Comparative Evaluation of Four Extraction Methods of Antioxidant Compounds from Decatropis bicolor in Aqueous Medium Applying Response Surface Design
Abstract
:1. Introduction
2. Results and Discussion
2.1. Design of Experiments and Factors Affecting the Liberation of Phenolic and Antioxidant Compounds of D. bicolor in an Aqueous Medium
2.2. Measures of the Response Variables
2.3. Validation of the Experimental Designs
2.3.1. Conventional Extraction
2.3.2. Ultrasound-Assisted Extraction
2.3.3. Extraction with Microwave
2.3.4. Extraction with French Press
3. Materials and Methods
3.1. Materials and Reagents
3.2. Sample Preparation
3.3. Design of Experiments
3.4. Extraction Methods
3.4.1. Solid-Liquid
3.4.2. Ultrasound-Assisted Extraction
3.4.3. Microwave
3.4.4. French Press
3.5. Measurement of the Response Variables
3.5.1. Antioxidant Activity by DPPH•
3.5.2. Ferric Reducing Antioxidant Power (FRAP)
3.5.3. Total Phenolics by the Folin-Ciocalteu Method
3.6. Optimization and Validation
Confirmatory Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Khoddami, A.; Wilkes, M.A.; Roberts, T.H. Techniques for Analysis of Plant Phenolic Compounds. Molecules 2013, 18, 2328–2375. [Google Scholar] [CrossRef] [PubMed]
- Azwanida, N.N. A Review on the Extraction Methods Use in Medicinal Plants, Principle, Strength and Limitation. J. Med. Aromat Plants 2015, 4, 1–6. [Google Scholar]
- Estanislao, G.C.C.; Aquino, C.A.; Pérez, I.D.G.; San Martín, M.E.; Morales, L.J.; Pérez, H.N.; Gómez, G.M.C. Decatropis bicolor (Zucc.) Radlk essential oil induces apoptosis of the MDA-MB-231 breast cancer cell line. Bmc. Complement Altern. Med. 2016, 16, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Cárdenas, O.N.C.; Pérez, G.S.; Zavala, S.M.A.; Aguirre, R.J.R.; Pérez, G.C. Actividad antifúngica de seis plantas sobre Aspergillus flavus Link. Rev. Mex. Cienc. Farm 2005, 36, 21–26. [Google Scholar]
- García, A.N.A.; Ramírez, A.T.O.; Parra, D.H.; Velázquez, G.; Martínez, V.M. Anti-inflammatory activity of coumarins from Decatropis bicolor on TPA ear mice model. Planta Med. 2000, 66, 279–281. [Google Scholar] [CrossRef] [PubMed]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Demirata, B.; Özyürek, M.; Çelik, S.E.; Bektaşoğlu, B.; Berker, K.I.; Özyurt, D. Comparative Evaluation of Various Total Antioxidant Capacity Assays Applied to Phenolic Compounds with the CUPRAC Assay. Molecules 2007, 12, 1496–1547. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Mumper, R.J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- King, A.; Young, G. Characteristics and occurrence of phenolics phytochemicals. J. Am. Diet Assoc. 1999, 99, 213–218. [Google Scholar] [CrossRef]
- Sultana, B.; Anwar, F.; Ashraf, M. Effect of Extraction Solvent/Technique on the Antioxidant Activity of Selected Medicinal Plant Extracts. Molecules 2009, 14, 2167–2180. [Google Scholar] [CrossRef]
- Singh, A.; Sabally, K.; Kubow, S.; Donnelly, D.J.; Gariepy, Y.; Orsat, V.; Raghavan, G.S.V. Microwave-Assisted Extraction of Phenolic Antioxidants from Potato Peels. Molecules 2011, 16, 2218–2232. [Google Scholar] [CrossRef] [Green Version]
- Zhanga, H.-F.; Yang, X.-H.; Wang, Y. Microwave assisted extraction of secondary metabolites from plants: Current status and future directions. Trends Food Sci. Tech. 2011, 22, 672–688. [Google Scholar] [CrossRef]
- Yang, L.M.; Han, L.L.; Yang, Z. Microwave-Assisted Extraction of Garlic Essential Oil from Garlic. Appl. Mech. Mater. 2012, 117, 1022–1026. [Google Scholar] [CrossRef]
- Mazzutti, S.; Pedrosa, R.C.; Salvador, F.S.R. Green processes in Foodomics. Supercritical Fluid Extraction of Bioactives. Compr. Foodomics 2020, 2, 725–743. [Google Scholar]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A Review. Ultrason Sonochem 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Turrini, F.; Zunin, P.; Catena, S.; Villa, C.; Alfei, S.; Boggia, R. Traditional or hydro-diffusion and gravity microwave coupled with ultrasound as green technologies for the valorization of pomegranate external peels. Food Bioprod. Process 2019, 117, 30–37. [Google Scholar] [CrossRef]
- Turrini, F.; Donno, D.; Beccaro, G.L.; Pittaluga, A.; Grilli, M.; Zunin, P.; Boggia, R. Bud-Derivatives, a Novel Source of Polyphenols and How Different Extraction Processes Affect Their Composition. Foods 2020, 9, 1343. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound Assisted Extraction (UAE) of bioactive compounds from fruits and vegetables processing by-products: A review. Ultrason Sonochem 2021, 70, 1–11. [Google Scholar] [CrossRef]
- Angeloni, G.; Guerrini, L.; Masella, P.; Bellumori, M.; Daluiso, S.; Parenti, A.; Innocenti, M. What kind of coffee do you drink? An investigation on effects of eight different extraction methods. Food Res. Int. 2019, 116, 1327–1335. [Google Scholar] [CrossRef]
- Gloess, A.N.; Schonbachler, B.; Klopprogge, B.; D’Ambrosio, L.; Chatelain, K.; Bongartz, A.; Strittmatter, A.; Rast, M.; Yeretzian, C. Comparison of nine common coffee extraction methods: Instrumental and sensory analysis. Eur. Food Res. Techno. 2013, 236, 607–627. [Google Scholar] [CrossRef] [Green Version]
- Wolska, J.; Janda, K.; Jakubczyk, K.; Szymkowiak, M.; Chlubek, D.; Gutowska, I. Levels of Antioxidant Activity and Fluoride Content in Coffee Infusions of Arabica, Robusta and Green Coffee Beans in According to their Brewing Methods. Biol. Trace Elem. Res. 2017, 179, 327–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, D.P.; Zheng, J.; Zhou, Y.; Li, Y.; Li, S.; Li, H.B. Ultrasound- assisted extraction of natural antioxidants from the flower of Limonium sinuatum: Optimization and comparison with conventional methods. Food Chem. 2017, 217, 552–559. [Google Scholar] [CrossRef]
- Li, S.; Li, S.K.; Gan, R.Y.; Song, F.L.; Kuang, L.; Li, H.B. Antioxidant capacities and total phenolic contents of infusions from 223 medicinal plants. Ind. Crop. Prod. 2013, 51, 289–298. [Google Scholar] [CrossRef]
- Nikolic, M.; Glamoclija, J.; Ferreira, I.C.F.R.; Caldhelha, R.C.; Fernandez, A.; Markovic, T.; Markovic, D.; Giweli, A.; Sokovic, M. Chemical composition, antimicrobial, antioxidant and antitumor activity of Thymus serpyllum L., Thymus algeriensis Boiss and Reut and Thymus vulgaris L. essential oils. Ind. Crop. Prod. 2014, 52, 183–190. [Google Scholar] [CrossRef]
- Rajha, H.N.; Darra, E.N.; Hobaika, Z.; Boussetta, N.; Vorobiev, E.; Mroun, R.G.; Louka, N. Extraction of total phenolic compounds, flavonoids, anthocyanins and tannins from grape by products by response Surface methodology. Influence of solid-liquid ratio, particle size, time, temperature and solvent mixtures on the optimization process. Food Nutr. Sci. 2014, 5, 397–409. [Google Scholar]
- Chen, S.; Zeng, Z.; Hu, N.; Bai, B.; Wang, H.; Suo, Y. Simultaneous optimization of the ultrasound-assisted extraction for phenolic compounds content and antioxidant activity of Lycium ruthenicum Murr. fruit using response surface methodology. Food Chem 2018, 242, 1–8. [Google Scholar] [CrossRef]
- Skotti, E.; Anastasaki, E.; Kanellou, G.; Polissiou, M.; Tarantilis, P.A. Total phenolic content, antioxidant activity and toxicity of aqueous extracts from selected greek medicinal and aromatic plants. Ind. Crop. Prod. 2013, 53, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Hamdy, R.M.H.; Sarhan, A.M.; Hamed, S.K.A.; Khalel, K.I. Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Ind. Crop. Prod. 2013, 43, 827–831. [Google Scholar]
- Shahidi, F.; Zhong, Y. Measurement of antioxidant activity. J. Funct. Foods 2015, 18, 757–781. [Google Scholar] [CrossRef]
- Dhanani, T.; Shah, S.; Gajbhiye, N.A.; Kumar, S. Effect of extraction methods on yield, phytochemical constituents and antioxidant activity of Withania somnifera. Arab. J. Chem. 2017, 10, s1193–s1199. [Google Scholar] [CrossRef] [Green Version]
- Espada-Bellido, E.; Ferreiro-González, M.; Carrera, C.; Palma, M.; Álvarez, J.A.; Barbero, G.F.; Ayuso, J. Extraction of Antioxidants from Blackberry (Rubus ulmifolius L.): Comparison between Ultrasound- and Microwave-Assisted Extraction Techniques. Agronomy 2019, 9, 745. [Google Scholar] [CrossRef] [Green Version]
- Jaimez, O.J.; Martínez, H.J.; Ramírez, G.J.; Castañeda, O.A.; González, O.L.G.; Contreras, L.E. Bioactive compounds in aqueous extracts of lemon balm (Melissa officinalis) cultivated in Mexico. Arch. Lat. Nutr. 2018, 68, 268–279. [Google Scholar]
- Ramírez-Godínez, J.; Jaimez-Ordaz, J.; Castañeda-Ovando, A.; Añorve-Morga, J.; Salazar-Pereda, V.; González-Olivares, L.G.; Contreras-López, E. Optimization of Physical Conditions for the Aqueous Extraction of Antioxidant Compounds from Ginger (Zingiber officinale) Applying a Box-Behnken Design. Plant Foods Hum. Nutr. 2016, 72, 34–40. [Google Scholar] [CrossRef]
- García, C.E.M.; Rodríguez, L.A.D.; Mayor, L.L.; Ballesteros, R.; Conidi, C.; Cassano, A. Optimization of conventional and ultrasound assisted extraction of flavonoids from grapefruit (Citrus paradise L.) solid wastes. LWT 2015, 64, 1114–1122. [Google Scholar]
- Rodríguez, A.I.; Franco, D.; Sánchez, M.; Zapata, C.; Vázquez, J.A. Optimisation of antioxidant extraction from Solanum tuberosum potato peel waste by surface response methodology. Food Chem. 2014, 165, 290–299. [Google Scholar]
- Turkmen, N.; Sari, F.; Velioglu, Y.S. Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin-Ciocalteu methods. Food Chem. 2006, 99, 835–841. [Google Scholar] [CrossRef]
- Yang, L.; Jiang, J.G.; Li, W.F.; Chen, J.; Wang, D.Y.; Zhu, L. Optimum extraction process of polyphenols from the bark of Phyllanthus emblica L. based on the response surface methodology. J. Sep. Sci. 2009, 32, 1437–1444. [Google Scholar] [CrossRef]
- Contreras-López, E.; Castañeda-Ovando, A.; Jaimez-Ordaz, J.; Cruz-Cansino, N.S.; González-Olivares, L.G.; Rodríguez-Martínez, J.S.; Ramírez-Godínez, J. Release of Antioxidant Compounds of Zingiber officinale by Ultrasound-Assisted Aqueous Extraction and Evaluation of Their In Vitro Bioaccessibility. Appl. Sci. 2020, 10, 4987. [Google Scholar] [CrossRef]
- Albu, S.; Joyce, E.; Paniwnyk, L.; Lorimer, J.P.; Mason, T.J. Potential for the use of ultrasound in the extraction of antioxidants from Rosmarinus officinalis for the food and pharmaceutical industry. Ultrason Sonochem 2004, 11, 261–265. [Google Scholar] [CrossRef]
- Bai, X.L.; Yue, T.L.; Yuan, Y.H.; Zhang, H.W. Optimization of microwave-assisted extraction of polyphenols from apple pomace using response surface methodology and HPLC analysis. J. Sep. Sci. 2010, 33, 3751–3758. [Google Scholar] [CrossRef]
- Ballard, T.S.; Mallikarjunan, P.; Zhou, K.; O’Keefe, S. Microwave- assisted extraction of phenolic antioxidant compounds from peanut skins. Food Chem. 2010, 120, 1185–1192. [Google Scholar] [CrossRef]
- Harneet, K.K.; Rajendra, M.; Kamal, K.S.; Roshni, T.; Vivekananda, M. Critical analysis of research trends and issues in microwave assisted extraction of phenolics: Have we really done enough. Trends Anal. Chem. 2016, 85, 140–152. [Google Scholar]
- Dahmoune, F.; Spigno, G.; Moussi, K.; Remini, H.; Cherbal, A.; Madani, K. Pistacia lentiscus leaves as a source of phenolic compounds: Microwave-assisted extraction optimized and compared with ultrasound- assisted and conventional solvent extraction. Ind. Crop. Prod. 2014, 61, 31–40. [Google Scholar] [CrossRef]
- Hayat, K.; Hussain, S.; Abbas, S.; Farooq, U.; Ding, B.; Xia, S.; Jia, C.; Zhang, X.; Xia, W. Optimized microwave-assisted extraction of phenolic acids from citrus mandarin peels and evaluation of antioxidant activity in vitro. Sep. Purif. Technol. 2009, 70, 63–70. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Wang, X.; Zhao, B.; Wu, Y.; Yao, J. A comparison study on microwave-assisted extraction of Artemisia sphaerocephala polysaccharides with conventional method: Molecule structure and antioxidant activities evaluation. Int. J. Biol. Macromol. 2009, 45, 483–492. [Google Scholar] [CrossRef]
- Yedhu, K.R.; Neelesh, C.M.; Vellingiri, V.; Rajan, K.S. Insights on the influence of microwave irradiation on the extraction of flavonoids from Terminalia chebula. Sep. Purif. Technol. 2016, 170, 224–233. [Google Scholar] [CrossRef]
- Yedhu, K.R.; Rajan, K.S. Microwave assisted extraction of flavonoids from Terminalia bellerica. Sep. Purif. Technol. 2015, 157, 169–178. [Google Scholar] [CrossRef]
- Karabegovic, I.T.; Stojicevic, S.S.; Velickovic, D.T.; Todorovic, Z.B.; Nikolic, N.C.; Lazic, M.L. The effect of different extraction techniques on the composition and antioxidant activity of cherry laurel (Prunus laurocerasus) leaf and fruit extracts. Ind. Crop. Prod 2014, 54, 142–148. [Google Scholar] [CrossRef]
- Knorr, D.; Ade-Omowaye, B.I.O.; Heinz, V. Nutritional improvement of plant foods by non-thermal processing. Proc. Nutr. Soc. 2002, 61, 311–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carew, L.A.; Sparrow, M.A.; Curtin, D.C.; Close, C.D.; Dambergs, G.R. Microwave Maceration of pinot noir grape must: Sanitation and extraction effects and wine phenolics outcomes. Food Bioprocess Tech. 2013, 7, 954–963. [Google Scholar] [CrossRef]
- Illy, E. The complexity of coffee. Sci Am. 2002, 286, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Pérez, M.M.; Caemmerer, B.; Paz de Peña, M.; Cid, C.; Kroh, L. Influence of Brewing Method and acidity Regulators on the antioxidant capacity of coffee brews. J Agric. Food Chem. 2010, 50, 2958–2965. [Google Scholar] [CrossRef]
- Oey, I.; Lille, M.; Van Loey, A.; Hendrickx, M. Effect of high-pressure processing on colour, texture and flavour of fruit- and vegetable-based food products: A review. Trends Food Sci. Technol. 2008, 19, 320–328. [Google Scholar] [CrossRef]
- Guo, L.; Zhu, W.; Xu, F.; Liu, M.; Xie, Y.; Zhang, J. Optimized ultrasonic-assisted extraction of polysaccharides from Cyclina sinensis and evaluation of antioxidant activities in vitro. Cyta.-J. Food 2014, 12, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Torres, A.G.A.; Muñoz, B.O.A.; Parrilla, A.E.; Nuñez, G.J.A.; Medrano, W.A.; Sáyago, A.S.G.; De la Rosa, L.A. Optimización de la extracción e identificación de compuestos polifenólicos en anís (Pimpinella anisum), clavo, (Syzygium aromaticum) y cilantro (Coriandrum sativum) mediante HPLC acoplado a espectrometría de masas. Tip Rev. Esp. Cienc. Quím. Biol. 2018, 21, 103–115. [Google Scholar]
- Li, Y.; Skouroumounis, G.K.; Elsey, G.M.; Taylor, D.K. Microwave- assistance provides very rapid and efficient extraction of grape seed polyphenols. Food Chem. 2011, 129, 570–576. [Google Scholar] [CrossRef]
- Routray, W.; Orsat, V. Microwave-assisted extraction of flavonoids: A review. Food Bioprocess Technol 2012, 5, 409–424. [Google Scholar] [CrossRef]
- López, G.I.; De Peña, P.M.; Cid, C. Correlation of selected constituents with the total antioxidant capacity of coffee beverages: Influences of the brewing procedure. J. Agric. Food Chem. 2007, 55, 6110–6117. [Google Scholar] [CrossRef] [PubMed]
- Rocha, S.; Maeztu, L.; Barros, A.; Cid, C.; Coimbra, A.M. Screening and distinction of coffee brews based on headspace solid phase microextraction/gas chromatography/principal component analysis. J. Sci. Food Agric. 2003, 84, 43–51. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chohan, M.; Forster-Wilkins, G.; Opara, E. Determination of the Antioxidant Capacity of Culinary Herbs Subjected to Various Cooking and Storage Processes Using the ABTS*+ Radical Cation Assay. Plant Foods Hum. Nutr. 2008, 63, 47–52. [Google Scholar] [CrossRef] [PubMed]
Extraction Method | Response Variable | R2 | Polynomials |
---|---|---|---|
Conventional | Total phenolics | 0.98 | 1449 + 7.88 A + 37.3 B − 206.5 C + 0.0045 A*A − 0.335 B*B + 11.41 C*C − 0.025 A*B + 0.028 A*C − 2.72B*C |
DPPH• | 0.90 | 109 + 26.1 A + 59.1 B − 130.1 C − 0.1138 A*A −0.913 B*B + 11.97 C*C − 0.280 A*B − 1.259 A*C − 2.14B*C | |
FRAP | 0.99 | 1064.95 − 0.601 A − 2.957 B − 203.33 C + 0.00923 A*A + 0.0728 B*B + 11.485 C*C + 0.00581 A*B − 0.0431 A*C + 0.0460 B*C | |
Ultrasound | Total phenolics | 0.95 | 4095 − 20.9 A − 97.1 B − 560.4 C + 0.386 A*A + 1.468 B*B + 45.49 C*C + 0.460 A*B − 1.796 A*C + 3.86 B*C |
DPPH• | 0.91 | 497 + 5.4 A + 46.2 B − 49.5 C − 0.047 A*A − 1.207 B*B + 4.85 C*C + 0.210 A*B − 0.769 A*C − 1.88 B*C | |
FRAP | 0.98 | 928 + 1.11 A − 13.68 B − 177.2 C − 0.0090 A*A + 0.191 B*B + 10.27 C*C + 0.0885 A*B − 0.186 A*C + 0.579 B*C | |
Microwave | Total phenolics | 0.99 | 5727 − 1.4 D − 942 B − 968.4 C − 0.266 D*D + 253 B*B + 47.96 C*C + 1.71 D*B + 2.25 D*C + 15.0 B*C |
DPPH• | 0.99 | 1044 + 36.6 D − 245 B − 135.3 C − 0.364 D*D + 156 B*B + 8.70 C*C − 1.24 D*B − 1.474 D*C − 19.8 B*C | |
FRAP | 0.99 | 868 + 13.25 D + 131 B − 221.7 C − 0.228 D*D − 59.9 B*B + 9.980 C*C − 2.07 D*B + 0.496 D*C + 12.81 B*C | |
French press | Total phenolics | 0.86 | 7186 + 407 B − 1815 C − 42.6 B*B + 105.8 C*C+ 2.3 B*C |
DPPH• | 0.88 | 1506 + 107 B − 288.5 C − 7.57 B*B + 16.41 C*C − 2.38 B*C | |
FRAP | 0.88 | 1467 + 68 B − 363.4 C − 7.6 B*B + 20.86 C*C + 1.0 B*C |
Extraction Methods | Conditions | mg EGA/100 g | mg ET/100 g | mg EFe2+/100 g | ||
---|---|---|---|---|---|---|
T (°C) | t (min) | Sample (g/100 g) | Mean ± SD | Mean ± SD | Mean ± SD | |
Conventional extraction | 90 | 5 | 6 | 1480.8 ± 5.5 | 532.8 ±1.4 | 247.4 ± 1.8 |
55 | 25 | 10 | 1050.0 ± 2.5 | 522.7 ±0.4 | 142.4 ± 0.1 | |
90 | 15 | 10 | 1380.2 ± 5.2 | 301.5 ±1.2 | 151.2 ± 1.4 | |
55 | 25 | 2 | 2139.0 ± 5.7 | 1234.6 ±2.8 | 679.6 ± 6.3 | |
55 | 15 | 6 | 1296.3 ± 4.8 | 687.3 ±2.9 | 219.8 ± 1.3 | |
20 | 25 | 6 | 1073.0 ± 4.4 | 581.0 ±1.0 | 225.8 ± 2.9 | |
55 | 15 | 6 | 1296.3 ± 1.0 | 691.0 ±0.8 | 219.5 ± 1.4 | |
55 | 5 | 10 | 969.3 ± 1.1 | 516.1 ±0.7 | 138.9 ± 0.8 | |
20 | 15 | 2 | 1596.3 ± 2.9 | 828.9 ±2.8 | 666.5 ± 1.6 | |
90 | 15 | 2 | 2232.2 ± 2.9 | 1511.5 ±5.7 | 691.6 ± 11.1 | |
90 | 25 | 6 | 1547.0 ± 4.8 | 295.5 ±1.0 | 244.5 ± 5.5 | |
55 | 5 | 2 | 1622.8 ± 5.7 | 885.0 ±2.3 | 683.4 ± 8.8 | |
55 | 15 | 6 | 1296.1 ± 2.8 | 689.9 ±2.4 | 220.8 ± 1.7 | |
20 | 5 | 6 | 972.5 ± 1.0 | 424.8 ±1.6 | 236.8 ± 2.0 | |
20 | 15 | 10 | 739.6 ± 5.2 | 314.5 ±3.6 | 144.4 ± 1.6 | |
Ultrasound- assisted extraction | 45 | 15 | 6 | 1257.7 ± 5.7 | 705.4 ± 1.9 | 166.6 ± 3.1 |
45 | 15 | 6 | 1258.4 ± 8.6 | 708.7 ± 9.5 | 165.0 ± 1.4 | |
45 | 15 | 6 | 1261.3 ± 6.1 | 705.4 ± 1.9 | 165.6 ± 2.5 | |
45 | 5 | 10 | 2071.7 ± 1.1 | 508.7 ± 3.1 | 109.9 ± 1.1 | |
70 | 15 | 2 | 2971.0 ± 2.3 | 1215.8 ± 9.6 | 553.2 ± 2.4 | |
70 | 15 | 10 | 2187.6 ± 5.2 | 506.7 ± 0.7 | 135.2 ± 1.4 | |
20 | 15 | 10 | 1845.1 ± 0.9 | 447.6 ± 1.8 | 132.8 ± 2.5 | |
70 | 5 | 6 | 1684.6 ± 1.9 | 292.4 ± 2.2 | 149.9 ± 1.1 | |
45 | 5 | 2 | 2556.4 ± 4.7 | 669.4 ± 8.6 | 633.6 ± 2.4 | |
45 | 25 | 10 | 2019.9 ± 5.3 | 506.5 ± 3.4 | 111.1 ± 1.1 | |
20 | 5 | 6 | 1616.8± 9.6 | 643.4 ± 10.1 | 182.9 ± 0.6 | |
45 | 25 | 2 | 1887.0 ± 5.7 | 968.7 ± 5.3 | 542.2 ± 3.3 | |
70 | 25 | 6 | 1908.1 ±1.9 | 574.5 ± 5.1 | 219.8 ± 2.2 | |
20 | 15 | 2 | 1910.0 ± 2.3 | 848.9 ± 7.8 | 476.5 ± 5.8 | |
20 | 25 | 6 | 1380.1 ± 4.8 | 715.5 ± 7.7 | 164.3 ± 1.0 | |
Extraction with microwave | 30 * | 2 | 2 | 3152.7 ± 2.4 | 1514.8 ± 9.0 | 631.9 ± 1.7 |
20 * | 1.5 | 10 | 693.6 ± 5.6 | 519.4 ± 0.5 | 134.4 ± 1.3 | |
20 * | 1 | 6 | 1135.1 ± 3.9 | 748.9 ± 1.0 | 212.1 ± 3.9 | |
40 * | 1.5 | 10 | 715.6 ± 6.2 | 522.0 ± 0.5 | 129.0 ± 1.3 | |
20 * | 2 | 6 | 1103.0 ± 4.7 | 812.5 ± 1.3 | 213.8 ± 0.7 | |
30 * | 2 | 10 | 712.3 ± 3.7 | 520.6 ± 0.8 | 130.8 ± 1.1 | |
40 * | 1.5 | 2 | 2879.0 ± 8.6 | 1401.6 ± 5.2 | 623.1 ± 5.8 | |
40 * | 2 | 6 | 1226.6 ± 5.8 | 841.5 ± 3.9 | 215.1 ± 0.8 | |
30 * | 1.5 | 6 | 1132.8 ± 5.8 | 812.6 ± 2.6 | 261.0 ± 0.6 | |
30 * | 1.5 | 6 | 1139.2 ± 4.4 | 771.2 ± 1.7 | 263.2 ± 1.8 | |
30 * | 1.5 | 6 | 1134.9 ± 0.3 | 812.6 ± 2.6 | 261.0 ± 0.6 | |
30 * | 1 | 2 | 3280.4 ± 5.8 | 1354.0 ± 1.2 | 733.3 ± 3.6 | |
20 * | 1.5 | 2 | 3217.2 ± 2.9 | 1163.2 ± 5.5 | 707.8 ± 1.8 | |
40 * | 1 | 6 | 1224.5 ± 8.6 | 802.7 ± 4.9 | 254.9 ± 0.4 | |
30 * | 1 | 10 | 719.6 ± 2.8 | 518.0 ± 0.3 | 129.7 ± 0.9 | |
French press | 90 | 0.76 | 6 | 1166.8 ± 2.4 | 557.4 ± 2.8 | 208.9 ± 2.9 |
90 | 5 | 11.7 | 652.3 ± 5.5 | 434.9 ± 1.4 | 110.8 ± 1.0 | |
90 | 5 | 6 | 1153.7 ± 3.4 | 629.0 ± 1.4 | 218.3 ± 1.8 | |
90 | 2 | 2 | 2724.8 ± 10.3 | 861.8 ± 6.5 | 601.7 ± 3.6 | |
90 | 5 | 6 | 1112.5 ± 4.1 | 590.7 ± 2.3 | 211.7 ± 1.6 | |
90 | 5 | 0.34 | 9929.1 ± 41.1 | 2128.2 ± 12.0 | 1920.4 ± 4.8 | |
90 | 9.24 | 6 | 1111.6 ± 2.8 | 682.8 ± 2.2 | 213.5 ± 0.5 | |
90 | 5 | 6 | 1127.9 ± 2.8 | 679.0 ± 2.2 | 220.5 ± 0.8 | |
90 | 8 | 2 | 2647.4 ± 9.4 | 1033.8 ± 7.0 | 550.1 ± 4.9 | |
90 | 8 | 10 | 715.3 ± 4.6 | 519.1 ± 0.6 | 128.2 ± 0.5 | |
90 | 5 | 6 | 1141.0 ± 4.1 | 663.7 ± 3.5 | 219.4 ± 2.0 | |
90 | 2 | 10 | 684.6 ± 2.4 | 461.2 ± 1.4 | 130.3 ± 0.4 | |
90 | 5 | 6 | 1191.3 ± 3.8 | 639.9 ± 1.8 | 217.9 ± 1.1 |
Conventional Extraction | Selected Levels | |||
Control factors | −1 | 0 | 1 | |
A | Temperature (°C) | 20 | 55 | 90 |
B | Time (min) | 5 | 15 | 25 |
C | Sample (g/100 g) | 2 | 6 | 10 |
Ultrasound-assisted extraction | Selected levels | |||
Control factors | −1 | 0 | 1 | |
A | Temperature (°C) | 20 | 45 | 70 |
B | Time (min) | 5 | 15 | 25 |
C | Sample (g/100 g) | 2 | 6 | 10 |
Extraction with microwave | Selected levels | |||
Control factors | −1 | 0 | 1 | |
A | Power (%) | 20 | 30 | 40 |
B | Time (min) | 1 | 1.5 | 2 |
C | Sample (g/100 g) | 2 | 6 | 10 |
French press | Selected levels | |||
A | Time (min) | 0.76 | 9.2 | |
B | Sample (g/100 g) | 0.34 | 11.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaimez-Ordaz, J.; Contreras-López, E.; Hernández-Sánchez, T.; González-Olivares, L.G.; Añorve-Morga, J.; Ramírez-Godínez, J. Comparative Evaluation of Four Extraction Methods of Antioxidant Compounds from Decatropis bicolor in Aqueous Medium Applying Response Surface Design. Molecules 2021, 26, 1042. https://doi.org/10.3390/molecules26041042
Jaimez-Ordaz J, Contreras-López E, Hernández-Sánchez T, González-Olivares LG, Añorve-Morga J, Ramírez-Godínez J. Comparative Evaluation of Four Extraction Methods of Antioxidant Compounds from Decatropis bicolor in Aqueous Medium Applying Response Surface Design. Molecules. 2021; 26(4):1042. https://doi.org/10.3390/molecules26041042
Chicago/Turabian StyleJaimez-Ordaz, Judith, Elizabeth Contreras-López, Tania Hernández-Sánchez, Luis Guillermo González-Olivares, Javier Añorve-Morga, and Juan Ramírez-Godínez. 2021. "Comparative Evaluation of Four Extraction Methods of Antioxidant Compounds from Decatropis bicolor in Aqueous Medium Applying Response Surface Design" Molecules 26, no. 4: 1042. https://doi.org/10.3390/molecules26041042
APA StyleJaimez-Ordaz, J., Contreras-López, E., Hernández-Sánchez, T., González-Olivares, L. G., Añorve-Morga, J., & Ramírez-Godínez, J. (2021). Comparative Evaluation of Four Extraction Methods of Antioxidant Compounds from Decatropis bicolor in Aqueous Medium Applying Response Surface Design. Molecules, 26(4), 1042. https://doi.org/10.3390/molecules26041042