Carboxymethyl Cellulose Entrapped in a Poly(vinyl) Alcohol Network: Plant-Based Scaffolds for Cartilage Tissue Engineering
Abstract
:1. Introduction
2. Results
2.1. Appearances of Hydrogels after Fabrication
2.2. Fourier Transform Infrared Spectroscopy (FTIR)
2.3. Differential Scanning Calorimetry (DSC)
2.4. Micromorphological Assessment
2.5. Mechanical Analysis of Scaffolds
2.6. Swelling Behaviors of PVA/CMC Scaffolds
2.7. Assessment of Cell Distribution and Cytotoxicity of PVA/CMC Scaffolds
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Preparation of Porous PVA/CMC Scaffolds
4.3. Characterization of Porous Scaffold
4.4. Micromorphological Assessment
4.5. Mechanical Assessment
4.6. Swelling Ratio
4.7. Cell Culture and Cell Seeding
4.8. Assessment of Cell Distribution and Cytotoxicity of PVA/CMC Scaffolds
4.9. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Hunziker, E.B. Articular cartilage repair: Basic science and clinical progress. A review of the current status and prospects. Osteoarthr. Cartil. 2002, 10, 432–463. [Google Scholar] [CrossRef] [Green Version]
- Mora, J.C.; Przkora, R.; Cruz-Almeida, Y. Knee osteoarthritis: Pathophysiology and current treatment modalities. J. Pain Res. 2018, 11, 2189–2196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romagnoli, C.; Brandi, M.L. Adipose mesenchymal stem cells in the field of bone tissue engineering. World J. Stem Cells 2014, 6, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.M.; Park, J.S.; Jeong, S.I.; An, S.J.; Gwon, H.J.; Lim, Y.M.; Nho, Y.C.; Kim, C.Y. Promotion of human mesenchymal stem cell differentiation on bioresorbable polycaprolactone/biphasic calcium phosphate composite scaffolds for bone tissue engineering. Biotechnol. Bioproc. E 2014, 19, 341–349. [Google Scholar] [CrossRef]
- Dattola, E.; Parrotta, E.I.; Scalise, S.; Perozziello, G.; Limongi, T.; Candeloro, P.; Coluccio, M.L.; Maletta, C.; Bruno, L.; De Angelis, M.T.; et al. Development of 3D PVA scaffolds for cardiac tissue engineering and cell screening applications. RSC Adv. 2019, 9, 4246–4257. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Guo, G.P.; Ma, Q.Y.; Gu, M.F.; Wu, X.Y.; Sheng, S.J.; Wang, X.S. Investigation on the thermo-mechanical properties and thermal stability of polylactic acid tissue engineering scaffold material. J. Therm. Anal. Calorim. 2013, 113, 1113–1121. [Google Scholar] [CrossRef]
- Zhu, J.M.; Marchant, R.E. Design properties of hydrogel tissue-engineering scaffolds. Expert Rev. Med. Devic. 2011, 8, 607–626. [Google Scholar] [CrossRef]
- Song, X.; Zhu, C.H.; Fan, D.D.; Mi, Y.; Li, X.; Fu, R.Z.; Duan, Z.G.; Wang, Y.; Feng, R.R. A Novel Human-Like Collagen Hydrogel Scaffold with Porous Structure and Sponge-Like Properties. Polymers 2017, 9, 638. [Google Scholar] [CrossRef] [Green Version]
- Yodmuang, S.; McNamara, S.L.; Nover, A.B.; Mandal, B.B.; Aganwal, M.; Kelly, T.A.N.; Chao, P.H.G.; Hung, C.; Kaplan, D.L.; Vunjak-Novakovic, G. Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair. Acta Biomater. 2015, 11, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Shu, Y.; Lu, S.H.; Li, J.J.; Sun, H.Y.; Tang, R.Y.; Duan, C.M.; Wang, Y.; Lin, Q.X.; Mou, Y.C.; et al. The Spatiotemporal Development of Intercalated Disk in Three-Dimensional Engineered Heart Tissues Based on Collagen/Matrigel Matrix. PLoS ONE 2013, 8, e81420. [Google Scholar] [CrossRef] [Green Version]
- Martinez, A.; Blanco, M.D.; Davidenko, N.; Cameron, R.E. Tailoring chitosan/collagen scaffolds for tissue engineering: Effect of composition and different crosslinking agents on scaffold properties. Carbohyd. Polym. 2015, 132, 606–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miranda, D.G.; Malmonge, S.M.; Campos, D.M.; Attik, N.G.; Grosgogeat, B.; Gritsch, K. A chitosan-hyaluronic acid hydrogel scaffold for periodontal tissue engineering. J. Biomed. Mater. Res. B 2016, 104, 1691–1702. [Google Scholar] [CrossRef] [PubMed]
- Iravani, S.; Varma, R.S. Plants and plant-based polymers as scaffolds for tissue engineering. Green Chem. 2019, 21, 4839–4867. [Google Scholar] [CrossRef]
- Yu, Z.L.; Dhital, R.; Wang, W.; Sun, L.; Zeng, W.C.; Mustapha, A.; Lin, M.S. Development of multifunctional nanocomposites containing cellulose nanofibrils and soy proteins as food packaging materials. Food Packag. Shelf 2019, 21. [Google Scholar] [CrossRef]
- Sunardi, S.; Febriani, N.M.; Junaidi, A.B. Preparation of Carboxymethyl Cellulose Produced from Purun Tikus (Eleocharis dulcis). In Proceedings of the 4th International Conference on Research, Implementation, and Education of Mathematics and Sciences (Icriems), Research and Education for Developing Scientific Attitude in Sciences and Mathematics, Yogyakarta, Indonesia, 15–16 May 2017. [Google Scholar]
- Samsi, M.S.; Kamari, A.; Din, S.M.; Lazar, G. Synthesis, characterization and application of gelatin-carboxymethyl cellulose blend films for preservation of cherry tomatoes and grapes. J. Food Sci. Tech. Mys. 2019, 56, 3099–3108. [Google Scholar] [CrossRef]
- Phan, C.M.; Walther, H.; Riederer, D.; Lau, C.; Lorenz, K.O.; Subbaraman, L.N.; Jones, L. Analysis of polyvinyl alcohol release from commercially available daily disposable contact lenses using an in vitro eye model. J. Biomed. Mater. Res. B 2019, 107, 1662–1668. [Google Scholar] [CrossRef] [Green Version]
- Sakai, S.; Tsumura, M.; Inoue, M.; Koga, Y.; Fukano, K.; Taya, M. Polyvinyl alcohol-based hydrogel dressing gellable on-wound via a co-enzymatic reaction triggered by glucose in the wound exudate. J. Mater. Chem. B 2013, 1, 5067–5075. [Google Scholar] [CrossRef]
- Figueiredo, K.C.S.; Alves, T.L.M.; Borges, C.P. Poly(vinyl alcohol) Films Crosslinked by Glutaraldehyde Under Mild Conditions. J. Appl. Polym. Sci. 2009, 111, 3074–3080. [Google Scholar] [CrossRef]
- Tang, C.; Saquing, C.D.; Harding, J.R.; Khan, S.A. In Situ Cross-Linking of Electrospun Poly(vinyl alcohol) Nanofibers. Macromolecules 2010, 43, 630–637. [Google Scholar] [CrossRef]
- Banerjee, S.; Siddiqui, L.; Bhattacharya, S.S.; Kaity, S.; Ghosh, A.; Chattopadhyay, P.; Pandey, A.; Singh, L. Interpenetrating polymer network (IPN) hydrogel microspheres for oral controlled release application. Int. J. Biol. Macromol. 2012, 50, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Rezaee, S.; Moghbeli, M.R. Crosslinked Electrospun Poly (Vinyl Alcohol) Nanofibers Coated by Antibacterial Copper Nanoparticles. Iran. J. Chem. Eng. 2014, 11, 45–58. [Google Scholar]
- Wang, Y.H.; Hsieh, Y.L. Crosslinking of Polyvinyl Alcohol (PVA) Fibrous Membranes with Glutaraldehyde and PEG Diacylchloride. J. Appl. Polym. Sci. 2010, 116, 3249–3255. [Google Scholar] [CrossRef]
- Rudra, R.; Kumar, V.; Kundu, P.P. Acid catalysed cross-linking of poly vinyl alcohol (PVA) by glutaraldehyde: Effect of crosslink density on the characteristics of PVA membranes used in single chambered microbial fuel cells. RSC Adv. 2015, 5, 83436–83447. [Google Scholar] [CrossRef]
- More, S.M.; Kulkarni, R.V.; Sa, B.; Kayane, N.V. Glutaraldehyde-Crosslinked Poly(vinyl alcohol) Hydrogel Discs for the Controlled Release of Antidiabetic Drug. J. Appl. Polym. Sci. 2010, 116, 1732–1738. [Google Scholar] [CrossRef]
- Buhus, G.; Popa, M.; Peptu, C.; Desbrieres, J. Hydrogels based on carboxymethylcellulose and poly (vinyl alcohol) for controlled loading and release of chloramphenicol. J. Optoelectron. Adv. Mater. 2007, 9, 3445–3453. [Google Scholar]
- Ghorpade, V.S.; Dias, R.J.; Mali, K.K.; Mulla, S.I. Citric acid crosslinked carboxymethylcellulose-polyvinyl alcohol hydrogel films for extended release of water soluble basic drugs. J. Drug Deliv. Sci. Technol. 2019, 52, 421–430. [Google Scholar] [CrossRef]
- Shapiro, E.M.; Borthakur, A.; Kaufman, J.H.; Leigh, J.S.; Reddy, R. Water distribution patterns inside bovine articular cartilage as visualized by H-1 magnetic resonance imaging. Osteoarthr. Cartil. 2001, 9, 533–538. [Google Scholar] [CrossRef] [Green Version]
- Shiguetomi-Medina, J.M.; Ramirez-GL, J.L.; Stodkilde-Jorgensen, H.; Moller-Madsen, B. Systematized water content calculation in cartilage using T1-mapping MR estimations: Design and validation of a mathematical model. J. Orthop. Traumatol. 2017, 18, 217–220. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Kim, D.H.; Lim, K.T.; Seonwoo, H.; Park, S.H.; Kim, Y.R.; Kim, Y.; Choung, Y.H.; Choung, P.H.; Chung, J.H. Charged Nanomatrices as Efficient Platforms for Modulating Cell Adhesion and Shape. Tissue Eng. Part C Methods 2012, 18, 913–923. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, M.; Cirisano, F.; Moran, M.C. Mammalian Cell Behavior on Hydrophobic Substrates: Influence of Surface Properties. Colloid Interfaces 2019, 3, 48. [Google Scholar] [CrossRef] [Green Version]
- Webb, K.; Hlady, V.; Tresco, P.A. Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization. J. Biomed. Mater. Res. 1998, 41, 422–430. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, F.J. Biomaterials & scaffolds for tissue engineering. Mater. Today 2011, 14, 88–95. [Google Scholar]
- Bhardwaj, V.; Harit, G.; Kumar, S. Vineet Bhardwaj, Gargi Harit1, Sokindra Kumar2. Int. J. Drug Dev. Res. 2012, 4, 41–54. [Google Scholar]
- Suo, H.; Zhang, D.; Yin, J.; Qian, J.; Wu, Z.L.; Fu, J. Interpenetrating polymer network hydrogels composed of chitosan and photocrosslinkable gelatin with enhanced mechanical properties for tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 92, 612–620. [Google Scholar] [CrossRef]
- Tigli, R.S.; Gumusderelioglu, M. Evaluation of alginate-chitosan semi IPNs as cartilage scaffolds. J. Mater. Sci.-Mater. Med. 2009, 20, 699–709. [Google Scholar] [CrossRef]
- Rios, P.D.; Skoumal, M.; Liu, J.; Youngblood, R.; Kniazeva, E.; Garcia, A.J.; Shea, L.D. Evaluation of encapsulating and microporous nondegradable hydrogel scaffold designs on islet engraftment in rodent models of diabetes. Biotechnol. Bioeng. 2018, 115, 2356–2364. [Google Scholar] [CrossRef]
- Hobson, R. Glass Formation and Sub-Tg Transitions in Polymers: Influence of Carbon Chemistry. In Encyclopedia of Materials: Science and Technology, 2nd ed.; Buschow, K.H.J., Flemings, M.C., Kramer, E.J., Veyssière, P., Cahn, R.W., Ilschner, B., Mahajan, S., Eds.; Pergamon Press: Oxford, UK, 2001; pp. 3545–3550. [Google Scholar]
- Koontz, E. Thermal Analysis of Glass. In Springer Handbook of Glass, 1st ed.; Musgraves, J.D., Hu, J., Calvez, L., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 853–878. [Google Scholar]
- Parparita, E.; Cheaburu, C.N.; Vasile, C. Morphological, Thermal and Rheological Characterization of Polyvinyl Alcohol/Chitosan Blends. Cell Chem. Technol. 2012, 46, 571–581. [Google Scholar]
- Schindler, A.; Doedt, M.; Gezgin, S.; Menzel, J.; Schmolzer, S. Identification of polymers by means of DSC, TG, STA and computer-assisted database search. J. Therm. Anal. Calorim. 2017, 129, 833–842. [Google Scholar] [CrossRef] [Green Version]
- Jin, F.Z.; Hyon, S.H.; Iwata, H.; Tsutsumi, S. Crosslinking of poly(L-lactide) by gamma-irradiation. Macromol. Rapid Commun. 2002, 23, 909–912. [Google Scholar] [CrossRef]
- Suhartini, M.; Mitomo, H.; Nagasawa, N.; Yoshii, F.; Kume, T. Radiation crosslinking of poly(butylene succinate) in the presence of low concentrations of trimethallyl isocyanurate and its properties. J. Appl. Polym. Sci. 2003, 88, 2238–2246. [Google Scholar] [CrossRef]
- Jahangirian, H.; Azizi, S.; Rafiee-Moghaddam, R.; Baratvand, B.; Webster, T.J. Status of Plant Protein-Based Green Scaffolds for Regenerative Medicine Applications. Biomolecules 2019, 9, 619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chowdhury, M.N.K.; Alam, A.K.M.M.; Dafader, N.C.; Haque, M.E.; Akhtar, F.; Ahmed, M.U.; Rashid, H.; Begum, R. Radiation processed hydrogel of poly (vinyl alcohol) with biodegradable polysaccharides. Bio-Med. Mater. Eng. 2006, 16, 223–228. [Google Scholar]
- Saini, R.K.; Bagri, L.P.; Bajpai, A.K. Nano-silver hydroxyapatite based antibacterial 3D scaffolds of gelatin/alginate/poly (vinyl alcohol) for bone tissue engineering applications. Colloid Surface B 2019, 177, 211–218. [Google Scholar] [CrossRef] [PubMed]
Scaffolds | PVA/CMC Mass Ratio | Crosslink Ratio (GA/PVA Mole Ratio) | |||
---|---|---|---|---|---|
0.4 | 0.2 | 0.1 | 0.05 | ||
P1C0 (control) | 1:0 | O | O | O | O |
P5C1 | 5:1 | O | O | O | X |
P3C1 | 3:1 | O | O | O | X |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Namkaew, J.; Laowpanitchakorn, P.; Sawaddee, N.; Jirajessada, S.; Honsawek, S.; Yodmuang, S. Carboxymethyl Cellulose Entrapped in a Poly(vinyl) Alcohol Network: Plant-Based Scaffolds for Cartilage Tissue Engineering. Molecules 2021, 26, 578. https://doi.org/10.3390/molecules26030578
Namkaew J, Laowpanitchakorn P, Sawaddee N, Jirajessada S, Honsawek S, Yodmuang S. Carboxymethyl Cellulose Entrapped in a Poly(vinyl) Alcohol Network: Plant-Based Scaffolds for Cartilage Tissue Engineering. Molecules. 2021; 26(3):578. https://doi.org/10.3390/molecules26030578
Chicago/Turabian StyleNamkaew, Jirapat, Panitporn Laowpanitchakorn, Nuttapong Sawaddee, Sirinee Jirajessada, Sittisak Honsawek, and Supansa Yodmuang. 2021. "Carboxymethyl Cellulose Entrapped in a Poly(vinyl) Alcohol Network: Plant-Based Scaffolds for Cartilage Tissue Engineering" Molecules 26, no. 3: 578. https://doi.org/10.3390/molecules26030578
APA StyleNamkaew, J., Laowpanitchakorn, P., Sawaddee, N., Jirajessada, S., Honsawek, S., & Yodmuang, S. (2021). Carboxymethyl Cellulose Entrapped in a Poly(vinyl) Alcohol Network: Plant-Based Scaffolds for Cartilage Tissue Engineering. Molecules, 26(3), 578. https://doi.org/10.3390/molecules26030578