Photochem. Photobiol. 2008, 84, 539–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serre, C.; Busuttil, V.; Botto, J.-M. Intrinsic and extrinsic regulation of human skin melanogenesis and pigmentation. Int. J. Cosmet. Sci. 2018, 40, 328–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sardana, K.; Garg, V.K. An observational study of methionine-bound zinc with antioxidants for mild to moderate acne vulgaris. Dermatol. Ther. 2010, 23, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Stechmiller, J.K.; Childress, B.; Cowan, L. Arginine Supplementation and Wound Healing. Nutr. Clin. Pract. 2005, 20, 52–61. [Google Scholar] [CrossRef]
- Wu, G.; Bazer, F.W.; Burghardt, R.C.; Johnson, G.A.; Kim, S.W.; Knabe, D.A.; Li, P.; Li, X.; McKnight, J.R.; Satterfield, M.C.; et al. Proline and hydroxyproline metabolism: Implications for animal and human nutrition. Amino Acids 2010, 40, 1053–1063. [Google Scholar] [CrossRef] [Green Version]
- Ilavsky, J.; Bayan, A.P.; Charney, W.; Reimann, H. Merck Sharp, Dohme Corp, assignee. Antibiotic from Micromonospora purpurea JI-20. U.S. Patent 3,986,929, 19 October 1976. [Google Scholar]
- Eustice, D.C.; Wilhelm, J.M. Mechanisms of action of aminoglycoside antibiotics in eucaryotic protein synthesis. Antimicrob. Agents Chemother. 1984, 26, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Capanoglu, E.; Jassbi, A.R.; Miron, A. Advance on the Flavonoid C-glycosides and Health Benefits. Crit. Rev. Food Sci. Nutr. 2016, 56, S29–S45. [Google Scholar] [CrossRef] [PubMed]
- Piazzon, A.; Vrhovsek, U.; Masuero, D.; Mattivi, F.; Mandoj, F.; Nardini, M. Antioxidant Activity of Phenolic Acids and Their Metabolites: Synthesis and Antioxidant Properties of the Sulfate Derivatives of Ferulic and Caffeic Acids and of the Acyl Glucuronide of Ferulic Acid. J. Agric. Food Chem. 2012, 60, 12312–12323. [Google Scholar] [CrossRef]
- Rajasekharan, S.; Milan Bonotto, R.; Nascimento Alves, L.; Kazungu, Y.; Poggianella, M.; Martinez-Orellana, P.; Skoko, N.; Polez, S.; Marcello, A. Inhibitors of Protein Glycosylation Are Active against the Coronavirus Severe Acute Respiratory Syndrome Coronavirus SARS-CoV-2. Viruses 2021, 13, 808. [Google Scholar] [CrossRef]
- Chandler, J.R.; Truong, T.T.; Silva, P.M.; Seyedsayamdost, M.R.; Carr, G.; Radey, M.; Jacobs, M.A.; Sims, E.H.; Clardy, J.; Greenberg, E.P. Bactobolin resistance is conferred by mutations in the L2 ribosomal protein. MBio 2012, 3, e00499-12. [Google Scholar] [CrossRef] [Green Version]
- Gregersen, N.; Kelvraa, S.; Rasmussen, K.; Mortensen, P.B.; Divry, P.; David, M.; Hobolth, N. General (medium-chain) acyl-CoA dehydrogenase deficiency (non-ketotic dicarboxylic aciduria): Quantitative urinary excretion pattern of 23 biologically significant organic acids in three cases. Clin. Chim. Acta 1983, 132, 181–191. [Google Scholar] [CrossRef]
- Sačková, V.; Fedoročko, P. Anti-cancer Activities of Natural Farnesyltransferase Inhibitor Manumycin A. In The Research and Biology of Cancer I, 1st ed.; iConcept Press Ltd.: Hong Kong, China, 2013. [Google Scholar]
- Yang, D.; Chen, X.; Liu, X.; Han, N.; Liu, Z.; Li, S.; Zhai, J.; Yin, J. Antioxidant and α-Glucosidase Inhibitory Activities Guided Isolation and Identification of Components from Mango Seed Kernel. Oxid. Med. Cell. Longev. 2020, 2020, 8858578. [Google Scholar] [CrossRef]
- Yang, W.; Chen, X.; Xiuling, Y.; Guo, S.; Wang, Z.; Yu, X. Advances in Pharmacological Activities of Terpenoids. Nat. Prod. Commun. 2020, 15. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.K.; Cho, Y.H.; Lee, E.O.; Kim, J.W.; Park, C.S. Phytosphingosine enhances moisture level in human skin barrier through stimulation of the filaggrin biosynthesis and degradation leading to NMF formation. Arch. Dermatol. Res. 2017, 309, 795–803. [Google Scholar] [CrossRef]
- Asif, M. Pharmacological Potential of Benzamide Analogues and their Uses in Medicinal Chemistry. Mod. Chem. Appl. 2016, 4, 1000194. [Google Scholar] [CrossRef] [Green Version]
- Birnie, C.R.; Malamud, D.; Schnaare, R.L. Antimicrobial Evaluation of N -Alkyl Betaines and N-Alkyl-N, N-Dimethylamine Oxides with Variations in Chain Length. Antimicrob. Agents Chemother. 2000, 44, 2514–2517. [Google Scholar] [CrossRef] [Green Version]
- Jammal, J.; Zaknoon, F.; Kaneti, G.; Goldberg, K.; Mor, A. Sensitization of Gram-negative bacteria to rifampin and OAK combinations. Sci. Rep. 2015, 5, 9216. [Google Scholar] [CrossRef] [Green Version]
- National Center for Biotechnology Information. PubChem Patent Summary for US-2017143022-A1, Compositions Incorporating an Umami Flavor Agent. Available online: https://pubchem.ncbi.nlm.nih.gov/patent/US-2017143022-A1 (accessed on 14 September 2021).
- Singh, D.P.; Deivedi, S.K.; Hashim, S.R.; Singhal, R.G. Synthesis and Antimicrobial Activity of Some New Quinoxaline Derivatives. Pharmaceuticals 2010, 3, 2416–2425. [Google Scholar] [CrossRef]
- Zinner, C.; Holmberg, H.-C.; Sperlich, B. Topical application of cream containing nonivamide and nicoboxil does not enhance the performance of experienced cyclists during a 4-km time-trial. Graefe’s Arch. Clin. Exp. Ophthalmol. 2016, 116, 969–974. [Google Scholar] [CrossRef]
- López-Hortas, L.; Flórez-Fernández, N.; Torres, M.D.; Ferreira-Anta, T.; Casas, M.P.; Balboa, E.M.; Falqué, E.; Domínguez, H. Applying Seaweed Compounds in Cosmetics, Cosmeceuticals and Nutricosmetics. Mar. Drugs 2021, 19, 552. [Google Scholar] [CrossRef] [PubMed]
- Lourenço-Lopes, C.; Fraga-Corral, M.; Jimenez-Lopez, C.; Pereira, A.; Garcia-Oliveira, P.; Carpena, M.; Prieto, M.; Simal-Gandara, J. Metabolites from Macroalgae and Its Applications in the Cosmetic Industry: A Circular Economy Approach. Resources 2020, 9, 101. [Google Scholar] [CrossRef]
- Aslam, A.; Bahadar, A.; Liaquat, R.; Saleem, M.; Waqas, A.; Zwawi, M. Algae as an attractive source for cosmetics to counter environmental stress. Sci. Total Environ. 2021, 772, 144905. [Google Scholar] [CrossRef]
- Morais, T.; Cotas, J.; Pacheco, D.; Pereira, L. Seaweeds Compounds: An Ecosustainable Source of Cosmetic Ingredients? Cosmetics 2021, 8, 8. [Google Scholar] [CrossRef]
- Jesumani, V.; Du, H.; Aslam, M.; Pei, P.; Huang, N. Potential Use of Seaweed Bioactive Compounds in Skincare—A Review. Mar. Drugs 2019, 17, 688. [Google Scholar] [CrossRef] [Green Version]
Name of the Chemical Compound | PubChem ID | Molecular Formula | Molecular Weight (g/mol) | Retention Time (min) | Kovats Index (iu) | Peak Area % | SMILE Structure |
---|---|---|---|---|---|---|---|
Tritriacontane, 13-decyl-13-heptyl- | 545591 | C50H102 | 703.3 | 16.42 | 4907 | 5.04 | CCCCCCCCCCCCCCCCCCCCC(CCCCCCC)(CCCCCCCCCC)CCCCCCCCCCCC |
Hexadecane | 11006 | C16H34 | 226.44 | 12.41 | 1612 | 9.82 | CCCCCCCCCCCCCCCC |
Hydroperoxide, 1-methylhexyl | 12981 | C7H16O2 | 132.2 | 4.43 | 1013 | 4.0 | CCCCCC(C)OO |
Oxalic acid, isobutyl nonyl ester | 6420705 | C15H28O4 | 272.38 | 8.19 | 1783 | 10.57 | CCCCCCCCCOC(=O)C(=O)OCC(C)C |
Dodecanoic acid,1,2,3-propanetriyl ester | 10851 | C39H74O6 | 639 | 37.03 | 4336 | 48.89 | CCCCCCCCCCCC(=O)OCC(COC(=O)CCCCCCCCCCC)OC(=O)CCCCCCCCCCC |
Phthalic acid, 6-ethyl-3-octyl butyl ester | 6423866 | C22H34O4 | 362.5 | 23.23 | 2505 | 21.67 | CCCCOC(=O)C1=CC=CC=C1C(=O)OC(CC)CCC(CC)CC |
Name of the Chemical Compound | PubChem ID | Molecular Formula | Molecular Weight (g/mol) | Retention Time (min) | Kovats Index (iu) | Peak Area % | SMILE Structure |
---|---|---|---|---|---|---|---|
n-Hexadecanoic acid | 985 | C16H32O2 | 256.42 | 23.19 | 1968 | 2.98 | CCCCCCCCCCCCCCCC(=O)O |
Oxirane, tetradecyl- | 23741 | C16H32O | 240.42 | 26.41 | 1702 | 0.85 | CCCCCCCCCCCCCCC1CO1 |
Oleic Acid | 445639 | C18H34O2 | 282.5 | 26.95 | 2140 | 12.56 | CCCCCCCCC=CCCCCCCCC(=O)O |
9,12-Octadecadienoic acid [Z]-, phenylmethyl ester | 5368290 | C25H38O | 370.6 | 31.91 | 2766 | 11.14 | CCCCCC=CCC=CCCCCCCCC(=O)OCC1=CC=CC=C1 |
5-Methyl-Z-5-docosene | 5365995 | C23H46 | 322.6 | 33.91 | 2292 | 3.94 | CCCCCCCCCCCCCCCCC=C(C)CCCC |
Ergost-5-en-3-ol, acetate, [3β,24R]- | 13019955 | C30H50O2 | 442.7 | 35.8 | 2771 | 10.46 | CC(C)C(C)CCC(C)C1CCC2C1(CCC3C2CC=C4C3(CCC(C4)OC(=O)C)C)C |
Stigmastan-6,22-dien, 3,5-dedihydro- | 5364573 | C29H46 | 394.7 | 36.56 | 2437 | 7.02 | CCC(C=CC(C)C1CCC2C1(CCC3C2C=CC45C3(CCC4C5)C)C)C(C)C |
6,9,12-Octadecatrienoic acid, phenylmethyl ester, [Z,Z,Z]- | 5368209 | C25H36O2 | 368.6 | 37.12 | 2774 | 1.09 | CCCCCC=CCC=CCC=CCCCCC(=O)OCC1=CC=CC=C1 |
Tridecanedial | 544162 | C13H24O2 | 212.33 | 37.38 | 1690 | 2.02 | C(CCCCCC=O)CCCCCC=O |
9,10-Secocholesta-5,7,10[19]-triene-3,24,25-triol, [3β,5Z,7E]- | 6434253 | C27H44O3 | 416.6 | 37.54 | 3124 | 2.15 | CC(CCC(C(C)(C)O)O)C1CCC2C1(CCCC2=CC=C3CC(CCC3=C)O)C |
Stigmastan-3,5-diene | 525918 | C29H48 | 396.7 | 37.92 | 2525 | 15.93 | CCC(CCC(C)C1CCC2C1(CCC3C2CC=C4C3(CCC=C4)C)C)C(C)C |
6-Octadecenoic acid, methyl ester, [Z]- | 5362717 | C19H36O2 | 296.5 | 38.39 | 2085 | 1.95 | CCCCCCCCCCCC=CCCCCC(=O)OC |
9-Octadecenoic acid [Z]-, phenylmethyl ester | 5368218 | C25H40O2 | 372.6 | 39.1 | 2758 | 16.64 | CCCCCCCCC=CCCCCCCCC(=O)OCC1=CC=CC=C1 |
Z-8-Methyl-9-tetradecenoic acid | 5364410 | C15H28O2 | 240.38 | 39.34 | 1813 | 10.25 | CCCCC=CC(C)CCCCCCC(=O)O |
E-11-Tetradecenol, trimethylsilyl ether | 5366871 | C17H36OSi | 284.6 | 20.76 | 1705 | 1.02 | CCC=CCCCCCCCCCCO[Si](C)(C)C |
Frequency (cm−1) | Intensity | Assignments | Characterization |
---|---|---|---|
3648 | Medium, Sharp | O-H stretching | alcohol |
3566 | Medium, Sharp | O-H stretching | alcohol |
3346 | Strong, broad | O-H stretching | alcohol |
Medium | N-H stretching | Aliphatic primary amine | |
2925 | Strong, broad | O-H stretching | Carboxylic acid |
2859 | Strong, broad | O-H stretching | Carboxylic acid |
Weak, broad | O-H stretching | alcohol | |
Strong broad | N-H stretching | Amine salt | |
Medium | C-H stretching | Alkane | |
1888 | Weak | C-H bending | Aromatic compound |
1869 | Weak | C-H bending | Aromatic compound |
1714 | Weak | C-H bending | Aromatic compound |
Strong | C=O stretching | Carboxylic acid | |
Strong | C=O stretching | Aliphatic ketone | |
1660 | Weak | C-H bending | Aromatic compound |
Medium | C=N stretching | Imine/oxime | |
Medium | C=C stretching | Alkene | |
1540 | Strong | N-O stretching | Nitro compound |
1517 | Strong | N-O stretching | Nitro compound |
1432 | medium | O-H Bending | Carboxylic acid |
1382 | Medium | O-H bending | alcohol |
medium | O-H bending | Phenol | |
1192 | Medium | C-N stretching | Amine |
Strong | C-O stretching | Ester | |
Strong | C-O stretching | Tertiary alcohol | |
1111 | Medium | C-N stretching | Amine |
Strong | C-O stretching | Aliphatic ether | |
Strong | C-O stretching | Primary alcohol | |
1041 | Strong | S=O stretching | Sulfoxide |
Strong, broad | CO-O-CO Stretching | anhydride | |
875 | Strong | C-H bending | 1,2,4-trisubstituted |
Strong | C-H bending | 1,3-disubstituted | |
674 | Strong | C-Cl stretching | Halo compound |
Strong | C=C bending | alkene | |
Strong | C-Br stretching | Halo compound |
Minerals | Amount in % |
---|---|
B | ND |
Ca | 1.71 |
Cu | ND |
Fe | 0.86 |
K | 6.91 |
Mg | 0.58 |
Zn | 0.02 |
Na | 0.56 |
Si | 26.28 |
Se | ND |
Sr.no | Amino Acids | g/kg |
---|---|---|
1 | Aspartic acid | 1.6 |
2 | Glutamic Acid | 1.3 |
3 | Asparagine | ND |
4 | Serine | 0.5 |
5 | Glutamine | ND |
6 | Histidine | ND |
7 | Glycine | 0.6 |
8 | Threonine | 0.2 |
9 | Arginine | 0.4 |
10 | Alanine | 0.7 |
11 | Tyrosine | 0.2 |
12 | Cystine | ND |
13 | Valine | 0.2 |
14 | Methionine | 0.2 |
15 | Norvaline | ND |
16 | Tryptophan | ND |
17 | phenylalanine | 0.4 |
18 | Isoleucine | 0.2 |
19 | leucine | 0.4 |
20 | Lysine | 0.4 |
21 | Hydroxyproline | 1.1 |
Name | PubChem ID | Molecular Formula | RT (min) | Mass (Da) | Hits (DB) |
---|---|---|---|---|---|
2-Methyl-2-butenyl beta-D-glucopyranoside | 10753054 | C11H20O6 | 5.099 | 248.1242 | 10 |
Antibiotic JI 20A | 198272 | C19H39N5O9 | 5.317 | 481.2736 | 9 |
N2′-Acetylgentamicin C1a | 16069998 | C21H41N5O8 | 7.11 | 491.2948 | 4 |
Loquatoside | 156269 | C20H22O11 | 7.813 | 438.1167 | 10 |
Feruloyl C1-glucuronide | 102331585 | C16H18O10 | 9.608 | 370.0897 | 10 |
N-butyl-1-deoxynojirimycin | 23622616 | C10H21NO4 | 1.296 | 219.1459 | 1 |
Bactobolin | 54676871 | C14H20Cl2N2O6 | 10.278 | 383.2 | 4 |
Name | PubChem ID | Molecular Formula | RT (min) | Mass | Hits (DB) |
---|---|---|---|---|---|
beta-Butoxyethyl nicotinate | 14866 | C12H17NO3 | 4.356 | 223.1197 | 7 |
Dihydrocapsaicin | 107982 | C18H29NO3 | 7.648 | 307.2128 | 4 |
Manumycin A | 6438330 | C31H38N2O7 | 9.103 | 550.261 | 1 |
16-methyl-6Z,9Z,12Zheptadecatrienoic acid | 5312303 | C18H32O2 | 12.749 | 278.2235 | 10 |
Axisothiocyanate 3 | 23425033 | C16H25NS | 1.465 | 263.1723 | 6 |
N-(1-Oxooctyl)glycine | 84290 | C10H19NO3 | 4.03 | 201.1374 | 7 |
Phytosphingosine | 122121 | C18H39NO3 | 10.01 | 317.2915 | 1 |
Tyr Val Phe | 139658609 | C23H29N3O5 | 3.896 | 427.2065 | 6 |
Tyr Lys Lys | 145458707 | C21H35N5O5 | 5.175 | 437.2657 | 9 |
Tiocarbazil | 37523 | C16H25NOS | 1.112 | 279.167 | 5 |
Benzo[a]fluorene | 9195 | C17H12 | 2.217 | 216.0964 | 5 |
4-Hydroxy-3-nitrosobenzamide | 443631 | C7H6N2O3 | 2.871 | 166.0372 | 8 |
(S)-Indenestrol A | 146460 | C18H18O2 | 3.738 | 266.1346 | 10 |
Isocorydine (+) | 10143 | C20H23NO4 | 4.6 | 341.1614 | 10 |
3-α(S)-Strictosidine | 161336 | C27H34N2O9 | 5.642 | 530.2246 | 10 |
Metaxalone | 15459 | C12H15NO3 | 5.243 | 221.1042 | 10 |
Scutellarioside II | 6443034 | C24H28O12 | 6.469 | 508.1563 | 9 |
Triphenylphosphine oxide | 13097 | C18H15OP | 10.101 | 278.085 | 10 |
Pirimicarb | 31645 | C11H18N4O2 | 26.718 | 238.14 | 4 |
3,5-Dichloro-4-hydroxy-2methoxy-6-methylbenzoic acid | 21724963 | C9H8Cl2O4 | 28.406 | 249.9783 | 2 |
Dicyclohexyl disulfide | 17356 | C12H22S2 | 26.661 | 230.1166 | 1 |
Tetradecylamine | 16217 | C14H31N | 10.446 | 213.2451 | 1 |
34a-Deoxy-rifamycin W | 11017668 | C35H45NO10 | 9.61 | 639.3083 | 4 |
(+/−)-3-[(2-methyl-3furyl)thio]-2-butanone | 12980878 | C9H12O2S | 0.784 | 184.0575 | 3 |
Chinomethionat | 17109 | C10H6N2OS2 | 0.849 | 233.9916 | 3 |
Gabapentin | 3446 | C9H17NO2 | 1.063 | 171.1254 | 1 |
Azoxy-1-procarbazine | 48599 | C12H17N3O2 | 1.189 | 235.1349 | 4 |
2,2,6,6-Tetramethyl-4piperidinone | 13220 | C9H17NO | 1.246 | 155.1305 | 4 |
beta-Butoxyethyl nicotinate | 14866 | C12H17NO3 | 2.902 | 223.1197 | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalasariya, H.S.; Patel, N.B.; Yadav, A.; Perveen, K.; Yadav, V.K.; Munshi, F.M.; Yadav, K.K.; Alam, S.; Jung, Y.-K.; Jeon, B.-H. Characterization of Fatty Acids, Polysaccharides, Amino Acids, and Minerals in Marine Macroalga Chaetomorpha crassa and Evaluation of Their Potentials in Skin Cosmetics. Molecules 2021, 26, 7515. https://doi.org/10.3390/molecules26247515
Kalasariya HS, Patel NB, Yadav A, Perveen K, Yadav VK, Munshi FM, Yadav KK, Alam S, Jung Y-K, Jeon B-H. Characterization of Fatty Acids, Polysaccharides, Amino Acids, and Minerals in Marine Macroalga Chaetomorpha crassa and Evaluation of Their Potentials in Skin Cosmetics. Molecules. 2021; 26(24):7515. https://doi.org/10.3390/molecules26247515
Chicago/Turabian StyleKalasariya, Haresh S., Nikunj B. Patel, Akanksha Yadav, Kahkashan Perveen, Virendra Kumar Yadav, Faris M. Munshi, Krishna Kumar Yadav, Shamshad Alam, You-Kyung Jung, and Byong-Hun Jeon. 2021. "Characterization of Fatty Acids, Polysaccharides, Amino Acids, and Minerals in Marine Macroalga Chaetomorpha crassa and Evaluation of Their Potentials in Skin Cosmetics" Molecules 26, no. 24: 7515. https://doi.org/10.3390/molecules26247515
APA StyleKalasariya, H. S., Patel, N. B., Yadav, A., Perveen, K., Yadav, V. K., Munshi, F. M., Yadav, K. K., Alam, S., Jung, Y.-K., & Jeon, B.-H. (2021). Characterization of Fatty Acids, Polysaccharides, Amino Acids, and Minerals in Marine Macroalga Chaetomorpha crassa and Evaluation of Their Potentials in Skin Cosmetics. Molecules, 26(24), 7515. https://doi.org/10.3390/molecules26247515