High-Resolution UPLC-MS Profiling of Anthocyanins and Flavonols of Red Cabbage (Brassica oleracea L. var. capitata f. rubra DC.) Cultivated in Egypt and Evaluation of Their Biological Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Preparation of the Extracts
2.3. High-Resolution UPLC-MS Analysis
2.4. Antioxidant Determination
2.5. Antimicrobial Determination
2.6. Anticancer Determination
2.7. Statistical Analysis
3. Results and Discussion
3.1. Identification of Compounds
3.2. Antioxidant Activity
3.3. Antimicrobial Activity
3.4. Anticancer Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Charron, C.S.; Clevidence, B.A.; Britz, S.J.; Novotny, J.A. Effect of dose size on bioavailability of acylated and nonacylated anthocyanins from red cabbage (Brassica oleracea L. Var. capitata). J. Agric. Food Chem. 2007, 55, 5354–5362. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Prior, R.L. Identification and characterization of anthocyanins by high-performance liquid chromatography—Elec-trospray ionization—Tandem mass spectrometry in common foods in the United States: Vegetables, nuts, and grains. J. Agric. Food Chem. 2005, 53, 3101–3113. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Prior, R.L. Systematic identification and characterization of anthocyanins by HPLC-ESI-MS/MS in common foods in the United States: Fruits and berries. J. Agric. Food Chem. 2005, 53, 2589–2599. [Google Scholar] [CrossRef] [PubMed]
- Izzo, L.; Rodríguez-Carrasco, Y.; Pacifico, S.; Castaldo, L.; Narváez, A.; Ritieni, A. Colon bioaccessibility under in vitro gas-trointestinal digestion of a red cabbage extract chemically profiled through UHPLC-Q-Orbitrap HRMS. Antioxidants 2020, 9, 955. [Google Scholar] [CrossRef] [PubMed]
- Alcalde-Eon, C.; Saavedra, G.; de Pascual-Teresa, S.; Rivas-Gonzalo, J.C. Liquid chromatography-mass spectrometry identification of anthocyanins of isla oca (Oxalis tuberosa, Mol.) tubers. J. Chromatogr. A 2004, 1054, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Strauch, R.C.; Mengist, M.F.; Pan, K.; Yousef, G.G.; Iorizzo, M.; Brown, A.F.; Lila, M.A. Variation in anthocyanin profiles of 27 genotypes of red cabbage over two growing seasons. Food Chem. 2019, 301, 125289. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Lin, L.-Z.; Chen, P. Study of the mass spectrometric behaviors of anthocyanins in negative ionization mode and its applications for characterization of anthocyanins and non-anthocyanin polyphenols. Rapid Commun. Mass Spectrom. 2012, 26, 1123–1133. [Google Scholar] [CrossRef] [PubMed]
- Arapitsas, P.; Sjöberg, P.J.; Turner, C. Characterisation of anthocyanins in red cabbage using high resolution liquid chromatography coupled with photodiode array detection and electrospray ionization-linear ion trap mass spectrometry. Food Chem. 2008, 109, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Charron, C.S.; Britz, S.J.; Mirecki, R.M.; Harrison, D.J.; Clevidence, B.A.; Novotny, J.A. Isotopic labeling of red cabbage anthocyanins with atmospheric 13CO2. J. Am. Soc. Hortic. Sci. 2008, 133, 351–359. [Google Scholar] [CrossRef] [Green Version]
- McDougall, G.J.; Fyffe, S.; Dobson, P.; Stewart, D. Anthocyanins from red cabbage—Stability to simulated gastrointestinal digestion. Phytochemistry 2007, 68, 1285–1294. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.; Lin, F.; Qu, D.; Liang, X.; Wang, L. Characterization of purified red cabbage anthocyanins: Improvement in HPLC separation and protective effect against H2O2-induced oxidative stress in HepG2 cells. Molecules 2019, 24, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tajalli, F.; Saeedi, M.; Malekabadi, A.V. Anticancer and antioxidant effects of red cabbage on three cancerous cell lines and comparison with a normal cell line (HFF-3). J. Genes Cells 2020, 6, 12–20. [Google Scholar] [CrossRef]
- Waghulde, S.; Khan, N.A.; Gorde, N.; Kale, M.; Naik, P.; Yewale, R.P. Comparative antimicrobial activity study of Brassica oleceracea. Proceedings 2018, 9, 64. [Google Scholar] [CrossRef] [Green Version]
- Freedman, L.S.; Edwards, B.K.; Ries, L.A.; Young, J.L. Cancer Incidence in Four Member Countries (Cyprus, Egypt, Israel, and Jordan) of the Middle East Cancer Consortium (MECC) Compared with US SEER; National Cancer Institute: Bethesda, MD, USA, 2006. [Google Scholar]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wikler, M.A. Performance Standards for Antimicrobial Disk Susceptibility Tests: Approved Standard; Clinical and Laboratory Standards Institute: Malvern, PA, USA, 2006. [Google Scholar]
- Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 2006, 1, 1112–1116. [Google Scholar] [CrossRef] [PubMed]
- Hong, V.; Wrolstad, R.E. Use of HPLC separation/photodiode array detection for characterization of anthocyanins. J. Agric. Food Chem. 1990, 38, 708–715. [Google Scholar] [CrossRef]
- Mateus, N.; de Freitas, V. Anthocyanins as food colorants. In Anthocyanins; Springer: New York, NY, USA, 2008; pp. 284–304. [Google Scholar]
- Giusti, M.M.; Wrolstad, R.E. Characterization and measurement of anthocyanins by UV-visible spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F1.2.1–F1.2.13. [Google Scholar] [CrossRef]
- Francis, F.J.; Markakis, P.C. Food colorants: Anthocyanins. Crit. Rev. Food Sci. Nutr. 1989, 28, 273–314. [Google Scholar] [CrossRef] [PubMed]
Retention Time (min) | Mass [M+] or [M − H] a | Tandem Mass | RDB b | Error (ppm) | Λacyl c | λvis d | Eacyl/Evis e | E440/Evis f | Formula | Tentative Identification | |
---|---|---|---|---|---|---|---|---|---|---|---|
A1 | 1.35 | 773.2129 | 611.1597 449.1072 287.0548 | 13.5 | −0.769 | 514 | 60% | C33H41O21 | Cyanidin-3-sophoroside-5-glucoside | ||
A2 | 1.53 | 611.1596 | 449.1073 287.0549 | 12.5 | −1.720 | 515 | 41% | C27H31O16 | Cyanidin-3,5-diglucoside | ||
A3 | 8.65 | 449.1071 | 287.0551 | 11.5 | −1.532 | 517 | 53% | C21H21O11 | Cyanidin-3-O-glucoside | ||
A4 | 10.56 | 919.2498 | 757.1967 449.1077 287.0551 | 19.5 | −0.483 | 297 | 523 | 82% | 43% | C42H47O23 | Cyanidin-3-(p-coumaroyl)-sophoroside-5-glucoside |
A5 | 10.67 | 949.2607 | 787.2076 449.1079 287.0553 | 19.5 | 0.486 | 295 | 523 | 123% | 35% | C43H49O24 | Cyanidin-3-(feruloyl)-sophoroside-5-glucoside |
A6 | 10.79 | 979.2710 | 817.2170 449.1073 287.0549 | 19.5 | −1.157 | 286 | 523 | 90% | 34% | C44H51O25 | Cyanidin-3-(sinapoyl)-sophoroside-5-glucoside |
A7 | 10.82 | 787.2070 | 625.1549 449.1087 287.0552 | 18.5 | −1.315 | 284 | 529 | 45% | 50% | C37H39O19 | Cyanidin-3-(feruloyl)-5-glucoside |
A8 | 10.86 | 817.2183 | 655.1656 449.1080 287.0553 | 18.5 | −0.306 | 284 | 529 | 41% | 51% | C38H41O20 | Cyanidin-3(sinapoyl)-glucoside-5-glucoside |
A9 | 11.08 | 757.1954 | 595.1447 287.0552 | 18.5 | −2.734 | 532 | 47% | C36H37O18 | Cyanidin-3-[2-glucosyl-6-rhamnosyl-glucoside] | ||
K1 | 9.89 | 803.2020 | 641.1506 447.0939 285.0403 | 18.5 | −1.182 | 220 | 524 | 500% | 51% | C37H39O20 | Kaempferol-3-(hydroxyferuloyl)-glucoside-7-glucoside |
K2 | 9.71 | 935.2445 | 773.1925 609.1457 447.0928 285.0404 | 19.5 | −0.715 | 218 | 523 | 416% | 39% | C42H47O24 | Kaempferol-3-(hydroxycoumaroyl)-sophoroside-7-glucoside |
K3 | 9.78 | 965.2549 | 803.2029 447.0929 285.0400 | 19.5 | −0.894 | 218 | 523 | 384% | 35% | C43H49O25 | Kaempferol-3-(hydroxyferuloyl)-sophoroside-7-glucoside |
K4 | 9.88 | 995.2654 | 833.2131 447.0914 285.0408 | 19.5 | −0.932 | 219 | 524 | 476% | 44% | C44H51O26 | Kaempferol-3-(hydroxysinapoyl)-sophoroside-7-glucoside |
K5 | 10.16 | 1183.3116 | 1021.2600 815.2025 | 26.5 | −1.692 | 221 | 531 | 588% | 57% | C55H59O29 | Kaempferol-3-(disinapoyl)-sophoroside-7-glucoside |
Extract | Anticancer Activity | ||
---|---|---|---|
HeLa IC50 ± SD (µg/mL) | MCF-7 IC50 ± SD (µg/mL) | HepG-2 IC50 ± SD (µg/mL) | |
Media/DMSO (–ve control) | NA | NA | NA |
Total alcoholic extract | 22.78 ± 0.39 | 47.84 ± 7.03 | 69.11 ± 12.29 |
Phenolic extract | 17.71 ± 0.33 | 22.89 ± 8.09 | 21.08 ± 5.72 |
Doxorubicin | 11.38 ± 4.17 | 2.52 ± 1.54 | 7.05 ± 1.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansour, K.A.; Moustafa, S.F.; Abdelkhalik, S.M. High-Resolution UPLC-MS Profiling of Anthocyanins and Flavonols of Red Cabbage (Brassica oleracea L. var. capitata f. rubra DC.) Cultivated in Egypt and Evaluation of Their Biological Activity. Molecules 2021, 26, 7567. https://doi.org/10.3390/molecules26247567
Mansour KA, Moustafa SF, Abdelkhalik SM. High-Resolution UPLC-MS Profiling of Anthocyanins and Flavonols of Red Cabbage (Brassica oleracea L. var. capitata f. rubra DC.) Cultivated in Egypt and Evaluation of Their Biological Activity. Molecules. 2021; 26(24):7567. https://doi.org/10.3390/molecules26247567
Chicago/Turabian StyleMansour, Khaled Ahmed, Sherifa Fahmy Moustafa, and Soad Mohamed Abdelkhalik. 2021. "High-Resolution UPLC-MS Profiling of Anthocyanins and Flavonols of Red Cabbage (Brassica oleracea L. var. capitata f. rubra DC.) Cultivated in Egypt and Evaluation of Their Biological Activity" Molecules 26, no. 24: 7567. https://doi.org/10.3390/molecules26247567
APA StyleMansour, K. A., Moustafa, S. F., & Abdelkhalik, S. M. (2021). High-Resolution UPLC-MS Profiling of Anthocyanins and Flavonols of Red Cabbage (Brassica oleracea L. var. capitata f. rubra DC.) Cultivated in Egypt and Evaluation of Their Biological Activity. Molecules, 26(24), 7567. https://doi.org/10.3390/molecules26247567