A Significant Change in Free Amino Acids of Soybean (Glycine max L. Merr) through Ethylene Application
Abstract
:1. Introduction
2. Results and Discussion
2.1. Changes in Free Amino Acids after Ethylene Application
2.2. Metabolomic Analysis via GC-MS
3. Materials and Methods
3.1. Plant Material and Experiment Design
3.2. Quantitative Analysis of Free Amino Acids Using HPLC
3.3. Metabolite Extraction and Derivatization for GC-MS Analysis
3.4. GC-MS Analysis
3.5. Data Processing
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ferrando, A.A.; Paddon-Jones, D.; Hays, N.P.; Kortebein, P.; Ronsen, O.; Williams, R.H.; McComb, A.; Symons, T.B.; Wolfe, R.R.; Evans, W. EAA supplementation to increase nitrogen intake improves muscle function during bed rest in the elderly. Clin. Nutr. 2010, 29, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Vianna, D.; Resende, G.F.T.; Torres-Leal, F.L.; Pantaleão, L.C.; Donato, J.; Tirapegui, J. Long-term leucine supplementation reduces fat mass gain without changing body protein status of aging rats. Nutrition 2012, 28, 182–189. [Google Scholar] [CrossRef]
- Huang, S.; Wang, L.M.; Sivendiran, T.; Bohrer, B.M. Review: Amino acid concentration of high protein food products and an overview of the current methods used to determine protein quality. Crit. Rev. Food Sci. Nutr. 2017, 58, 2673–2678. [Google Scholar] [CrossRef]
- Ananieva, E. Targeting amino acid metabolism in cancer growth and anti-tumor immune response. World J. Biol. Chem. 2015, 6, 281. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.H. Dietary supplements and sports performance: Minerals. J. Int. Soc. Sports Nutr. 2005, 2, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tajiri, K.; Shimizu, Y. Branched-chain amino acids in liver diseases. World J. Gastroenterol. 2013, 19, 7620–7629. [Google Scholar] [CrossRef] [PubMed]
- Luzzi, S.D.; Marletta, M.A. L-Arginine analogs as alternate substrates for nitric oxide synthase. Bioorg. Med. Chem. Lett. 2005, 15, 3934–3941. [Google Scholar] [CrossRef]
- Mossmann, D.; Park, S.; Hall, M.N. mTOR signalling and cellular metabolism are mutual determinants in cancer. Nat. Rev. Cancer 2018, 18, 744–757. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Liu, Y.; Pi, D.; Leng, W.; Zhu, H.; Hou, Y.; Li, S.; Shi, H.; Wang, X. Asparagine attenuates hepatic injury caused by lipopolysaccharide in weaned piglets associated with modulation of Toll-like receptor 4 and nucleotide-binding oligomerisation domain protein signalling and their negative regulators. Br. J. Nutr. 2015, 114, 189–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larkin, A.; Imperiali, B. The expanding horizons of asparagine-linked glycosylation. Biochemistry 2011, 50, 4411–4426. [Google Scholar] [CrossRef] [Green Version]
- Rønnestad, I.; Conceição, L.E.C.; Aragão, C.; Dinis, M.T. Free amino acids are absorbed faster and assimilated more efficiently than protein in postlarval senegal sole (solea senegalensis). J. Nutr. 2000, 130, 2809–2812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Huang, R. Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis. Plant Mol. Biol. 2010, 73, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wang, K.; Wu, C.; Zhao, Y.; Yin, X.; Zhang, B.; Grierson, D.; Chen, K.; Xu, C. Effect of ethylene on cell wall and lipid metabolism during alleviation of postharvest chilling injury in peach. Cells 2019, 8, 1612. [Google Scholar] [CrossRef] [Green Version]
- Friedman, M.; Brandon, D.L. Nutritional and health benefits of soy proteins. J. Agric. Food Chem. 2001, 49, 1069–1086. [Google Scholar] [CrossRef]
- Omoni, A.O.; Aluko, R.E. Soybean foods and their benefits: Potential mechanisms of action. Nutr. Rev. 2005, 63, 272–283. [Google Scholar] [CrossRef]
- Kim, J.E.; Jeon, S.M.; Park, K.; Lee, W.; Jeong, T.S.; McGregor, R.A.; Choi, M.S. Does glycine max leaves or garcinia cambogia promote weight-loss or lower plasma cholesterol in overweight individuals: A randomized control trial. Nutr. J. 2011, 10, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, K.; Ohgo, Y.; Katayanagi, Y.; Yasui, K.; Hiramoto, S.; Ikemoto, H.; Nakata, Y.; Miyoshi, N.; Isemura, M.; Ohashi, N.; et al. Anti-inflammatory effects of green soybean extract irradiated with visible light. Sci. Rep. 2014, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.H.; Yuk, H.J.; Park, K.H.; Bae, Y.S. Coumestrol induces senescence through protein kinase CKII inhibition-mediated reactive oxygen species production in human breast cancer and colon cancer cells. Food Chem. 2013, 141, 381–388. [Google Scholar] [CrossRef]
- Yuk, H.J.; Lee, J.H.; Curtis-Long, M.J.; Lee, J.W.; Kim, Y.S.; Ryu, H.W.; Gyoo Park, C.; Jeong, T.-S.; Park, K.H. The most abundant polyphenol of soy leaves, coumestrol, displays potent α-glucosidase inhibitory activity. Food Chem. 2011, 126, 1057–1063. [Google Scholar] [CrossRef]
- Li, H.; Kim, U.H.; Yoon, J.H.; Ji, H.S.; Park, H.M.; Park, H.Y.; Jeong, T.S. Suppression of hyperglycemia and hepatic steatosis by black-soybean-leaf extract via enhanced adiponectin-receptor signaling and AMPK activation. J. Agric. Food Chem. 2019, 67, 90–101. [Google Scholar] [CrossRef]
- Bun, T.; Fai Cheung, R.C.; Ho, J. Biologically active constituents of soybean. In A Comprehensive Survey of International Soybean Research Genetics, Physiology, Agronomy and Nitrogen Relationships; InTech: New York, NY, USA, 2013; Volume i, p. 13. [Google Scholar]
- Kerwin, S.M. Soy saponins and the anticancer effects of soybeans and soy-based foods. Curr. Med. Chem. Anti-Cancer Agents 2004, 4, 263–272. [Google Scholar] [CrossRef]
- Yuk, H.J.; Curtis-Long, M.J.; Ryu, H.W.; Jang, K.C.; Seo, W.D.; Kim, J.Y.; Kang, K.Y.; Park, K.H. Pterocarpan profiles for soybean leaves at different growth stages and investigation of their glycosidase inhibitions. J. Agric. Food Chem. 2011, 59, 12683–12690. [Google Scholar] [CrossRef] [PubMed]
- Yuk, H.J.; Song, Y.H.; Curtis-Long, M.J.; Kim, D.W.; Woo, S.G.; Lee, Y.B.; Uddin, Z.; Kim, C.Y.; Park, K.H. Ethylene induced a high accumulation of dietary isoflavones and expression of isoflavonoid biosynthetic genes in soybean (Glycine max) leaves. J. Agric. Food Chem. 2016, 64, 7315–7324. [Google Scholar] [CrossRef]
- Ban, Y.J.; Song, Y.H.; Kim, J.Y.; Baiseitova, A.; Lee, K.W.; Kim, K.D.; Park, K.H. Comparative investigation on metabolites changes in soybean leaves by ethylene and activation of collagen synthesis. Ind. Crop. Prod. 2020, 154, 112743. [Google Scholar] [CrossRef]
- Der Agopian, R.G.; Fabi, J.P.; Cordenunsi-Lysenko, B.R. Metabolome and proteome of ethylene-treated papayas reveal different pathways to volatile compounds biosynthesis. Food Res. Int. 2020, 131, 108975. [Google Scholar] [CrossRef]
- Marquezi, M.L.; Roschel, H.A.; Dos Santos Costa, A.; Sawada, L.A.; Lancha, A.H. Effect of aspartate and asparagine supplementation on fatigue determinants in intense exercise. Int. J. Sport Nutr. Exerc. Metab. 2003, 13, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Holeček, M. Branched-chain amino acids in health and disease: Metabolism, alterations in blood plasma, and as supplements. Nutr. Metab. (Lond.) 2018, 15, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blomstrand, E. A role for branched-chain amino acids in reducing central fatigue. J. Nutr. 2006, 136, 544S–547S. [Google Scholar] [CrossRef] [Green Version]
- D’Aniello, A. D-Aspartic acid: An endogenous amino acid with an important neuroendocrine role. Brain Res. Rev. 2007, 53, 215–234. [Google Scholar] [CrossRef]
- Khalil, A.; Hardman, L.; O’Brien, P. The role of arginine, homoarginine and nitric oxide in pregnancy. Amino Acids 2015, 47, 1715–1727. [Google Scholar] [CrossRef]
- Boonstra, E.; de Kleijn, R.; Colzato, L.S.; Alkemade, A.; Forstmann, B.U.; Nieuwenhuis, S. Neurotransmitters as food supplements: The effects of GABA on brain and behavior. Front. Psychol. 2015, 6, 6–11. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Gonzalez, A.A.; Grases, F.; Marí, B.; Tomás-Salvá, M.; Rodriguez, A. Urinary phytate concentration and risk of fracture determined by the FRAX index in a group of postmenopausal women. Turk. J. Med. Sci. 2019, 49, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Latchman, D.S. Biochemistry (4th edn). Trends Biochem. Sci. 1995, 20, 488. [Google Scholar] [CrossRef]
- Etienne, A.; Génard, M.; Bugaud, C. A process-based model of TCA cycle functioning to analyze citrate accumulation in pre- and post-harvest fruits. PLoS ONE 2015, 10, 1–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeffery, D.; Smith, C.; Goodenough, P.; Prosser, I.; Grierson, D. Ethylene-independent and Ethylene-dependent biochemical changes in ripening tomatoes. Plant Physiol. 1984, 74, 32–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, R.; Min, C.W.; Kramer, K.; Agrawal, G.K.; Rakwal, R.; Park, K.H.; Wang, Y.; Finkemeier, I.; Kim, S.T. A multi-omics analysis of glycine max leaves reveals alteration in flavonoid and isoflavonoid metabolism upon ethylene and abscisic acid treatment. Proteomics 2018, 18, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Iriti, M.; Rossoni, M.; Borgo, M.; Ferrara, L.; Faoro, F. Induction of resistance to gray mold with benzothiadiazole modifies amino acid profile and increases proanthocyanidins in grape: Primary versus secondary metabolism. J. Agric. Food Chem. 2005, 53, 9133–9139. [Google Scholar] [CrossRef]
- Fiehn, O.; Kopka, J.; Trethewey, R.N.; Willmitzer, L. Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Anal. Chem. 2000, 72, 3573–3580. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the soybean leaves and stems are not aveilable from the authors. |
Amino Acids | Leaves | Stems | ||
---|---|---|---|---|
Control | Treatment | Control | Treatment | |
NEAA a Asp Ser Asn Glu Pro Gly Ala Cys Tyr β-Ala GABA Total | 34 ± 3.5 d 27 ± 5.2 c 78 ± 15 d 21 ± 1.4 c 40 ± 0.7 d 10 ± 0.8 c 85 ± 3.2 b 4 ± 0.5 b 34 ± 5.7 b 13 ± 2.6 b 199 ± 27 b 544 ± 51 c | 290 ± 25 a 131 ± 19 a 1971 ± 25 c 45 ± 6.1 b 259 ± 41 b 21 ± 2.7 a 157 ± 34 a 8 ± 1.4 a 128 ± 21 a 32 ± 7.2 a 436 ± 64 a 3478 ± 270 b | 81 ± 16 c 42 ± 3.3 c 362 ± 76 b 9 ± 1.0 d 147 ± 12 c 4 ± 0.1 d 25 ± 1.0 c ND 16 ± 1.2 b 14 ± 2.5 b 73 ± 4.0 c 774 ± 73 c | 171 ± 25 b 85 ± 14 b 2975 ± 137 a 63 ± 9.3 a 576 ± 41 a 15 ± 2.2 b 50 ± 8.0 c ND 19 ± 3.1 b 39 ± 7.4 a 124 ± 13 c 4124 ± 165 a |
EAA b Thr Val Met Ile Leu Phe Lys His Arg Total | 31 ± 6.8 b 51 ± 6.6 b 7 ± 1.4 b 25 ± 4.9 b 48 ± 7.8 b 35 ± 6.3 c 29 ± 4.7 b 7 ± 0.8 c 20 ± 2.7 c 250 ± 43 c | 72 ± 12 a 240 ± 46 a 20 ± 3.5 a 128 ± 30 a 115 ± 21 a 263 ± 28 a 91 ± 15 a 73 ± 6.8 b 283 ± 23 a 1284 ± 144 a | 19 ± 1.1 b 43 ± 1.5 b ND 19 ± 1.5 b 21 ± 0.5 b 19 ± 2.3 c 14 ± 0.8 b 19 ± 1.5 c 10 ± 1.8 c 164 ± 9 c | 22 ± 4.8 b 87 ± 13 b ND 35 ± 6.7 b 33 ± 2.8 b 162 ± 35 b 17 ± 3.7 b 105 ± 21 a 151 ± 20 b 611 ± 93 b |
Total FAA c | 795 ± 90 b | 4763 ± 407 a | 938 ± 80 b | 4736 ± 251 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ban, Y.J.; Song, Y.H.; Kim, J.Y.; Cha, J.Y.; Ali, I.; Baiseitova, A.; Shah, A.B.; Kim, W.-Y.; Park, K.H. A Significant Change in Free Amino Acids of Soybean (Glycine max L. Merr) through Ethylene Application. Molecules 2021, 26, 1128. https://doi.org/10.3390/molecules26041128
Ban YJ, Song YH, Kim JY, Cha JY, Ali I, Baiseitova A, Shah AB, Kim W-Y, Park KH. A Significant Change in Free Amino Acids of Soybean (Glycine max L. Merr) through Ethylene Application. Molecules. 2021; 26(4):1128. https://doi.org/10.3390/molecules26041128
Chicago/Turabian StyleBan, Yeong Jun, Yeong Hun Song, Jeong Yoon Kim, Joon Yung Cha, Imdad Ali, Aizhamal Baiseitova, Abdul Bari Shah, Woe-Yeon Kim, and Ki Hun Park. 2021. "A Significant Change in Free Amino Acids of Soybean (Glycine max L. Merr) through Ethylene Application" Molecules 26, no. 4: 1128. https://doi.org/10.3390/molecules26041128
APA StyleBan, Y. J., Song, Y. H., Kim, J. Y., Cha, J. Y., Ali, I., Baiseitova, A., Shah, A. B., Kim, W.-Y., & Park, K. H. (2021). A Significant Change in Free Amino Acids of Soybean (Glycine max L. Merr) through Ethylene Application. Molecules, 26(4), 1128. https://doi.org/10.3390/molecules26041128