Nitrogen-Doped Carbons Derived from Imidazole-Based Cross-Linked Porous Organic Polymers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis
2.3. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Inagaki, M.; Toyoda, M.; Soneda, Y.; Morishita, T. Nitrogen-doped Carbon Materials. Carbon 2018, 132, 104–140. [Google Scholar] [CrossRef]
- Jeon, I.Y.; Noh, H.J.; Baek, J.B. Nitrogen-Doped Carbon Nanomaterials: Synthesis, Characteristics and Applications. Chem. Asian J. 2020, 15, 2282–2293. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Dai, L. Doping of Carbon Materials for Metal-Free Electrocatalysis. Adv. Mater. 2019, 31, 1804672. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, H.Y.; Zhang, X.; Liang, J.X.; Yu, Q.; Xiao, H.; Li, J. Theoretical Understandings of Graphene-Based Metal Single-Atom Catalysts: Stability and Catalytic Performance. Chem. Rev. 2020, 120, 12315–12341. [Google Scholar] [CrossRef] [PubMed]
- Büchele, S.; Chen, Z.; Mitchell, S.; Hauert, R.; Krumeich, F.; Pérez-Ramírez, J. Tailoring Nitrogen-Doped Carbons as Hosts for Single-Atom Catalysts. ChemCatChem 2019, 11, 2812–2820. [Google Scholar] [CrossRef] [Green Version]
- Wei, S.; Li, A.; Liu, J.C.; Li, Z.; Chen, W.; Gong, Y.; Zhang, Q.; Cheong, W.C.; Wang, Y.; Zheng, L.; et al. Direct Observation of Noble Netal Nanoparticles Transforming to Thermally Stable Single Atoms. Nat. Nanotechnol. 2018, 13, 856–861. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.-F.; Xu, Q.-Q.; Qi, J.-L.; Zhou, D.; Zhu, H.-Y.; Yin, J.-Z. Isolated Single Atoms Anchored on N-Doped Carbon Materials as a Highly Efficient Catalyst for Electrochemical and Organic Reactions. ACS Sustain. Chem. Eng. 2020, 8, 14630–14656. [Google Scholar] [CrossRef]
- Shao, L.; Sang, Y.; Huang, J. Imidazole-Based Hyper-Cross-Linked Polymers Derived Porous Carbons for CO2 Capture. Microporous Mesoporous Mater. 2019, 275, 131–138. [Google Scholar] [CrossRef]
- Shao, L.; Liu, M.; Sang, Y.; Zhan, P.; Chen, J.; Huang, J. Nitrogen-Doped Ultrahigh Microporous Carbons Derived from Two Nitrogen-Containing Post-Cross-Linked Polymers for Efficient CO2 Capture. J. Chem. Eng. Data 2020, 65, 2238–2250. [Google Scholar] [CrossRef]
- Ashourirad, B.; Sekizkardes, A.K.; Altarawneh, S.; El-Kaderi, H.M. Exceptional Gas Adsorption Properties by Nitrogen-Doped Porous Carbons Derived from Benzimidazole-Linked Polymers. Chem. Mater. 2015, 27, 1349–1358. [Google Scholar] [CrossRef]
- Ashourirad, B.; Arab, P.; Verlander, A.; El-Kaderi, H.M. From Azo-Linked Polymers to Microporous Heteroatom-Doped Carbons: Tailored Chemical and Textural Properties for Gas Separation. ACS Appl. Mater. Interfaces 2016, 8, 8491–8501. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Li, X.; Li, Y.; Zhu, R.; Pang, H. Applications of Metal-Organic-Framework-Derived Carbon Materials. Adv. Mater. 2019, 31, 1804740. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Shao, Y.; Mei, S.; Lu, Y.; Zhang, M.; Sun, J.K.; Matyjaszewski, K.; Antonietti, M.; Yuan, J. Polymer-Derived Heteroatom-Doped Porous Carbon Materials. Chem. Rev. 2020, 120, 9363–9419. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Xu, M.; Wang, J.; Jin, S.; Tan, B. A Facile Approach to Prepare Multiple Heteroatom-Doped Carbon Materials from Imine-Linked Porous Organic Polymers. Sci. Rep. 2018, 8, 4200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiciński, W.; Budner, B.; Norek, M.; Szala, M.; Polański, M.; Dyjak, S. Origin of Microporosity in Chalcogen-Doped Carbon Materials: The Case of Selenium-Doped Carbogels. Microporous Mesoporous Mater. 2018, 272, 260–264. [Google Scholar] [CrossRef]
- Kiciński, W.; Norek, M.; Dziura, A.; Polański, M. Copolycondensation of Heterocyclic Aldehydes: A General Approach to Sulfur and Nitrogen Dually-Doped Carbon Gels. Microporous Mesoporous Mater. 2016, 225, 198–209. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Hu, H.; Yang, Q.; Cai, J. From Metal-Organic Frameworks to Porous Carbon Materials: Recent Progress and Prospects from Energy and Environmental Perspectives. Nanoscale 2020, 12, 4238–4268. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Park, S.-J. Recent Advances in Preparations and Applications of Carbon Aerogels: A Review. Carbon 2020, 163, 1–18. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, F.; Lin, W.; Zhang, H. Polymer Network-Derived Nitrogen/Sulphur Co-Doped Three-Dimensionally Interconnected Hierarchically Porous Carbon for Oxygen Reduction, Lithium-Ion Battery, and Supercapacitor. RSC Adv. 2019, 9, 36570–36577. [Google Scholar] [CrossRef] [Green Version]
- Boakye, F.O.; Fan, M.; Cai, H.; Zhang, H. Nitrogen-Doped Porous Carbon Derived From Imidazole-Functionalized Polyhedral Oligomeric Silsesquioxane. J. Mater. Sci. 2018, 53, 456–465. [Google Scholar] [CrossRef]
- Sang, X.; Chen, J.; Jing, M.; Shi, G.; Ni, C.; Wang, D.; Jin, W. Sustainable Synthesis of Nitrogen-Doped Porous Carbon With Improved Electrocatalytic Performance for Hydrogen Evolution. N. J. Chem. 2019, 43, 3078–3083. [Google Scholar] [CrossRef]
- Specchia, S.; Atanassov, P.; Zagal, J.H. Mapping Transition Metal-Nitrogen-Carbon Catalysts Performance on the Critical Descriptors Diagram. Curr. Opin. Electrochem. 2021, in press, journal pre-proof. [Google Scholar] [CrossRef]
- Jia, Q.; Jaouen, F.; Myers, D.J.; Cullen, D.A.; Huang, Y.; Mukerjee, S.; Xu, H.; Zhong, S.; Yang, F.; Zhao, Z.; et al. Chemical Vapor Deposition of Fe-N-C Oxygen Reduction Catalysts with Full Utilization of Dense Fe-N4 Sites. ChemRxiv 2020. [Google Scholar] [CrossRef]
- Xu, Y.; Xue, J.; Zhou, Q.; Zheng, Y.; Chen, X.; Liu, S.; Shen, Y.; Zhang, Y. The Fe-N-C Nanozyme with Both Accelerated and Inhibited Biocatalytic Activities Capable of Accessing Drug-Drug Interactions. Angew. Chem. Int. Ed. Engl. 2020, 59, 14498–14503. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Wu, P.; Liu, C.; Chen, M.; Yang, S.; Dang, Z.; Zhu, N. Multiple Catalytic Reaction Sites Induced Non-Radical/Radical Pathway with Graphene Layers Encapsulated Fe-N-C Toward Highly Efficient Peroxymonosulfate (PMS) Activation. Chem. Eng. J. 2020, in press, corrected proof. [Google Scholar] [CrossRef]
- Artyushkova, K. Misconceptions in Interpretation of Nitrogen Chemistry from X-ray Photoelectron Spectra. J. Vac. Sci. Technol. A 2020, 38, 031002. [Google Scholar] [CrossRef] [Green Version]
- Hellgren, N.; Haasch, R.T.; Schmidt, S.; Hultman, L.; Petrov, I. Interpretation of X-ray Photoelectron Spectra of Carbon-Nitride Thin Films: New Insights from In Situ XPS. Carbon 2016, 108, 242–252. [Google Scholar] [CrossRef]
- Ayiania, M.; Smith, M.; Hensley, A.J.R.; Scudiero, L.; McEwen, J.-S.; Garcia-Perez, M. Deconvoluting the XPS Spectra for Nitrogen-Doped Chars: An Analysis from First Principles. Carbon 2020, 162, 528–544. [Google Scholar] [CrossRef]
- Wood, K.N.; Christensen, S.T.; Nordlund, D.; Dameron, A.A.; Ngo, C.; Dinh, H.; Gennett, T.; O’Hayre, R.; Pylypenko, S. Spectroscopic Investigation of Nitrogen-Functionalized Carbon Materials. Surf. Interface Anal. 2016, 48, 283–292. [Google Scholar] [CrossRef]
- Yu, L.; Falco, C.; Weber, J.; White, R.J.; Howe, J.Y.; Titirici, M.M. Carbohydrate-Derived Hydrothermal Carbons: A Thorough Characterization Study. Langmuir 2012, 28, 12373–12383. [Google Scholar] [CrossRef]
- Salinas-Torres, D.; Léonard, A.F.; Stergiopoulos, V.; Busby, Y.; Pireaux, J.-J.; Job, N. Effect of Nitrogen Doping on the Pore Texture of Carbon Xerogels Based on Resorcinol-Melamine-Formaldehyde Precursors. Microporous Mesoporous Mater. 2018, 256, 190–198. [Google Scholar] [CrossRef]
- Eskenazi, D.; Kreit, P.; Pirard, J.-P.; Job, N.; Compère, P. Toward a Continuous Synthesis of Porous Carbon Xerogel Beads. AlChE J. 2018, 64, 1049–1058. [Google Scholar] [CrossRef]
Sample | N (wt.%) | C (wt.%) | H (wt.%) | S (wt.%) | SBET (m2 g−1) | Vt (cm3 g−1) |
---|---|---|---|---|---|---|
CN | 16.56 | 44.73 | 4.61 | - | - | - |
CN–750 | 12.01 | 71.50 | 1.96 | - | 511 | 0.25 |
CN–850 | 9.38 | 76.42 | 1.60 | - | 519 | 0.26 |
CN–950 | 6.47 | 81.20 | 1.27 | - | 505 | 0.24 |
CN(M) | 13.93 | 44.02 | 5.38 | - | - | - |
CN(M)–750 | 9.43 | 74.01 | 2.06 | - | 524 | 0.22 |
CN(M)–850 | 7.24 | 75.57 | 1.90 | - | 520 | 0.23 |
CN(M)–950 | 4.91 | 77.70 | 1.79 | - | 501 | 0.23 |
CNS | 7.40 | 41.72 | 3.55 | 16.44 | - | - |
CNS–750 | 5.18 | 69.65 | 2.10 | 7.22 | 696 | 0.31 |
CNS–850 | 4.17 | 71.31 | 2.06 | 5.50 | 735 | 0.33 |
CNS–950 | 3.11 | 72.77 | 2.05 | 4.02 | 810 | 0.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiciński, W.; Dyjak, S. Nitrogen-Doped Carbons Derived from Imidazole-Based Cross-Linked Porous Organic Polymers. Molecules 2021, 26, 668. https://doi.org/10.3390/molecules26030668
Kiciński W, Dyjak S. Nitrogen-Doped Carbons Derived from Imidazole-Based Cross-Linked Porous Organic Polymers. Molecules. 2021; 26(3):668. https://doi.org/10.3390/molecules26030668
Chicago/Turabian StyleKiciński, Wojciech, and Sławomir Dyjak. 2021. "Nitrogen-Doped Carbons Derived from Imidazole-Based Cross-Linked Porous Organic Polymers" Molecules 26, no. 3: 668. https://doi.org/10.3390/molecules26030668