Relationship between the Chemical Composition and the Biological Functions of Coffee
Abstract
:1. Introduction
2. Main Ingredients of Coffee
2.1. Chemical Component
2.2. Volatile Components of Coffee
2.3. Melanoidins Content of Coffee
2.4. Alkaloids
2.5. Phenolic Acids and Their Derivatives
No. | Compound | Species | Part | Reference |
---|---|---|---|---|
9 | Vanillic Acid | CA, CR | L | [38] |
10 | Benzoic Acid | CA, CR | L | [38] |
11 | p-Hydroxybenzoic Acid | CA, CR | L | [38] |
12 | 3-Hydroxybenzoic Acid | CA, CR | L | [38] |
13 | Gentosic Acid | CA, CR | L | [38] |
14 | Protocatechuic Acid | CA, CR | L | [38] |
15 | Caffeic Acid | CA, CR | GB, CB | [39] |
16 | Sinapic Acid | CA, CR | L | [38] |
17 | Ferulic Acid | CR | GB, L | [38] |
18 | p-Coumaric Acid | CA | GB, L | [38] |
19 | Caftaric Acid | CA, CR | L | [38] |
20 | 3-O-p-Coumaroylquinic Acid | CA, CR | GB, CB | [39] |
21 | 5-O-p-Coumaroylquinic Acid | CA, CR | GB, CB | [39] |
22 | 4-O-p-Coumaroylquinic Acid | CA, CR | GB, CB | [39] |
23 | 3-O-Caffeoylquinic Acid CA, CR | GB, CB | [39] | |
24 | 4-O-Caffeoylquinic Acid | CA, CR | GB, CB | [39] |
25 | 5-O-Caffeoylquinic Acid | CA, CR | GB, CB | [39] |
26 | 1-O-Caffeoylquinic Acid | CA, CR | CB | [39] |
27 | 1-O-Caffeoylquinic Acid Methyl Ester | CR | GB | [39] |
28 | 3-O-Caffeoylquinic Acid Methyl Ester | CA, CR | GB | [39] |
29 | 5-O-Caffeoylquinic Acid Methyl Ester | CA, CR | GB | [39] |
30 | 3,4-di-O-Caffeoylquinic Acid | CA, CR | GB, CB | [39] |
31 | 3,5-di-O-Caffeoylquinic Acid | CA, CR | GB, CB | [39] |
32 | 4,5-di-O-Caffeoylquinic Acid | CA, CR | CB | [39] |
33 | 3,4-di-O-Caffeoylquinic Acid Methyl Ester | CA, CR | GB | [39] |
34 | 3,5-di-O-Caffeoylquinic Acid Methyl Ester | CA, CR | GB | [39] |
35 | 4 4,5-di-O-Caffeoylquinic Acid Methyl Ester | CA, CR | GB | [39] |
36 | 3-O-Feruloylquinic Acid | CA, CR | GB, CB | [39] |
37 | 4-O-Feruloylquinic Acid | CA, CR | GB, CB | [39] |
38 | 5-O-Feruloylquinic Acid | CA, CR | GB, CB | [39] |
39 | 1-O-Feruloylquinic Acid Methyl Ester | CA, CR | GB, CB | [39] |
40 | 3-O-Feruloylquinic Acid Methyl Ester | CA, CR | GB, CB | [39] |
41 | 5-O-Feruloylquinic Acid Methyl Ester | CA, CR | GB, CB | [39] |
42 | 3,4-di-O-Feruloylquinic Acid | CR | GB | [39] |
43 | 3,5-di-O-Feruloylquinic Acid | CR | GB | [39] |
44 | 4,5-di-O-Feruloylquinic Acid | CR | GB | [39] |
45 | 3-O-Feruloyl-5-O-Caffeoylquinic Acid | CA, CR | GB, CB | [39] |
46 | 3-O-Feruloyl-4-O-Caffeoylquinic Acid | CA, CR | GB, CB | [39] |
47 | 4-O-Feruloyl-5-O-Caffeoylquinic Acid | CA, CR | GB, CB | [39] |
48 | 3-O-Caffeoyl-4-O-Feruloylquinic Acid | CA, CR | GB, CB | [39] |
49 | 3-O-Caffeoyl-5-O-Feruloylquinic Acid | CA, CR | GB, CB | [39] |
50 | 4-O-Caffeoyl-5-O-Feruloylquinic Acid | CA, CR | GB, CB | [39] |
51 | 3-O-Feruloyl-4-O-p-Coumaroylquinic Acid | CA, CR | GB | [39] |
52 | 3-O-p-Coumaroyl -5-O-Feruloyl Quinic Acid | CA, CR | GB | [39] |
53 | 3-O-Caffeoyl-5-O-p-Coumaroylquinic Acid | CR | GB | [39] |
54 | 4-O-p-Coumaroyl-5-O-Caffeoylquinic Acid | CA, CR | GB | [39] |
55 | 4-O-Caffeoyl-5-O-p-Cumaroylquinic Acid | CR | GB | [39] |
56 | Caffeoyl-N-Tryptophan | CA, CR | GB, CB | [39] |
57 | p-Coumaroyl-N-Tryptophan | CR | GB, CB | [39] |
58 | Feruloyl-N-Tryptophan | CR | GB | [39] |
59 | 5-O-Caffeoyl-1,3-Quinide | CA, CR | CB | [39] |
60 | 3-O-Caffeoyl-1,5-Quinide | CA, CR | CB | [39] |
61 | 4-O-Caffeoyl-1,3-Quinide | CA, CR | CB | [39] |
62 | 5-O-Caffeoyl-1,4-Quinide | CA, CR | CB | [39] |
63 | 4-O-Caffeoyl-1,5-Quinide | CA, CR | CB | [39] |
64 | 5-O-Feruloyl-1,3-Quinide | CR | CB | [39] |
65 | 3-O-Feruloyl-1,5-Quinide | CA, CR | CB | [39] |
66 | 4-O-Feruloyl-1,3-Quinide | CR | CB | [39] |
67 | 4-O-Feruloyl-1,5-Quinide | CR | CB | [39] |
68 | 3,4-di-O-Caffeoyl-1,5-Quinide | CA, CR | CB | [39] |
69 | 4,5-di-O-Caffeoyl-1,3-Quinide | CA, CR | CB | [39] |
70 | 3-O-Caffeoyl-4-O-3-Methylbutanoylquinic Acid | CA | GB | [40] |
71 | 3-O-Caffeoyl-4-O-3-Methylbutanoyl-1,5-Quinide | CA | GB | [40] |
2.6. Flavonoids
2.7. Terpenoids
2.8. Flavor Substances
2.9. Other Ingredients
3. Bioactivity of Coffee
3.1. Antioxidant Activity
3.2. Lipid-Lowering Effect
3.3. Lowering Blood Sugar
3.4. Neuroprotection
3.5. Inflammatory, Cardiovascular Activity and Effects of Coffee on Sleep Wakefulness Cycle
4. Summary and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Socała, K.; Aleksandra, S.; Anna, S.; Ewa, P.; Wlaź, P. Neuroprotective Effects of Coffee Bioactive Compounds: A Review. Int. J. Mol. Sci. 2021, 22, 107. [Google Scholar] [CrossRef]
- Davinelli, S.; Scapagnini, G. Interactions between dietary polyphenols and aging gut microbiota: A review. BioFactors 2021. [Google Scholar] [CrossRef]
- Catalkaya, G.; Venema, K.; Lucini, L.; Rocchetti, G.; Delmas, D.; Daglia, M.; De Filippis, A.; Xiao, H.; Quiles, J.L.; Xiao, J.; et al. Interaction of dietary polyphenols and gut microbiota: Microbial metabolism of polyphenols, influence on the gut microbiota, and implications on host health. Food Front. 2020, 1, 109–133. [Google Scholar] [CrossRef]
- Iglesias-Aguirre, C.E.; Cortés-Martín, A.; Ávila-Gálvez, M.Á.; Giménez-Bastida, J.A.; Selma, M.V.; González-Sarrías, A.; Espín, J.C. Main drivers of (poly) phenol effects on human health: Metabolite production and / or gut microbiota-associated metabotypes? Food Funct. 2021, 12, 10324–10355. [Google Scholar] [CrossRef] [PubMed]
- Westfall, S.; Pasinetti, G.M. The Gut Microbiota Links Dietary Polyphenols With Management of Psychiatric Mood Disorders. Front. Neurosci. 2019, 13, 1196. [Google Scholar] [CrossRef] [Green Version]
- Gowd, V.; Karim, N.; Shishir, M.R.I.; Xie, L.; Chen, W. Dietary polyphenols to combat the metabolic diseases via altering gut microbiota. Trends Food Sci. Technol. 2019, 93, 81–93. [Google Scholar] [CrossRef]
- Jamar, G.; Estadella, D.; Pisani, L.P. Contribution of anthocyanin-rich foods in obesity control through gut microbiota interactions. BioFactors 2017, 43, 507–516. [Google Scholar] [CrossRef]
- Herbst, R.S.; Eckhardt, S.G.; Kurzrock, R.; Ebbinghaus, S.; O’Dwyer, P.J.; Gordon, M.S.; Mendelson, D.S. Phase I Dose-Escalation Study of Recombinant Human Apo2L/TRAIL, a Dual Proapoptotic Receptor Agonist, in Patients With Advanced Cancer. J. Clin. Oncol. 2010, 28, 2839–2846. [Google Scholar] [CrossRef]
- Arendash, G.W.; Rezai-Zadeh, K.; Cao, C.; Mamcarz, M.; Dickson, A.; Schleif, W.; Runfeldt, M.; Lin, X.; Cracchiolo, J.; Shippy, D.; et al. Caffeine: Evidence for protection against, and treatment for, Alzheimer’s disease by direct suppression of disease pathogenesis. Alzheimer’s Dement 2007, 3, S166. [Google Scholar] [CrossRef]
- Ayna, A. Caffeic acid prevents hydrogen peroxide-induced oxidative damage in SH-SY5Y cell line through mitigation of oxidative stress and apoptosis. Bratisl. Lek. Listy 2021, 122, 120–124. [Google Scholar] [CrossRef]
- Chen, X.; Lan, X.; Roche, I.; Liu, R.; Geiger, J.D. Caffeine protects against MPTP induced blood-brain barrier dysfunction in mouse striatum. J. Neurochem. 2008, 107, 1147–1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, L.; Tian, X.; Gou, L.; Ling, X.; Wang, L.; Feng, Y.; Yin, X.; Liu, Y. Beneficial synergistic effects of concurrent treatment with theanine and caffeine against cerebral ischemia-reperfusion injury in rats. Can. J. Physiol. Pharm. 2013, 91, 562–569. [Google Scholar] [CrossRef]
- Bojar, D.; Scheller, L.; Hamri, G.C.-E.; Xie, M.; Fussenegger, M. Caffeine-inducible gene switches controlling experimental diabetes. Nat. Commun. 2018, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Riedel, A.; Hochkogler, C.M.; Lang, R.; Bytof, G.; Lantz, I.; Hofmann, T.; Somoza, V. N-Methylpyridinium, a degradation product of trigonelline upon coffee roasting, stimulates respiratory activity and promotes glucose utilization in HepG2 cells. Food Funct. 2014, 5, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Du, X.; Zhang, Z.; Zhou, J. Trigonelline inhibits caspase 3 to protect β cells apoptosis in streptozotocin-induced type 1 diabetic mice. Eur. J. Pharmacol. 2018, 836, 115–121. [Google Scholar] [CrossRef]
- Shao, X.; Chen, C.; Miao, C.; Yu, X.; Li, X.; Geng, J.; Fan, D.; Lin, X.; Chen, Z.; Shi, Y. Expression analysis of microRNAs and their target genes during experimental diabetic renal lesions in rats administered with ginsenoside Rb1 and trigonelline. Die Pharm. 2019, 74, 492–498. [Google Scholar]
- Omidi-Ardali, H.; Lorigooini, Z.; Soltani, A.; Balali-Dehkordi, S.; Amini-Khoei, H. Inflammatory responses bridge comorbid cardiac disorder in experimental model of IBD induced by DSS: Protective effect of the trigonelline. Inflammopharmacology 2019, 27, 1265–1273. [Google Scholar] [CrossRef]
- Zhou, J.-Y.; Zhou, S.-W. Protection of Trigonelline on Experimental Diabetic Peripheral Neuropathy. Evid.-Based Complementary Altern. Med. 2012, 2012, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fahanik-Babaei, J.; Baluchnejadmojarad, T.; Nikbakht, F.; Roghani, M. Trigonelline protects hippocampus against intracerebral Aβ(1–40) as a model of Alzheimer’s disease in the rat: Insights into underlying mechanisms. Metab. Brain Dis. 2018, 34, 191–201. [Google Scholar] [CrossRef]
- Sharma, L.; Lone, N.A.; Knott, R.; Hassan, A.; Abdullah, T. Trigonelline prevents high cholesterol and high fat diet induced hepatic lipid accumulation and lipo-toxicity in C57BL/6J mice, via restoration of hepatic autophagy. Food Chem. Toxicol. 2018, 121, 283–296. [Google Scholar] [CrossRef]
- Anwar, S.; Bhandari, U.; Panda, B.P.; Dubey, K.; Khan, W.; Ahmad, S. Trigonelline inhibits intestinal microbial metabolism of choline and its associated cardiovascular risk. J. Pharm. Biomed. Anal. 2018, 159, 100–112. [Google Scholar] [CrossRef]
- Ayna, A.; Özbolat, S.N.; Darendelioglu, E. Quercetin, chrysin, caffeic acid and ferulic acid ameliorate cyclophosphamide-induced toxicities in SH-SY5Y cells. Mol. Biol. Rep. 2020, 47, 8535–8543. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, N.P.; Bragagnolo, N. Identification and quantification of bioactive compounds in coffee brews by HPLC-DAD-MSn. J. Food Compos. Anal. 2013, 32, 105–115. [Google Scholar] [CrossRef]
- Caporaso, N.; Whitworth, M.B.; Grebby, S.; Fisk, I.D. Nondestructive analysis of sucrose, caffeine and trigonelline on single green coffee beans by hyper spectral imaging. Food Res. Int. 2018, 106, 193–203. [Google Scholar] [CrossRef]
- Nishi, A.A.; Kumar, P. Hypolipidemic effect of chlorogenicacid in a hypercholesterolemia rat model. Int. J. Pharm. Bio Sci. 2013, 4, 582–586. [Google Scholar]
- Xu, J.-G.; Hu, Q.-P.; Liu, Y. Antioxidant and DNA-Protective Activities of Chlorogenic Acid Isomers. J. Agric. Food Chem. 2012, 60, 11625–11630. [Google Scholar] [CrossRef]
- Ahmed, M.A.E.; Mohanad, M.; Ahmed, A.A.E.; Aboulhoda, B.E.; El-Awdan, S.A. Mechanistic insights into the protective effects of chlorogenic acid against indomethacin-induced gastric ulcer in rats: Modulation of the cross talk between autophagy and apoptosis signaling. Life Sci. 2021, 275, 119370. [Google Scholar] [CrossRef] [PubMed]
- Su, M.; Liu, F.; Luo, Z.; Wu, H.; Zhang, X.; Wang, D.; Zhu, Y.; Sun, Z.; Xu, W.; Miao, Y. The Antibacterial Activity and Mechanism of Chlorogenic Acid Against Foodborne Pathogen Pseudomonas aeruginosa. Foodborne Pathog. Dis. 2019, 16, 823–830. [Google Scholar] [CrossRef]
- Xue, Y.; Huang, F.; Tang, R.; Fan, Q.; Zhang, B.; Xu, Z.; Sun, X.; Ruan, Z. Chlorogenic acid attenuates cadmium-induced intestinal injury in Sprague–Dawley rats. Food Chem. Toxicol. 2019, 133, 110751. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, A.E.; Olthof, M.R.; Meeuse, J.C.; Seebus, E.; Heine, R.J.; van Dam, R.M. Acute Effects of Decaffeinated Coffee and the Major Coffee Components Chlorogenic Acid and Trigonelline on Glucose Tolerance. Diabetes Care 2009, 32, 1023–1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X. A review on coffee leaves: Phytochemicals, bioactivities and applications. Crit. Rev. Food Sci. Nutr. 2019, 59, 1008–1025. [Google Scholar] [CrossRef]
- Asamenew, G.; Kim, H.-W.; Lee, M.-K.; Lee, S.-H.; Lee, S.; Cha, Y.-S.; Lee, S.H.; Yoo, S.M.; Kim, J.-B. Comprehensive characterization of hydroxycinnamoyl derivatives in green and roasted coffee beans: A new group of methyl hydroxycinnamoyl quinate. Food Chem. X 2019, 2, 100033. [Google Scholar] [CrossRef]
- Sittipod, S.; Schwartz, E.; Paravisini, L.; Peterson, D.G. Identification of flavor modulating compounds that positively impact coffee quality. Food Chem. 2019, 301, 125250. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Zhou, N.; Cheng, J.; Shi, X.; Huang, H.; Zhou, M.; Zhu, H. Chlorogenic acid protects PC12 cells against corticosterone-induced neurotoxicity related to inhibition of autophagy and apoptosis. BMC Pharmacol. Toxicol. 2019, 20, 56. [Google Scholar] [CrossRef] [Green Version]
- Wenzel, U.; Kuntz, S.; Brendel, M.D.; Daniel, H. Dietary flavone is apotent apoptosis inducer in human colon carcinoma cells. Cancer Res. 2000, 60, 3823–3831. [Google Scholar] [PubMed]
- Zeng, C.; Liu, Z.; Wu, Y.; Wang, X. Studies on flavonoids extraction by ultrasonic technology from glycyrrhiza and their bacteriostatic activity. Lishizhen Med. Mater. Med. Res. 2007, 18, 2402–2403. [Google Scholar] [CrossRef]
- Ratanamarno, S.; Surbkar, S. Caffeine and catechins in fresh coffee leaf (Coffea arabica) and coffee leaf tea. Maejo Int. J. Sci. Technol. 2017, 11, 211–218. [Google Scholar]
- Zhang, Y.H.; Fu, X.P.; Liang, W.J. Antioxidant activity andcompsition of anthocyanins of crude extracts from Yunnan Arabica coffee husk. Food Sci. Technol. 2016, 41, 219–223. [Google Scholar] [CrossRef]
- Martins, S.C.V.; Araújo, W.L.; Tohge, T.; Fernie, A.R.; DaMatta, F.M. In High-Light-Acclimated Coffee Plants the Metabolic Machinery Is Adjusted to Avoid Oxidative Stress Rather than to Benefit from Extra Light Enhancement in Photosynthetic Yield. PLoS ONE 2014, 9, e94862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patay, E.B.; Németh, T.; Németh, T.S. Histological andphytochemical studies of Coffea benghalensis B. Heyne ex Schult.; compared with Coffea arabica L. Farmacia 2016, 64, 125–130. [Google Scholar]
- Gunning, Y.; Defernez, M.; Watson, A.D.; Beadman, N.; Colquhoun, I.J.; Le Gall, G.; Philo, M.; Garwood, H.; Williamson, D.; Davis, A.P.; et al. 16-O-methylcafestol is present in ground roast Arabica coffees: Implications for authenticity testing. Food Chem. 2018, 248, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Peng, X.; Lu, J.; Hu, G.; Qiu, M. Ent-kaurane diterpenoids from the cherries of Coffea arabica. Fitoterapia 2018, 132, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Meng, Q.; Peng, X.; Hu, G.; Qiu, M. Identification of new diterpene esters from green Arabica coffee beans, and their platelet aggregation accelerating activities. Food Chem. 2018, 263, 251–257. [Google Scholar] [CrossRef]
- Shu, Y.; Liu, J.-Q.; Peng, X.-R.; Wan, L.-S.; Zhou, L.; Zhang, T.; Qiu, M.-H. Characterization of Diterpenoid Glucosides in Roasted Puer Coffee Beans. J. Agric. Food Chem. 2014, 62, 2631–2637. [Google Scholar] [CrossRef]
- Chu, R.; Wan, L.-S.; Peng, X.-R.; Yu, M.-Y.; Zhang, Z.-R.; Zhou, L.; Li, Z.-R.; Qiu, M.-H. Characterization of New Ent-kaurane Diterpenoids of Yunnan Arabica Coffee Beans. Nat. Prod. Bioprospecting 2016, 6, 217–223. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Peng, X.-R.; Lu, J.; Hu, G.-L.; Qiu, M.-H. New Dammarane Triterpenoids, Caffruones A-D, from the Cherries of Coffea arabica. Nat. Prod. Bioprospecting 2018, 8, 413–418. [Google Scholar] [CrossRef]
- Iwamoto, H.; Izumi, K.; Natsagdorj, A.; Naito, R.; Makino, T.; Kadomoto, S.; Hiratsuka, K.; Shigehara, K.; Kadono, Y.; Narimoto, K.; et al. Coffee diterpenes kahweol acetate and cafestol synergistically inhibit the proliferation and migration of prostate cancer cells. Prostate 2019, 79, 468–479. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.H.; Hwang, Y.P.; Choi, J.H.; Jin, S.W.; Lee, G.H.; Han, E.H.; Chung, Y.H.; Jeong, H.G. Kahweol inhibits proliferation and induces apoptosis by suppressing fatty acid synthase in HER2-overexpressing cancer cells. Food Chem. Toxicol. 2018, 121, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Lima, C.S.; Spindola, D.G.; Bechara, A. Cafestol, a diterpenemolecule found in coffee, induces leukemia cell death. Biomed. Pharm. 2017, 92, 1045–1054. [Google Scholar] [CrossRef]
- Mellbye, F.B.; Jeppesen, P.B.; Hermansen, K.; Gregersen, S. Cafestol, a Bioactive Substance in Coffee, Stimulates Insulin Secretion and Increases Glucose Uptake in Muscle Cells: Studies in Vitro. J. Nat. Prod. 2015, 78, 2447–2451. [Google Scholar] [CrossRef] [PubMed]
- Seo, H.-Y.; Kim, M.-K.; Lee, S.-H.; Hwang, J.S.; Park, K.-G.; Jang, B.K. Kahweol Ameliorates the Liver Inflammation through the Inhibition of NF-κB and STAT3 Activation in Primary Kupffer Cells and Primary Hepatocytes. Nutrients 2018, 10, 863. [Google Scholar] [CrossRef] [Green Version]
- Lang, R.; Fromme, T.; Beusch, A. 2-O-β-D-Glucopyranosylcarboxyatractyligenin from Coffea, L. inhibits adenine nucleotide translocase in isolated mitochondria but is quantitatively degradedduring coffee roasting. Phytochemistry 2013, 93, 124–135. [Google Scholar] [CrossRef]
- Speer, K.; Hruschka, A.; Kurzrock, T. Diterpenes in coffee. In Caffeinated Beverages: Health Benefits, Physiological Effects, and Chemistry; American Chemical Society: Washington, DC, USA, 2000; pp. 241–251. [Google Scholar]
- Lang, R.; Fromme, T.; Beusch, A.; Lang, T.; Klingenspor, M.; Hofmann, T. Raw coffee based dietary supplements contain carboxyatractyligenin derivatives inhibiting mitochondrial adenine-nucleotide-translocase. Food Chem. Toxicol. 2014, 70, 198–204. [Google Scholar] [CrossRef]
- Lam, L.K.T.; Sparnins, V.L.; Wattenberg, L.W. Isolation and identification of kahweol palmitate and cafestol palmitate as active constituents of green coffee beans that enhance glutathione S-transferase activity in the mouse. Cancer Res. 1982, 42, 1193–1198. [Google Scholar] [PubMed]
- Adane, T.G.; Byung, S.C. Coffee Flavor. In Encyclopedia of Food Chemistry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 48–53. [Google Scholar]
- Ashkenazi, A. Directing cancer cells to self-destruct with pro-apoptotic receptor agonists. Nat. Rev. Drug Discov. 2008, 7, 1001–1012. [Google Scholar] [CrossRef]
- Chen, Y.P.; Liang, Z.Y.; Lin, Y.Q. Preliminary analysis of odorcomposition in coffee oil from coffee grounds. Food Sci. 2004, 25, 230–232. [Google Scholar] [CrossRef]
- Zhan, J.F.; Lu, S.M.; Qu, G.F. Analysis on volatile and semivolatie components of Laos’s coffee. Food Res. Dev. 2008, 29, 25–129. [Google Scholar] [CrossRef]
- Hafsah, H.; Iriawati, I.; Syamsudin, T.S. Dataset of volatile compounds from flowers and secondary metabolites from the skin pulp, green beans, and peaberry green beans of robusta coffee. Data Brief 2020, 29, 105219. [Google Scholar] [CrossRef] [PubMed]
- Shu, Y.; Qiu, M. Studies on the Chemical Constituents And Bioactivity of Roastedcoffee Beans of Coffea Arabica Growing in Yunnan. Master’s Thesis, School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, China, 2014. [Google Scholar]
- Yashin, A.; Yashin, Y.; Wang, J.Y.; Nemzer, B. Antioxidant and Antiradical Activity of Coffee. Antioxidants 2013, 2, 230–245. [Google Scholar] [CrossRef]
- Belitz, H.D.; Grosh, W.; Schieberle, P. Coffee, Tea, Cocoa. Food Chemistry, New York; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Rawel, H.M.; Kulling, S.E. Nutritional contribution of coffee, cacao and tea phenolics to human health. J. Consum. Prot. Food Saf. 2007, 2, 399–406. [Google Scholar] [CrossRef]
- Richelle, M.; Tavazzi, I.; Offord, E. Comparison of antioxidant activity of consumed polyphenolic beverages (coffee, cocoa and tea) prepared per cup serving. J. Agric. Food Chem. 2001, 49, 3438–3442. [Google Scholar] [CrossRef]
- Duangjai, A.; Nuengchamnong, N.; Suphrom, N. Potential of coffee fruit extract and quinic acid on adipogenesis and lipolysis in 3T3-L1 adipocytes. Kobe J. Med. Sci. 2018, 64, E84–E92. [Google Scholar]
- Ontawong, A.; Duangjai, A.; Muanprasat, C.; Pasachan, T.; Pongchaidecha, A.; Amornlerdpison, D.; Srimaroeng, C. Lipid-lowering effects of Coffea arabica pulp aqueous extract in Caco-2 cells and hypercholesterolemic rats. Phytomedicine 2019, 52, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Martina, S.J.; Govindan, P.A.P.; Wahyuni, A.S. The Difference in Effect of Arabica Coffee Gayo Beans and Leaf (Coffea Arabica Gayo) Extract on Decreasing Blood Sugar Levels in Healthy Mice. Open Access Maced. J. Med. Sci. 2019, 7, 3363–3365. [Google Scholar] [CrossRef]
- Mellbye, F.B.; Jeppesen, P.B.; Shokouh, P. Cafestol, a bioactive substance in coffee, has antidiabetic properties in KKAy mice. J. Nat. Prod. 2017, 80, 2353–2359. [Google Scholar] [CrossRef]
- Ishida, K.; Yamamoto, M.; Misawa, K.; Nishimura, H.; Misawa, K.; Ota, N.; Shimotoyodome, A. Coffee polyphenols prevent cognitive dysfunction and suppress amyloid β plaques in APP/PS2 transgenic mouse. Neurosci. Res. 2020, 154, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Cho, B.-H.; Choi, S.-M.; Kim, B.C. Gender-dependent effect of coffee consumption on tremor severity in de novo Parkinson’s disease. BMC Neurol. 2019, 19, 194. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.P.; Zhang, Y.H.; Gu, D.H. Effect on anti-oxidative injuriesof human umbilical vein endothelial cell of crude extracts from Yunnan arabica coffee husk. Food Sci. Technol. 2016, 41, 183–188. [Google Scholar] [CrossRef]
- El-Garawani, I.M.; El-Nabi, S.H.; El-Shafey, S.; ElFiky, M.; Nafie, E. Coffea arabica Bean Extracts and Vitamin C: A Novel Combination Unleashes MCF-7 Cell Death. Curr. Pharm. Biotechnol. 2020, 21, 23–36. [Google Scholar] [CrossRef]
- Pergolizzi, S.; D’Angelo, V.; Aragona, M.; Dugo, P.; Cacciola, F.; Capillo, G.; Dugo, G.; Lauriano, E.R. Evaluation of antioxidant and anti-inflammatory activity of green coffee beans methanolic extract in rat skin. Nat. Prod. Res. 2018, 34, 1535–1541. [Google Scholar] [CrossRef]
- Wiltberger, G.; Wu, Y.; Lange, U.; Hau, H.-M.; Tapper, E.; Krenzien, F.; Atanasov, G.; Benzing, C.; Feldbrügge, L.; Csizmadia, E.; et al. Protective effects of coffee consumption following liver transplantation for hepatocellular carcinoma in cirrhosis. Aliment. Pharmacol. Ther. 2019, 49, 779–788. [Google Scholar] [CrossRef]
- Vitaglione, P.; Mazzone, G.; Lembo, V.; D’Argenio, G.; Rossi, A.; Guido, M.; Savoia, M.; Salomone, F.; Mennella, I.; De Filippis, F.; et al. Coffee prevents fatty liver disease induced by a high-fat diet by modulating pathways of the gut–liver axis. J. Nutr. Sci. 2019, 8, e15. [Google Scholar] [CrossRef] [Green Version]
- O’Callaghan, F.; Muurlink, O.; Reid, N. Effects of caffeine on sleep quality and daytime functioning. Risk Manag. Healthc. Policy 2018, 11, 263–271. [Google Scholar] [CrossRef] [Green Version]
Ingredient Content (%) | |
---|---|
Carbohydrates 60.0 | (1) |
Reducing sugar 1.0 | (2) |
Sucrose 7.0 | (3) |
Pectin 2.0 | (4) |
Starch 10.0 | (5) |
Pentan 5.0 | (6) |
Hemicellulose 15.0 | (7) |
Whole cellulose 18.0 | (8) |
Lignin 2.0 | (9) |
Grease 13.0 | (10) |
Protein (N*6.25) 13.0 | (11) |
Ash content (oxide) 4.0 | (12) |
Tannic acid 13.0 | (13) |
N-methylnicotinic acid (soluble) 1.0 | (14) |
Caffeine (soluble) 1.0~~2.0 | (15) |
No. | Compound | Species | Part | Reference |
---|---|---|---|---|
1 | Caffeine | CA, CR | L, GB, CB Bean | [30,31] |
2 | Theobromine | CA, CR | CB | [30] |
3 | Theophyline | CA, CR | CB | [30] |
4 | 1,3,7,9-Theacrine | CL | L | [29] |
5 | Liberine | CL | L | [29] |
6 | Methyllibetine | CL | L | [29] |
7 | Trigonelline | CA, CR | GB, CB | [30,31] |
8 | Nicotinic acid | CA, CR | CB | [30] |
No. | Compound | Species | Part | Reference |
---|---|---|---|---|
72 | Catechin | CA | L | [43] |
73 | Epicatechin | CA | L | [43] |
74 | Epicatechin gallate | CA | L | [43] |
75 | Epigallocatechin gallate | CA | L | [43] |
76 | Delphinidin-3,5-dilucoside | CA | L | [43] |
77 | Delphinidin-3-(6ʹʹ-malonyl-glucoside) | CA | L | [43] |
78 | Cyanidin-3-O-glucoside | CA | P | [43] |
79 | Cyanidin-3-O-Rutinoside | CA | P | [43] |
80 | Kaempferol | CA | L | [44] |
81 | Kaempferol-3-Glc | CA | L | [44] |
82 | Kaempferol-3-Glc-Hex-DeHex | CA | L | [44] |
83 | Kaempferol-3-Glc-Hex | CA | L | [44] |
84 | Kaempferol-3-Glc-(6ʹʹ-Rha) | CA | L | [44] |
85 | Quercetin | CA | L | [44] |
86 | Quercitrin | CA | L | [44] |
87 | Isoquercitrin | CA | L | [43] |
88 | Rrutin | CA | L | [44] |
89 | Hyperoside | CA | L | [44] |
90 | Quercetin-3-Glc-Hex-DeHex | CA | L | [44] |
91 | Quercetin-3-glucuronide | CA | L | [44] |
92 | Luteolin | CA | L | [44] |
93 | Patuletin | CA | L | [44] |
94 | Fisetin | CA | L | [44] |
95 | Myricetin | CA | L | [44] |
96 | pigenin | CA | L | [44] |
No. | Compound | Species | Part | Reference |
---|---|---|---|---|
97 | Ursolic Acid | CA | L | [31] |
98 | Caffruone A | CA | SB | [46] |
99 | Caffruone B | CA | SB | [46] |
100 | Caffruone C | CA | SB | [46] |
101 | Caffruone D | CA | SB | [46] |
102 | Caffruenol A | CA | SB | [42] |
103 | Caffruenol B | CA | SB | [42] |
104 | Caffruolide A | CA | SB | [42] |
105 | Caffruolide B | CA | SB | [42] |
106 | Tricalysiolide A | CA | SB | [42] |
107 | Tricalysiolide B | CA | SB | [42] |
108 | Tricalysiolide C | CA | SB | [42] |
109 | Tricalysiolide E | CA | SB | [36] |
110 | 16α,17-Dihydroxy-ent-kauran-19-al | CA | SB | [42] |
111 | 16β,17-Hydroxy-ent-kauran-19-oic Acid | CA | SB | [42] |
112 | 16α,17-Dihydroxy-ent-kauran-19-oic Acid | CA | SB | [42] |
113 | 9β,16α,17-Trihydroxy-ent-kauran-19-oic Acid | CA | SB | [42] |
114 | 16β-7,17-Dihydroxy-ent-kauran-19-oic-Methyl Ester | CA | SB | [42] |
115 | 16α,17-Dihydroxy-9(11)-ent-kauren- 19-oic Acid | CA | SB | [42] |
116 | (2β,4β,15α)-15-Hydroxy-2-{[2-O-(3-methyl-1-oxo-butyl)]-β-D-glucopyrnosyl]oxy}-18-nor-ent kaur-16 en-18-oic Acid | CA | SB | [42] |
117 | Caffarolide A | CA | GB | [43] |
118 | Caffarolide B | CA | GB | [43] |
119 | Caffarolide C | CA | GB | [43] |
120 | Caffarolide D | CA | GB | [43] |
121 | Caffarolide E | CA | GB | [43] |
122 | Caffarolide F | CA | GB | [43] |
123 | Caffarolide G | CA | GB | [43] |
124 | Caffarolide H | CA | GB | [43] |
125 | Mascaroside I | CA | GB | [44] |
126 | Mascaroside II | CA | GB | [44] |
127 | Paniculoside VI | CA | GB | [44] |
128 | Cofaryloside I | CA | GB | [44] |
129 | Villanovane I | CA | GB | [44] |
130 | Mozambioside | CA | GB | [44] |
131 | Bengalensol | CA | GB | [44,45] |
132 | 19-Norkaur-16-en-18-oic acid-15-hydroxy-2-[[2-O-(3-methyl-1-oxobutyl)-β-D-glucopyranosyl]oxy]-(2β,4α,15α) | CA | GB | [45] |
133 | 19-Norkaur-16-en-18-oic acid-15-hydroxy-2-{[2-O-(3-methyl-1-oxobutyl)-β-D-glucopyranosyl]oxy}-(2β,4β,15α) | CA | GB | [45] |
134 | 19-Norkaur-16-en-18-oic cid-2-{[3-O-β-D-glucopyranosyl-2-O-(3-methyl-1-oxobutyl)-β-Dglucopyranosyl]oxy}-15-hydroxy-(2β,4α,15α) | CA | GB | [45] |
135 | 2β,16α,17-Trihydroxy-ent-kauran-19-oic Acid | CA | GB | [45] |
136 | Paniculoside IV | CA | GB | [45] |
137 | Mascaroside III | CA | GB | [46] |
138 | Mascaroside Ⅳ | CA | GB | [46] |
139 | Mascaroside V | CA | GB | [46] |
140 | 20-Nor-Cofaryloside I | CA | GB | [46] |
141 | 20-Nor-Cofaryloside II | CA | GB | [46] |
142 | Villanovane | CA | GB | [46] |
143 | Tricalysione A | CA | GB | [46] |
144 | 2β,16α,17-Trihydroxy-ent-kauran-19α-oic Acid | CA | GB | [46] |
145 | 2-O-(2-O-Isovaleryl-β-D-gluco-pyranosyl)-4α-atrac-tyligenin | CA | GB | [46] |
146 | 2-O-(2-O-Isovaleryl-β-D-gluco-pyranosyl)-4α-atrac-tyligenin | CA | GB | [46] |
147 | 3-O-β-D-glucopyranosyl-2-O-(2-O-isovaleryl-β-D-gluco-pyranosyl)-4β-atracty ligenin | CA | GB | [46] |
148 | 16-O-Methylcafestol | CA | GB | [41] |
149 | Cafestol | CA | GB | [31] |
150 | 16-O-Methylkahweol | CA | GB | [41] |
152 | Kahweol | CA | GB | [31] |
152 | Atractyligenin | CA | GB | [52,53] |
153 | 2-O-β-Glucopyranosyl-atractyligenin | CA | GB | [52,53] |
154 | 3ʹ-O-β-D-Glucopyranosyl-2ʹ-O-isovaleryl-2β-(2-desoxy-atractyligenin)-β-D-glucopyranoside | CA | GB | [52,53] |
155 | 2-O-β-Glucopyranosyl-carboxyatractyligenin | CA | GB | [52,53] |
156 | 3ʹ-O-β-D-Glucopyranosyl-2ʹ-O-isovaleryl-2β-(2-desoxy-carboxyatractyligenin)-β-D-glucopyranoside | CA | GB | [52,53] |
157 | Dehydrocafestol | CA | GB | [54] |
158 | Dehydrokahweol | CA | GB | [54] |
159 | Cafestal | CA | GB | [54] |
160 | Carboxyatractyligenin | CA | GB | [54] |
161 | Cafestol Palmitate | CA | GB | [55] |
162 | Kahweol Palmitate | CA | GB | [55] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saud, S.; Salamatullah, A.M. Relationship between the Chemical Composition and the Biological Functions of Coffee. Molecules 2021, 26, 7634. https://doi.org/10.3390/molecules26247634
Saud S, Salamatullah AM. Relationship between the Chemical Composition and the Biological Functions of Coffee. Molecules. 2021; 26(24):7634. https://doi.org/10.3390/molecules26247634
Chicago/Turabian StyleSaud, Shah, and Ahmad Mohammad Salamatullah. 2021. "Relationship between the Chemical Composition and the Biological Functions of Coffee" Molecules 26, no. 24: 7634. https://doi.org/10.3390/molecules26247634
APA StyleSaud, S., & Salamatullah, A. M. (2021). Relationship between the Chemical Composition and the Biological Functions of Coffee. Molecules, 26(24), 7634. https://doi.org/10.3390/molecules26247634