Occurrence of Disinfection By-Products in Swimming Pools in the Area of Thessaloniki, Northern Greece. Assessment of Multi-Pathway Exposure and Risk
Abstract
:1. Introduction
- (a)
- Examine the occurrence of different DBPs groups in swimming pools;
- (b)
- Find out possible correlations among DBPs and physicochemical water parameters;
- (c)
- Estimate the contribution of different exposure routes to DBPs and;
- (d)
- Present a multi-pathway risk assessment for four age-groups of swimmers.
2. Experimental
2.1. Analytical Standards and Reagents
2.2. Water Samples
2.3. Analytical Methods
2.4. Risk Assessment
2.4.1. Assessment of Cytotoxicity
2.4.2. Exposure Doses
Abr | Exposure Factors | Age Groups of Non-Competitive Swimmers | |||
---|---|---|---|---|---|
Children (3–<6 y) | Children (6–<11 y) | Children (11–<16 y) | Adults (>18 y) | ||
BW | Body weight (kg) | 19 | 32 | 57 | 80 |
SA | Surface area (m2) | 0.76 | 1.08 | 1.59 | 1.94 |
InhR | Inhalation rate (m3/h) | 0.66 | 0.66 | 0.78 | 0.74 |
IngR | Ingestion rate (L/h) | 0.049 | 0.049 | 0.049 | 0.025 |
EF | Exposure frequency (min/month) | 137 | 151 | 139 | 181 |
ED | Exposure duration (years) | 4 | 5 | 5 | 30 |
AT | Average Time | 78 | 78 | 78 | 78 |
DBPs | H (atm m3/mol) [19,20] | Kp (cm/h) [19,20] | EC50 (M) [13] | Rfd (mg/kg-day) [21] | IARC [22] | SF (mg/kg-day) [21,23] | ||
---|---|---|---|---|---|---|---|---|
Oral | Dermal * | Inhalation * | ||||||
THMs | ||||||||
TCM | 3.67 × 10−3 | 6.83 × 10−3 | 9.62 × 10−3 | 1 × 10−2 | 2B | 1 × 10−2 | 1 × 10−2 | 1.9 × 10−2 |
BDCM | 2.12 × 10−3 | 4.02 × 10−3 | 1.15 × 10−2 | 2 × 10−2 | 2B | 6.2 × 10−2 | 6.2 × 10−2 | 1.3 × 10−1 |
CDBM | 7.83 × 10−4 | 2.89 × 10−3 | 5.36 × 10−3 | 2 × 10−2 | 3 | 8.4 × 10−2 | 8.4 × 10−2 | 8.4 × 10−2 |
TBM | 5.35 × 10−4 | 2.35 × 10−3 | 3.96 × 10−3 | 2 × 10−2 | 3 | 7.9 × 10−2 | 7.9 × 10−2 | 3.9 × 10−3 ** |
HAAS | ||||||||
DCAA | 8.38 × 10−9 | 1.21 × 10−3 | 7.3 × 10−3 | 4 × 10−3 | 2B | 5 × 10−2 | 5 × 10−2 | 5 × 10−2 |
TCAA | 1.35 × 10−8 | 1.45 × 10−3 | 2.4 × 10−3 | 2 × 10−3 | 2B | 7 × 10−2 | 5 × 10−2 | 5 × 10−2 |
NDBPs *** | ||||||||
TCAN | 1.34 × 10−6 | 7.6 × 10−3 | 1.601× 0−4 | 3 | ||||
DCAN | 3.79 × 10−6 | 6.5 × 10−4 | 5.73 × 10−5 | 3 | ||||
BCAN | 1.24 × 10−6 | 4.1 × 10−4 | 8.46 × 10−6 | 3 | ||||
DBAN | 4.06 × 10−7 | 2.5 × 10−4 | 2.85 × 10−6 | 2B | ||||
TCNM | 2.05 × 10−3 | 5.8 × 10−3 | 5.36 × 10−4 | |||||
HKs *** | ||||||||
DCA | 6.15 × 10−6 | 4.4 × 10−4 | ||||||
TCA | 2.17 × 10−6 | 1.2 × 10−3 |
2.4.3. Non-Carcinogenic Risk
2.4.4. Carcinogenic Risk
2.5. Statistical Evaluation
3. Results and Discussion
3.1. Water Quality Parameters
3.2. Occurrence of Disinfection By-Products
Country | HAAs | THMs | NDBPs | HKs | References |
---|---|---|---|---|---|
Australia | 366–5126 230–2400 (DCAA) 110–2600 (TCAA) | 65–84 (TCM) | 4.9–8.9 (DCAN) nd–2.3 (TCNM) | [28] | |
Canada | 155–2224 | [35] | |||
Canada | 21–132 6.7–125 (TCM) | 3.4–78.6 (HANs) 4.5 (TCNM) | 0.3–7.3 (TCP) | [36] | |
China | 1.2–1889 | 25.7 ± 33.1 | 12.3 ± 15.5 | [37] | |
France | 80 70 (TCM) | 75 (DCAN) nd–4.5 (TCNM) | 72 (TCP) | [38] | |
Greece | 7.7–653.7 | 8.1–57.4 | 0.8–20.6 (HANs) | nd–15.3 | [39] |
USA | 70–3980 50–2040 (DCAA) 20–2970 (TCAA) | [40] | |||
USA | 26–213 25–207 (TCM) | 4–47 (DCAN) | [41] | ||
Singapore | 45–828 (DCAA) 114–1020 (TCAA) | 32–170 30–167 (TCM) | [42] |
3.3. Exposure Routes
3.4. Assessment of Possible Risks
3.4.1. Cytotoxicity of Pool Water
3.4.2. Non-Carcinogenic and Carcinogenic Risk
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Carter, R.A.A.; Joll, C.A. Occurrence and formation of disinfection by-products in the swimming pool environment: A critical review. J. Environ. Sci. 2017, 58, 19–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyas, H.; Masih, I.; van der Hoek, J.V. Disinfection Methods for Swimming Pool Water: Byproduct Formation and Control. Water 2018, 10, 797. [Google Scholar] [CrossRef] [Green Version]
- Carter, R.A.A.; Allard, S.; Croué, J.P.; Joll, C.A. Occurrence of disinfection by-products in swimming pools and the estimated resulting cytotoxicity. Sci. Total Environ. 2019, 664, 851–864. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.D.; Plewa, M.J.; Wagner, E.D.; Schoeny, R.; DeMarine, D.M. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research. Mutat. Res. 2007, 636, 178–242. [Google Scholar] [CrossRef]
- Richardon, S.D.; Postigo, C. Discovery of New Emerging DBPs by High-Resolution Mass Spectrometry. Compreh. Anal. Chem. 2016, 71, 335–355. [Google Scholar] [CrossRef]
- Stalter, D.; O’Malley, E.; von Gunten, U.; Escher, B.J. Fingerprinting the reactive toxicity pathways of 50 drinking water disinfection by-products. Water Res. 2016, 91, 19–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villanueva, C.M.; Cordier, S.; Font-Ribera, L.; Salas, L.A.; Levallois, P. Overview of Disinfection By-products and Associated Health Effects. Curr. Environ. Health. Rpt. 2015, 2, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Font-Ribera, L.; Marco, E.; Grimalte, J.O.; Pastor, S.; Marcos, R.; Abramsson-Zetterberg, L.; Pedersen, M.; Grummt, T.; Junek, R.; Barreiro, E.; et al. Exposure to disinfection by-products in swimming pools and biomarkers of genotoxicity and respiratory damage–The PISCINA2 Study. Environ. Int. 2019, 131, 104998. [Google Scholar] [CrossRef] [PubMed]
- Couto, M.; Bernard, A.; Delgado, L.; Drobnic, F.; Kurowski, M.; Moreira, A.; Rodrigues-Alves, R.; Rukhadze, M.; Seys, S.; Wiszniewska, M.; et al. Health effects of exposure to chlorination by-products in swimming pools. Allergy 2021, 76, 3257–3275. [Google Scholar] [CrossRef]
- U.S. EPA. Method 551.1 Determination of Chlorination Disinfection Byproducts, Chlorinated Solvents, and Halogenated Pesticides/Herbicides In Drinking Water By Liquid-Liquid Extraction And Gas Chromatography with Electron-Capture Detection; Revision 1.0.; U.S. EPA: Cincinnati, OH, USA, 1995. Available online: https://www.epa.gov/sites/default/files/2015-06/documents/epa-551.1.pdf (accessed on 6 September 2021).
- U.S. EPA. Method 552.3 Determination of Haloacetic Acids and Dalapon In Drinking Water by Liquid-Liquid Microextraction, Derivatization and Gas Chromatography with Electron Capture Detection; Revision 1.0.; U.S. EPA: Cincinnati, OH, USA, 2003. Available online: https://nepis.epa.gov/Exe/ZyPDF.cgi/901V0400.PDF?Dockey=901V0400.PDF (accessed on 6 September 2021).
- APHA. Standard Methods for the Examination of Water and Waste Water, 22nd ed.; AWWA, WEF: Washington, DC, USA, 2012. [Google Scholar]
- Wagner, E.D.; Plewa, M.J. CHO cell cytotoxicity and genotoxicity analyses of disinfectionby-products: An updated review. J. Environ. Sci. 2017, 58, 64–76. [Google Scholar] [CrossRef]
- U.S. EPA. Swimmer Exposure Assessment Model (SWIMODEL); Version 3.0; U.S. EPA: Cincinnati, OH, USA, 2003.
- U.S. EPA. Exposure Assessment Tools by Routes. Available online: https://www.epa.gov/expobox/exposure-assessment-tools-routes (accessed on 6 September 2021).
- Dyck, R.; Sadiq, R.; Rodriguez, M.J.; Simard, S.; Tardif, R. Trihalomethane exposures in indoor swimming pools: A level III fugacity model. Water Res. 2011, 45, 5084–5098. [Google Scholar] [CrossRef]
- Lourencetti, C.; Grimalt, J.O.; Marco, E.; Fernandez, P.; Font-Ribera, L.; Villanueva, C.M.; Kogevinas, M. Trihalomethanes in chlorine and bromine disinfected swimming pools: Air-water distributions and human exposure. Environ. Int. 2012, 45, 59–67. [Google Scholar] [CrossRef]
- U.S. EPA. Exposure Factors Handbook; EPA/600/R-09/052F; U.S. EPA: Cincinnati, OH, USA, 2011.
- R.A.I.S. Risk Assessment Information System (RAIS) Online Database. Available online: https://rais.ornl.gov/cgi-bin/tools/TOX_search?select=chemspef (accessed on 6 September 2021).
- PubChem. National Center for Biotechnology Information. U.S. National Library of Medicine, USA. Available online: https://pubchem.ncbi.nlm.nih.gov/compounds (accessed on 6 September 2021).
- U.S. EPA. The USEPA Integrated Risk Information System (IRIS) Online Database. Washington, DC, USA. 2014. Available online: http://www.epa.gov/iris/subst/index.html (accessed on 6 September 2021).
- I.A.R.C. International agency for Research of Cancer. Agents Classified by the IARC Monographs, Volumes 1–128. Available online: https://monographs.iarc.fr/list-of-classifications (accessed on 6 September 2021).
- O.E.H.H.A. California Office of Environmental Health Hazard Assessment. Available online: https://oehha.ca.gov/chemicals/chloroform (accessed on 6 September 2021).
- Greek National Legislation Γ1/443/1973 On Swimming Pools Following Instructions for Their Construction and Operation; Greek National Legislation: Athens, Greece, 1973.
- Greek National Legislation F.Ε.Κ. 21.5.2020, (Δ1(δ)/ΓΠοικ 32179/2020) Regarding Measures for Protection of Public Health In The Context Of Avoiding Spread Of SARS-Cov-2 After Commissioning Of Swimming Pools; Greek National Legislation: Athens, Greece, 2020.
- WHO. Guidelines for Safe Recreational Water Environments; Volume 2: Swimming Pools and Similar Environments; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- Kanan, A.; Karanfil, T. Formation of Disinfection By-Products in Indoor Swimming Pool Water: The Contribution from Filling Water Natural Organic Matter and Swimmer Body Fluids. Water Res. 2011, 45, 926–932. [Google Scholar] [CrossRef]
- Yeh, R.Y.; Farre, M.J.; Stalter, D.; Tang, J.Y.; Molendijk, J.; Escher, B.I. Bioanalytical and chemical evaluation of disinfection by-products in swimming pool water. Water Res. 2014, 59, 172–184. [Google Scholar] [CrossRef] [Green Version]
- Keuten, M.G.A.; Peters, M.C.F.M.; Daanen, H.A.M.; de Kreuk, M.K.; Rietveld, L.C.; van Dijk, J.C. Quantification of continual anthropogenic pollutants released in swimming pools. Water Res. 2014, 53, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Tsamba, L.; Cimetière, N.; Wolbert, D.; Correc, O.; Le Cloirec, P. Body fluid analog chlorination: Application to the determination of disinfection byproduct formation kinetics in swimming pool water. J. Environ. Sci. 2020, 87, 112–122. [Google Scholar] [CrossRef]
- Wang, J.; Gong, T.; Xian, J. Formation of haloacetic acids from different organic precursors in swimming pool water during chlorination. Chemosphere 2020, 247, 125793. [Google Scholar] [CrossRef] [PubMed]
- European Chemical s Agency. Guidance on The BPR: Vol V Disinfection By-Products. ECHA-17-G-01-EN.; European Chemical s Agency: Telakkakatu, Finland, 2017.
- European Parliament. EU Directive 2020/2184 Of the European Parliament and of The Council of 16 December 2020 On the Quality Of Water Intended For Human Consumption. OJ. L 435/1, 23.12.2020; European Parliament: Strasbourg, France, 2020.
- Pándics, T.; Hofer, A.; Dura, G.; Vargha, M.; Szigeti, T.; Tóth, E. Health risk of swimming pool disinfection by-products: A regulatory perspective. J. Water Health 2018, 16, 947–957. [Google Scholar] [CrossRef] [PubMed]
- Simard, S.; Tardif, R.; Rodriguez, M.J. Variability of chlorination by-product occurrence in water of indoor and outdoor swimming pools. Water Res. 2013, 47, 763–1772. [Google Scholar] [CrossRef]
- Tardif, R.; Catto, C.; Haddad, S.; Simard, S.; Rodriguez, M. Assessment of air and water contamination by disinfection by-products at 41 indoor swimming pools. Environ. Res. 2016, 148, 411–420. [Google Scholar] [CrossRef]
- Peng, F.; Peng, J.; Li, H.; Li, Y.; Wang, B.; Yang, Z. Health risks and predictive modeling of disinfection byproducts in swimming pools. Environ. Int. 2020, 139, 105726. [Google Scholar] [CrossRef]
- Manasfi, T.; De Méo, M.; Coulomb, B.; Di Giorgio, C.; Boudenne, J.L. Identification of disinfection by-products in freshwater and seawater swimming pools and evaluation of genotoxicity. Environ. Int. 2016, 88, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Kargaki, S.; Iakovides, M.; Stephanou, E. Study of the occurrence and multi-pathway health risk assessment of regulated and unregulated disinfection by-products in drinking and swimming pool waters of Mediterranean cities. Sci. Total Environ. 2020, 739, 1398890. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Garcia, L.; Zhang, H.; Yang, H.; Yuefeng, X. Haloacetic acids in swimming pool and spa water in the United States and China. Front Environ. Sci. Eng. 2014, 8, 820–824. [Google Scholar] [CrossRef]
- Kanan, A.; Selbes, M.; Karanfil, T. Occurrence and formation of disinfection by-products in indoor US swimming pools. ACS Symp. Ser. 2015, 1190, 405–430. [Google Scholar] [CrossRef]
- Yang, L.; Schmalz, C.; Zhou, J.; Zwiener, C.; Chang, V.W.; Ge, L.; Pun, M. An insight of disinfection by-product (DBP) formation by alternative disinfectants for swimming pool disinfection under tropical conditions. Water Res. 2016, 101, 535–546. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, H.; Wang, X.; Zhao, Y.; Wang, X.; Xie, Y. Concentration levels of disinfection by-products in 14 swimming pools of China. Environ. Sci. Eng. 2015, 9, 995–1003. [Google Scholar] [CrossRef]
- Font-Ribera, L.; Kogevinas, M.; Schmalz, C.; Zwiener, C.; Marco, E.; Grimaltf, J.O.; Liu, J.; Zhang, X.; Mitch, W.; Critelli, R.; et al. Environmental and personal determinants of the uptake of disinfection by-products during swimming. Environ. Res. 2016, 149, 206–215. [Google Scholar] [CrossRef]
- Nitter, T.B.; Svendsen, K.H. Modelling the concentration of chloroform in the air of a Norwegian swimming pool facility—A repeated measures study. Sci. Total Environ. 2019, 664, 1039–1044. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S. Predicting human exposure and risk from chlorinated indoor swimming pool: A case study. Environ. Monit. Assess. 2015, 187, 502. [Google Scholar] [CrossRef]
- Gouveia, P.; Felgueiras, F.; Mourão, Z.; Fernandes, E.D.O.; Moreira, A.; Gabriel, M.F. Predicting health risk from exposure to trihalomehtanes in an Olympic-size indoor swimming pool among elite swimmers and coaches. J. Toxicol. Environ. Health A 2019, 82, 577–590. [Google Scholar] [CrossRef] [PubMed]
DBPs Groups | DBPs Species | Abbreviation | Chemical Formula |
---|---|---|---|
THMs Trihalomethanes | trichloromethane | TCM | CHCl3 |
dichlorobromomethane | DCBM | CHBrCl2 | |
chlorodibromo | CDBM | CHBr2Cl | |
methanetribromomethane | TBM | CHBr3 | |
HANs Haloacetonitriles | dichloroacetonitrile | DCAN | CHCl2CN |
trichloroacetonitile | TCAN | CCl3CN | |
bromochloroacetonitrile | BCAN | CHBrClCN | |
dibromoacetontrile | DBAN | CHBr2CN | |
HNMs Halonitromethanes | trichloronitromethane | TCNM | CCl3NO2 |
HKs | 1,1-dichloropropanone | DCP | C3H4Cl2O |
Haloketones | 1,1,1-trichloropropanone | TCP | C3H3Cl3O |
HAAs Haloacetic acids | monochloroacetic acid | MCAA | CH2ClCOOH |
monobromoacetic acid | MBAA | CH2BrCOOH | |
dichloroacetic acid | DCAA | CHCl2COOH | |
trichloroacetic acid | TCAA | CCl3COOH | |
bromochloroacetic acid | BCAA | CHBrClCOOH | |
dibromoacetic acid | DBAA | CHBr2COOH | |
dibromochloroacetic acid | DBCAA | CBr2ClCOOH | |
chlorodibromo acetic acid | CDBAA | CBr2ClCOOH | |
tribromoacetic acid | TBAA | CBr3COOH |
Code | Indoor/Outdoor | Children/Adults | Disinfection |
---|---|---|---|
SP-1 | Indoor | Children 1 | NaOCl |
SP-2 | Indoor | Children/Adults 2 | NaOCl |
SP-3 | Outdoor | Children/Adults | NaOCl |
SP-4 | Outdoor | Children/Adults | NaOCl |
SP-5 | Indoor | Children | NaOCl |
SP-6 | Indoor | Children/Adults | NaOCl |
SP-7 | Outdoor | Children/Adults | NaOCl |
SP-8 | Outdoor | Children/Adults | NaOCl |
SP-9 | Outdoor | Children/Adults | NaOCl |
SP-10 | Indoor | Children | Electrolysis NaCl |
SP-11 | Indoor | Children/Adults | Electrolysis NaCl |
SP-12 | Indoor | Children/Adults | Electrolysis NaCl |
SP-13 | Outdoor | Children | NaOCl |
SP-14 | Outdoor | Children/Adults | NaOCl |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sdougkou, A.; Kapsalaki, K.; Kozari, A.; Pantelaki, I.; Voutsa, D. Occurrence of Disinfection By-Products in Swimming Pools in the Area of Thessaloniki, Northern Greece. Assessment of Multi-Pathway Exposure and Risk. Molecules 2021, 26, 7639. https://doi.org/10.3390/molecules26247639
Sdougkou A, Kapsalaki K, Kozari A, Pantelaki I, Voutsa D. Occurrence of Disinfection By-Products in Swimming Pools in the Area of Thessaloniki, Northern Greece. Assessment of Multi-Pathway Exposure and Risk. Molecules. 2021; 26(24):7639. https://doi.org/10.3390/molecules26247639
Chicago/Turabian StyleSdougkou, Akrivi, Kyriaki Kapsalaki, Argyri Kozari, Ioanna Pantelaki, and Dimitra Voutsa. 2021. "Occurrence of Disinfection By-Products in Swimming Pools in the Area of Thessaloniki, Northern Greece. Assessment of Multi-Pathway Exposure and Risk" Molecules 26, no. 24: 7639. https://doi.org/10.3390/molecules26247639
APA StyleSdougkou, A., Kapsalaki, K., Kozari, A., Pantelaki, I., & Voutsa, D. (2021). Occurrence of Disinfection By-Products in Swimming Pools in the Area of Thessaloniki, Northern Greece. Assessment of Multi-Pathway Exposure and Risk. Molecules, 26(24), 7639. https://doi.org/10.3390/molecules26247639