Progresses in Food Packaging, Food Quality, and Safety—Controlled-Release Antioxidant and/or Antimicrobial Packaging
Abstract
:1. Introduction
2. Types of Active Packaging
3. Controlled-Release Packaging (CRP)
3.1. Active Compounds
3.2. Package Composition and Structure
3.3. CRP System Design
3.4. Micro- and Nano-Materials
3.5. Nanofillers and Nanocomposites
3.6. Modification of Polymer Matrix
3.6.1. Physical Methods/Technologies
3.6.2. Chemical Modification
4. Processing Methods
5. Testing Methods for Performance of Active Food Packaging
5.1. General Methods of Characterization
5.2. Surface Analysis
5.3. Specific Methods
5.4. Antimicrobial Activity
5.5. New Analytical Methods
5.6. Sensory Evaluation
5.7. Release Properties—Migration Methods
6. Mechanisms of Active-Compound Release
6.1. Mathematical Models to Analyze Release Kinetic Data
- (1)
- molecular diffusion of bioactive compound (BC) towards the film/food interface,
- (2)
- mass transfer across the interface, and
- (3)
- dispersion into food or desorption into package headspace.
6.2. Concept of Target Release Rate
7. Different Indicators Used in Food Packaging
7.1. IOSP
7.2. TTIs
- (1)
- critical temperature indicators, which only show whether a product has been exposed to a temperature above, or sometimes below, a reference temperature;
- (2)
- critical TTIs, which indicate the cumulative effect of the time–temperature changes on product quality or safety and when a product has been exposed to a temperature above a reference temperature;
- (3)
- full history indicators, which provide a continuous monitoring of the manner in which the temperature varies with time throughout a product’s history.
7.3. RFID
7.4. Gas Indicators
7.5. Direct Indicators
8. Legislation for Using Packaging Materials
9. New Trends and Necessary Developments
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Hotchkiss, J.H. Food-packaging interactions influencing quality and safety. Food Addit. Contam. 1997, 14, 601–607. [Google Scholar] [CrossRef]
- Begley, T.H. Methods and approaches used by FDA to evaluate the safety of food packaging materials. Food Addit. Contam. 1997, 14, 545–553. [Google Scholar] [CrossRef]
- Li, B.; Kennedy, J.F.; Peng, J.L.; Yie, X.; Xie, B.J. Preparation and performance evaluation of glucomannan–chitosan–nisin ternary antimicrobial blend film. Carbohydr. Polym. 2006, 65, 488–494. [Google Scholar] [CrossRef]
- Vasile, C. Polymeric Nanocomposites and Nanocoatings for Food Packaging: A Review. Materials 2018, 11, 1834. [Google Scholar] [CrossRef] [Green Version]
- Vasile, C.; Râpă, M.; Ştefan, M.; Stan, M.; Macavei, S.; Darie-Niţă, R.N.; Barbu-Tudoran, L.; Vodnar, D.C.; Popa, E.E.; Ştefan, R.; et al. New PLA/ZnO:Cu/Ag bionanocomposites for food packaging. Express Polym. Lett. 2017, 11, 531–544. [Google Scholar] [CrossRef]
- Butnaru, E.; Stoleru, E.; Brebu, M.A.; Darie-Nita, R.N.; Bargan, A.; Vasile, C. Chitosan-Based Bionanocomposite Films Prepared by Emulsion Technique for Food Preservation. Materials 2019, 12, 373. [Google Scholar] [CrossRef] [Green Version]
- Han, J.-W.; Ruiz-Garcia, L.; Qian, J.-P.; Yang, X.-T. Food Packaging: A Comprehensive Review and Future Trends. Compr. Rev. Food Sci. Food Saf. 2018, 17, 860–877. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Qian, J.; Ding, F. Emerging Chitosan-Based Films for Food Packaging Applications. J. Agric. Food Chem. 2018, 66, 395–413. [Google Scholar] [CrossRef]
- Vasile, C.; Darie, R.N.; Cheaburu-Yilmaz, C.N.; Pricope, G.-M.; Bracic, M.; Pamfil, D.; Hitruc, G.E.; Duraccio, D. Low density polyethylene—Chitosan composites. Compos. Part B Eng. 2013, 55, 314–323. [Google Scholar] [CrossRef]
- Almasi, H.; Oskouie, J.M.; Saleh, A. A review on techniques utilized for design of controlled release food active packaging. Crit. Rev. Food Sci. Nutr. 2020, 26, 1–21. [Google Scholar] [CrossRef]
- Shen, M.; Forghani, F.; Kong, X.; Liu, D.; Ye, X.; Chen, S.; Ding, T. Antibacterial applications of metal–organic frameworks and their composites. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1397–1419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zactiti, E.M.; Kieckbusch, T.G. Release of potassium sorbate from active films of sodium alginate crosslinked with calcium chloride. Packag. Technol. Sci. 2009, 2, 349–358. [Google Scholar] [CrossRef]
- Redl, A.; Gontard, N.; Guilbert, S. Determination of sorbic acid diffusivity in edible wheat gluten and lipid based films. J. Food Sci. 1996, 61, 116–120. [Google Scholar] [CrossRef]
- Arabi, S. Polylactic Acid: A Potential Sustainable Bio-Based Controlled Release Packaging Polymer. Ph.D. Thesis, The State University of New Jersey, New Brunswick, NJ, USA, October 2012. [Google Scholar]
- Chen, X.; Chen, M.; Xu, C.; Yam, K.L. Critical review of controlled release packaging to improve food safety and quality. Crit. Rev. Food Sci. Nutr. 2019, 59, 2386–2399. [Google Scholar] [CrossRef] [PubMed]
- Arabi, S.-A.; Chen, X.; Shen, L. Flavor-release food and beverage packaging. In Emerging Food Packaging Technologies; Yam, K.L., Lee, D.S., Eds.; Woodhead Publishing: Cambridge, UK, 2012; pp. 96–107. [Google Scholar]
- Restuccia, D.; Spizzirri, U.G.; Parisi, O.I.; Cirillo, G.; Curcio, M.; Iemma, F.; Puoci, F.; Vinci, G.; Picci, N. New EU regulation aspects and global market of active and intelligent packaging for food industry applications. Food Control 2010, 21, 1425–1435. [Google Scholar] [CrossRef]
- Piringer, O.G. Evaluation of plastics for food packaging. Food Addit. Contam. 1994, 11, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Begley, T.; Castle, L.; Feigenbaum, A.; Franz, R.; Hinrichs, K.; Lickly, T.; Mercea, P.; Milana, M.; O’Brien, A.; Rebre, S.; et al. Evaluation of migration models that might be used in support of regulations for food-contact plastics. Food Addit. Contam. 2005, 22, 73–90. [Google Scholar] [CrossRef] [Green Version]
- Franz, R.; Stormer, A. Migration of Plastic Constituents. In Plastic Packaging: Interactions with Food and Pharmaceuticals, 2nd ed.; Piringer, O.G., Baner, A.L., Eds.; Wiley-VCH: Weinheim, Germany, 2008; pp. 349–417. [Google Scholar]
- Lee, C.H.; An, D.S.; Park, H.J.; Lee, D.S. Wide-spectrum antimicrobial packaging materials incorporating nisin and chitosan in the coating. Packag. Technol. Sci. 2003, 16, 99–106. [Google Scholar] [CrossRef]
- Lee, C.H.; An, D.S.; Lee, S.C.; Park, J.J.; Lee, D.S. A coating for use as an antimicrobial and antioxidative packaging material incorporating nisin and a-tocopherol. J. Food Eng. 2004, 62, 323–329. [Google Scholar] [CrossRef]
- Byrd, S.J. Using antioxidants to increase shelf life of food products. Cereal Foods World 2001, 46, 48–53. [Google Scholar]
- Lehman, S. BHA and BHT Keep Foods Fresh, But Are They Safe? Available online: https://www.verywellfit.com/bha-and-bht-keep-foods-fresh-but-are-they-safe-2506579 (accessed on 21 February 2021).
- Salevic, A.; Prieto, C.; Cabedo, L.; Nedovic, V.; Lagaron, J.M. Physicochemical, Antioxidant and Antimicrobial Properties of Electrospun Poly(ε-caprolactone) Films Containing a Solid Dispersion of Sage (Salvia officinalis L.) Extract. Nanomaterials 2019, 9, 270. [Google Scholar] [CrossRef] [Green Version]
- Sung, S.-Y.; Sin, L.T.; Tee, T.-T.; Bee, S.-T.; Rahmat, A.R.; Rahman, W.A.W.; Tan, A.-C.; Vikhraman, M. Antimicrobial agents for food packaging applications. Trends Food Sci. Technol. 2013, 33, 110–123. [Google Scholar] [CrossRef]
- Sahariah, P.; Másson, M. Antimicrobial Chitosan and Chitosan Derivatives: A Review of the Structure–Activity Relationship. Biomacromolecules 2017, 18, 3846–3868. [Google Scholar] [CrossRef]
- Buonocore, G.G.; Del Nobile, M.A.; Panizza, A.; Corbo, M.R.; Nicolais, L. A general approach to describe the antimicrobial agent release from highly swellable films intended for food packaging applications. J. Control. Release 2003, 90, 97–107. [Google Scholar] [CrossRef]
- Wang, W.; Meng, Q.; Li, Q.; Liu, J.; Zhou, M.; Jin, Z.; Zhao, K. Chitosan Derivatives and Their Application in Biomedicine. Int. J. Mol. Sci. 2020, 21, 487. [Google Scholar] [CrossRef] [Green Version]
- Martins, A.F.; Facchi, S.P.; Follmann, H.D.M.; Pereira, A.G.B.; Rubira, A.F.; Muniz, E.C. Antimicrobial Activity of Chitosan Derivatives Containing N-Quaternized Moieties in Its Backbone: A Review. Int. J. Mol. Sci. 2014, 15, 20800–20832. [Google Scholar] [CrossRef] [PubMed]
- Goya, R.C.; Morais, S.T.B.; Assis, O.B.G. Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Rev. Bras. Farmacogn. 2016, 26, 1. [Google Scholar] [CrossRef] [Green Version]
- Cha, D.S.; Choi, J.H.; Chinnana, M.S.; Park, H.J. Antimicrobial Films Based on Na-alginate and κ-carrageenan. LWT Food Sci. Technol. 2002, 35, 715–719. [Google Scholar] [CrossRef]
- Alavi, M.; Rai, M. Recent progress in nanoformulations of silver nanoparticles with cellulose, chitosan, and alginic acid biopolymers for antibacterial applications. Appl. Microbiol. Biotechnol. 2019, 103, 8669–8676. [Google Scholar] [CrossRef]
- Rinaudo, M. Biomaterials based on a natural polysaccharide: Alginate. TIP 2014, 17, 92–96. [Google Scholar] [CrossRef] [Green Version]
- Vasile, C.; Sivertsvik, M.; Miteluţ, A.C.; Brebu, M.A.; Stoleru, E.; Rosnes, J.T.; Tănase, E.E.; Khan, W.; Pamfil, D.; Cornea, C.P.; et al. Comparative Analysis of the Composition and Active Property Evaluation of Certain Essential Oils to Assess their Potential Applications in Active Food Packaging. Materials 2017, 10, 45. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, S.B.; Vasile, C. Vegetable Additives in Food Packaging Polymeric Materials. Polymers 2020, 12, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasile, C.; Stoleru, E.; Darie-Niţa, R.N.; Dumitriu, R.P.; Pamfil, D.; Tarţau, L. Biocompatible Materials Based on Plasticized Poly(lactic acid), Chitosan and Rosemary Ethanolic Extract I. Effect of Chitosan on the Properties of Plasticized Poly(lactic acid) Materials. Polymers 2019, 11, 941. [Google Scholar] [CrossRef] [Green Version]
- Nerin, C.; Silva, F.; Manso, S.; Becerril, R. The downside of antimicrobial packaging: Migration of packaging elements into food. In Antimicrobial Food Packaging; Jorge-Barros, V., Ed.; Elsevier: San Diego, CA, USA, 2016; pp. 81–90. [Google Scholar]
- Chen, X.; Lee, D.S.; Zhu, X.; Yam, K.L. Release kinetics of tocopherol and quercetin from binary antioxidant controlled-release packaging films. J. Agric. Food Chem. 2012, 60, 3492–3497. [Google Scholar] [CrossRef]
- Said, N.S.; Sarbon, N.M. Protein-Based Active Film as Antimicrobial Food Packaging: A Review. In Active Antimicrobial Food Packaging; IntechOpen: London, UK, 2019; 18p, Available online: https://www.intechopen.com/books/active-antimicrobial-food-packaging/protein-based-active-film-as-antimicrobial-food-packaging-a-review (accessed on 21 February 2021).
- De Villiers, M.M. Antioxidants. In A Practical Guide to Contemporary Pharmacy Practice; Thompson, J.E., Ed.; Lippincott Williams and Wilkins: Hagerstown, MD, USA, 2009; pp. 216–223. [Google Scholar]
- Pisoschi, A.M.; Pop, A.; Cimpeanu, C.; Turcus, V.; Predoi, G.; Iordache, F. Nanoencapsulation techniques for compounds and products with antioxidant and antimicrobial activity—A critical view. Eur. J. Med. Chem. 2018, 157, 1326–1345. [Google Scholar] [CrossRef]
- Rezaei, A.; Fathi, M.; Jafari, S.M. Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocoll. 2019, 88, 146–162. [Google Scholar] [CrossRef]
- Tamjidi, F.; Shahedi, M.; Varshosaz, J.; Nasirpour, A. Stability of astaxanthin-loaded nanostructured lipid carriers in beverage systems. J. Sci. Food Agric. 2018, 98, 511–518. [Google Scholar] [CrossRef]
- Paulo, F.; Santos, L. Inclusion of hydroxytyrosol in ethyl cellulose microparticles: In vitro release studies under digestion conditions. Food Hydrocoll. 2018, 84, 104–116. [Google Scholar] [CrossRef]
- Tavakoli, H.; Hosseini, O.; Jafari, S.M.; Katouzian, I. Evaluation of physicochemical and antioxidant properties of yogurt enriched by olive leaf phenolics within nanoliposomes. J. Agric. Food Chem. 2018, 66, 9231–9240. [Google Scholar] [CrossRef]
- Liu, Y.X.; Fan, Y.T.; Gao, L.Y.; Zhang, Y.Z.; Yi, J. Enhanced pH and thermal stability, solubility and antioxidant activity of resveratrol by nanocomplexation with α-lactalbumin. Food Funct. 2018, 9, 4781–4790. [Google Scholar] [CrossRef] [PubMed]
- Cheong, A.M.; Tan, K.W.; Tan, C.P.; Nyam, K.L. Kenaf (Hibiscus cannabinus L.) seed oil-in-water pickering nanoemulsions stabilized by mixture of sodium caseinate, Tween 20 and β-cyclodextrin. Food Hydrocoll. 2016, 52, 934–941. [Google Scholar] [CrossRef]
- Souza, V.G.L.; Fernando, A.L.; Pires, J.R.A.; Rodrigues, P.F.; Lopes, A.A.S.; Fernandes, F.M.B. Physical properties of chitosan films incorporated with natural antioxidants. Ind. Crop. Prod. 2017, 107, 565–572. [Google Scholar] [CrossRef]
- Shan, B.; Cai, Y.Z.; Brooks, J.D.; Corke, H. The in vitro antibacterial activity of dietary spice and medicinal herb extracts. Int. J. Food Microbiol. 2007, 117, 112–119. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration. Food for Human Consumption, Part 182—Substances Generally Recognized as Safe. Fed. Regist. 2016, 81, 54960–55055. [Google Scholar]
- Gavahian, M.; Chu, Y.-H.; Lorenzo, J.M.; Khaneghah, A.M.; Barba, F.J. Essential oils as natural preservatives for bakery products: Understanding the mechanisms of action, recent findings, and applications. J. Crit. Rev. Food Sci. Nutr. 2020, 60, 310–321. [Google Scholar] [CrossRef]
- Raut, J.S.; Karuppayil, S.M. A status review on the medicinal properties of essential oils. Ind. Crop. Prod. 2014, 62, 250–264. [Google Scholar] [CrossRef]
- Figueroa-Lopez, K.J.; Vicente, A.A.; Reis, M.A.M.; Torres-Giner, S.; Lagaron, J.M. Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers. Nanomaterials 2019, 9, 144, reprinted in Nanomaterials 2020, 158–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel Ghany, T.M. Safe food additives. A review. J. Biol. Chem. Res. 2015, 32, 402–437. [Google Scholar]
- Albertos, I.; Avena-Bustillos, R.J.; Martın-Diana, A.B.; Du, W.-X.; Rico, D.; McHugh, T.H. Antimicrobial Olive Leaf Gelatin films for enhancing the quality of cold-smoked Salmon. Food Packag. Shelf Life 2017, 13, 49–55. [Google Scholar] [CrossRef]
- Choulitoudi, E.; Ganiari, S.; Tsironi, T.; Ntzimani, A.; Tsimogiannis, D.; Taoukis, P.; Oreopoulou, V. Edible coating enriched with rosemary extracts to enhance oxidative and microbial stability of smoked eel fillets. Food Packag. Shelf Life 2017, 12, 107–113. [Google Scholar] [CrossRef]
- Manso, S.; Becerril, R.; Nerin, C.; Gomez-Lus, R. Influence of pH and temperature variations on vapor phase action of an antifungal food packaging against five mold strains. Food Control 2015, 47, 20–26. [Google Scholar] [CrossRef]
- Lopez de Dicastillo, C.; Nerín, C.; Alfaro, P.; Catala, R.; Gavara, R.; Hernandez-Munoz, P. Development of new antioxidant active packaging films based on ethylene vinyl alcohol copolymer (EVOH) and green tea extract. J. Agric. Food Chem. 2011, 59, 7832–7840. [Google Scholar] [CrossRef]
- Dawson, P.; Carl, G.; Acton, J.; Han, I. Effect of lauric acid and nisin-impregnated soy-based films on the growth of Listeria monocytogenes on turkey bologna. Poult. Sci. 2002, 81, 721–726. [Google Scholar] [CrossRef]
- Yang, H.; Wang, J.; Yang, F.; Chen, M.; Zhou, D.; Li, L. Active packaging films from ethylene vinyl alcohol copolymer and clove essential oil as shelf life extenders for grass carp slice. Packag. Technol. Sci. 2016, 29, 383–396. [Google Scholar] [CrossRef]
- Ray, S.; Jin, T.; Fan, X.; Liu, L.; Yam, K.L. Development of chlorine dioxide releasing film and its application in decontaminating fresh produce. J. Food Sci. 2013, 78, M276–M284. [Google Scholar] [CrossRef] [PubMed]
- Pola, C.C.; Medeiros, E.A.A.; Pereira, O.L.; Souza, V.G.L.; Otoni, C.G.; Camilloto, G.P.; Soares, N.F.F. Cellulose acetate active films incorporated with oregano (Origanum vulgare) essential oil and organophilic montmorillonite clay control the growth of phytopathogenic fungi. Food Packag. Shelf Life 2016, 9, 69–78. [Google Scholar] [CrossRef]
- Lopez de Dicastillo, C.; Pezo, D.; Nerın, C.; Lopez-Carballo, G.; Catala, R.; Gavara, R.; Hernandez-Munoz, P. Reducing oxidation of foods through antioxidant active packaging based on ethyl vinyl alcohol and natural flavonoids. Packag. Technol. Sci. 2012, 25, 457–466. [Google Scholar] [CrossRef]
- Moudache, M.; Nerin, C.; Colon, M.; Zaidi, F. Antioxidant effect of an innovative active plastic film containing olive leaves extract on fresh pork meat and its evaluation by Raman spectroscopy. Food Chem. 2017, 229, 98–103. [Google Scholar] [CrossRef]
- Zhu, X.; Schaich, K.; Chen, X.; Yam, K. Antioxidant effects of sesamol released from polymeric films on lipid oxidation in linoleic acid and oat cereal. Packag. Technol. Sci. 2013, 26, 31–38. [Google Scholar] [CrossRef]
- Lee, Y.S.; Shin, H.S.; Han, J.K.; Lee, M.; Giacin, J.R. Effectiveness of antioxidantimpregnated film in retarding lipid oxidation. J. Sci. Food Agric. 2004, 84, 993–1000. [Google Scholar] [CrossRef]
- Koontz, J.L.; Moffitt, R.D.; Marcy, J.E.; O’Keefe, S.F.; Duncan, S.E.; Long, T.E. Controlled release of a-tocopherol, quercetin, and their cyclodextrin inclusion complexes from linear low-density polyethylene (LLDPE) films into a coconut oil model food system. Food Addit. Contam. Part A 2010, 27, 1598–1607. [Google Scholar] [CrossRef]
- Imran, M.M.; Revol-Junelles, A.-M.; Rene, N.; Jamshidian, M.; Akhtar, M.J.; Arab-Tehrany, E.; Jacquot, M.J.; Desobry, S. Microstructure and physico-chemical evaluation of nano-emulsion-based antimicrobial peptides embedded in bioactive packaging films. Food Hydrocoll. 2012, 29, 407–419. [Google Scholar] [CrossRef]
- Wrona, M.; Cran, M.J.; Nerın, C.; Bigger, S.W. Development and characterisation of HPMC films containing PLA nanoparticles loaded with green tea extract for food packaging applications. Carbohydr. Polym. 2017, 156, 108–117. [Google Scholar] [CrossRef]
- Wrona, M.; Nerin, C.; Alfonso, M.J.; Caballero, M.A. Antioxidant packaging with encapsulated green tea for fresh minced meat. Innov. Food Sci. Emerg. Technol. 2017, 41, 307–313. [Google Scholar] [CrossRef] [Green Version]
- Arifin, W.; Kuboki, T. Effects of thermoplastic elastomers on mechanical and thermal properties of glass fiber reinforced poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) composites. Polym. Compos. 2018, 39, E1331–E1345. [Google Scholar] [CrossRef]
- Torres-Giner, S.; Hilliou, L.; Melendez-Rodriguez, B.; Figueroa-Lopez, K.J.; Madalena, D.; Cabedo, L.; Covas, J.A.; Vicente, A.A.; Lagaron, J.M. Melt processability, characterization, and antibacterial activity of compression-molded green composite sheets made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced with coconut fibers impregnated with oregano essential oil. Food Packag. Shelf Life 2018, 17, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Gemili, S.; Yemenicioglu, A.; Altınkaya, S.A. Development of cellulose acetate based antimicrobial food packaging materials for controlled release of lysozyme. J. Food Eng. 2009, 90, 453–462. [Google Scholar] [CrossRef] [Green Version]
- Gemili, S.; Yemenicioglu, A.; Altinkaya, S.A. Development of antioxidant food packaging materials with controlled release properties. J. Food Eng. 2010, 96, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Ouattara, B.; Simard, R.E.; Piette, G.; Begin, A.; Holley, R.A. Diffusion of acetic and propionic acids from chitosan-based antimicrobial packaging films. J. Food Sci. 2000, 65, 768–773. [Google Scholar] [CrossRef]
- Chen, M.-C.; Yeh, G.H.-C.; Chiang, B.-H. Antimicrobial and physicochemical properties of methylcellulose and chitosan films containing a preservative. J. Food Process. Preserv. 1996, 20, 379–390. [Google Scholar] [CrossRef]
- Sharma, R.; Jafari, S.M.; Sharma, S. Antimicrobial bio-nanocomposites and their potential applications in food packaging. Food Control 2020, 112, 107086. [Google Scholar] [CrossRef]
- Slavutsky, A.M.; Bertuzzi, M.A. Improvement of water barrier properties of starch films by lipid nanolamination. Food Packag. Shelf Life 2016, 7, 41–46. [Google Scholar] [CrossRef]
- Granda-Restrepo, D.M.; Soto-Valdez, H.; Peralta, E.; Troncoso-Rojas, R.; Vallejo-Cordoba, B.; Gamez-Meza, N.; Graciano-Verdugo, A.Z. Migration of a-tocopherol from an active multilayer film into whole milk powder. Food Res. Int. 2009, 42, 1396–1402. [Google Scholar] [CrossRef]
- Stoleru, E.; Munteanu, S.B.; Dumitriu, R.P.; Coroaba, A.; Drobotă, M.; Fras Zemljic, L.; Pricope, G.M.; Vasile, C. Polyethylene Materials with Multifunctional Surface Properties by Electrospraying Chitosan/Vitamin E Formulation Destined to Biomedical and Food Packaging Applications. Iran. Polym. J. 2016, 25, 295–307. [Google Scholar] [CrossRef]
- Stoleru, E.; Zaharescu, T.; Hitruc, E.G.; Vesel, A.; Ioanid, E.G.; Coroaba, A.; Safrany, A.; Pricope, G.; Lungu, M.; Schick, C.; et al. Lactoferrin-immobilized surfaces onto functionalized PLA assisted by the gamma-rays and nitrogen plasma to create materials with multifunctional properties. ACS Appl. Mater. Interfaces 2016, 8, 31902–31915. [Google Scholar] [CrossRef] [PubMed]
- Stoleru, E.; Dumitriu, R.P.; Munteanu, B.S.; Zaharescu, T.; Tanase, E.E.; Mitelut, A.; Ailiesei, G.L.; Vasile, C. Novel Procedure to Enhance PLA Surface Properties by Chitosan Irreversible Immobilization. Appl. Surf. Sci. 2016, 367, 407–417. [Google Scholar] [CrossRef]
- Stoleru, E.; Baican, M.C.; Coroaba, A.; Hitruc, G.E.; Lungu, M.; Vasile, C. Plasma-activated fibrinogen coatings onto poly(vinylidene fluoride) surface for improving biocompatibility with tissues. J. Bioact. Comp. Polym. Biomed. Appl. 2016, 31, 91–108. [Google Scholar] [CrossRef]
- Munteanu, B.S.; Pâslaru, E.; Fras Zemljic, L.; Sdrobis, A.; Pricope, G.M.; Vasile, C. Chitosan coatings applied to polyethylene surface to obtain food-packaging materials. Cell. Chem. Technol. 2014, 48, 565–575. [Google Scholar]
- Pâslaru, E.; Fras Zemljic, L.; Bracic, M.; Vesel, A.; Petrinic, I.; Vasile, C. Stability of a Chitosan Layer Deposited onto a Polyethylene Surface. J. Appl. Polym. Sci. 2013, 130, 2444–2457. [Google Scholar] [CrossRef]
- Darie, R.N.; Sdrobiș, A.; Pâslaru, E.; Pricope, G.; Baklavaridis, A.; Munteanu, S.B.; Zuburtikudis, I.; Vasile, C. Effectiveness of chitosan as antimicrobial agent in LDPE/CS composite films as poultry minced meat packaging materials. Cell. Chem. Technol. 2014, 48, 325–336. [Google Scholar]
- Hanusova, K.; Stastna, M.; Votavova, L.; Klaudisova, K.; Dobias, J.; Voldrich, M.; Marek, M. Polymer films releasing nisin and/or natamycin from polyvinyldichloride lacquer coating: Nisin and natamycin migration, efficiency in cheese packaging. J. Food Eng. 2010, 99, 491–496. [Google Scholar] [CrossRef]
- Chollet, E.; Swesi, Y.; Degraeve, P.; Sebti, I. Monitoring nisin desorption from a multi-layer polyethylene-based film coated with nisin loaded HPMC film and diffusion in agarose gel by an immunoassay (ELISA) method and a numerical modeling. Innov. Food Sci. Emerg. Technol. 2009, 10, 208–214. [Google Scholar] [CrossRef]
- Cha, D.S.; Chen, J.; Park, H.J.; Chinnan, M.S. Inhibition of Listeria monocytogenes in tofu by use of a polyethylene film coated with a cellulosic solution containing nisin. Int. J. Food Sci. Technol. 2003, 38, 499–503. [Google Scholar] [CrossRef]
- Guiga, W.; Swesi, Y.; Galland, S.; Peyrol, E.; Degraeve, P.; Sebti, I. Innovative multilayer antimicrobial films made with Nisaplin® or nisin and cellulosic ethers: Physico-chemical characterization, bioactivity and nisin desorption kinetics. Innov. Food Sci. Emerg. Technol. 2010, 11, 352–360. [Google Scholar] [CrossRef]
- Hanusova, K.; Dobias, J.; Kludisovsa, K. Effect of packaging filmsreleasing antimicrobial agents on stability of food products. Czech J. Food Sci. 2009, 27, 347–349. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Xu, H.; Xue, Y.; Huang, R.; Deng, H.; Pan, S. Layer-by-layer immobilization of lysozyme–chitosan–organic rectorite composites on electrospun nanofibrous mats for pork preservation. Food Res. Int. 2012, 48, 784–791. [Google Scholar] [CrossRef]
- Trevino-Garza, M.Z.; García, S.; del Socorro Flores-Gonzalez, M.; Arevalo-Nino, K. Edible Active Coatings Based on Pectin, Pullulan, and Chitosan Increase Quality and Shelf Life of Strawberries (Fragaria ananassa). J. Food Sci. 2015, 80, M1823–M1830. [Google Scholar] [CrossRef]
- Bossi, E.; Tana, F.; Punta, C.; Cigada, A.; De Nardo, L. Flexible hybrid coatings with efficient antioxidation properties. Food Packag. Shelf Life 2016, 10, 106–114. [Google Scholar] [CrossRef]
- Jo, H.J.; Park, K.M.; Na, J.H.; Min, S.C.; Park, K.H.; Chang, P.S.; Han, J. Development of anti-insect food packaging film containing a polyvinyl alcohol and cinnamon oil emulsion at a pilot plant scale. J. Stored Prod. Res. 2015, 61, 114–118. [Google Scholar] [CrossRef]
- Castillo, L.A.; Farenzena, S.; Pintos, E.; Rodrıguez, M.S.; Villar, M.A.; Garcıa, M.A.; Lopez, O.V. Active films based on thermoplastic corn starch and chitosan oligomer for food packaging applications. Food Packag. Shelf Life 2017, 14, 128–136. [Google Scholar] [CrossRef]
- Arrieta, M.P.; García, A.D.; López, D.; Fiori, S.; Peponi, L. Antioxidant Bilayers Based on PHBV and Plasticized Electrospun PLA-PHB Fibers Encapsulating Catechin. Nanomaterials 2019, 9, 346, reprinted in Special Issue. Nanomaterials www.mdpi.com/journal/nanomaterials Lagaron, J.M.; Torres-Giner, S.; Prieto, C. 2020, 103–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diblan, S.; Kaya, S. Potassium sorbate diffusion in multilayerpolymer films: Effects of water activity and pH. J. Food Process. Preserv. 2018, 42, 13544. [Google Scholar] [CrossRef]
- Sukhtezari, S.; Almasi, H.; Pirsa, S.; Zandi, M.; Pirouzifard, M. Development of bacterial cellulose based slow-release active films by incorporation of Scrophularia striata Boiss. extract. Carbohydr. Polym. 2017, 156, 340–350. [Google Scholar] [CrossRef]
- Lu, L.J.; Lu, L.X. Preparation and properties of quercetin incorporated high density polyethylene/low density polyethylene antioxidant multilayer film. Packag. Technol. Sci. 2018, 31, 433–439. [Google Scholar] [CrossRef]
- Quiles-Carrillo, L.; Montanes, N.; Lagaron, J.M.; Balart, R.; Torres-Giner, S. Bioactive multilayer polylactide films with controlled release capacity of gallic acid accomplished by incorporating electrospun nanostructured coatings and interlayers. Appl. Sci. 2019, 9, 533. [Google Scholar] [CrossRef] [Green Version]
- Xia, C.; Wang, W.; Wang, L.; Liu, H.; Xiao, J. Multilayer zein/gelatin films with tunable water barrier property and prolonged antioxidant activity. Food Packag. Shelf Life 2019, 19, 76–85. [Google Scholar] [CrossRef]
- Jayan, H.; Moses, J.A.; Anandharamakrishnan, C. Testing methods for packaging materials. In Bio-Based Materials for Food Packaging; Ahmed, S., Ed.; Springer: Singapore, 2018; pp. 57–79. [Google Scholar] [CrossRef]
- Bumbudsanpharoke, N.; Ko, S. Nanoclays in Food and Beverage Packaging. J. Nanomater. 2019, 2019, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.M.; Lee, M.H.; Ko, J.A.; Kang, D.H.; Bae, H.; Park, H.J. Influence of food with high moisture content on oxygen barrier property of polyvinyl alcohol (PVA)/vermiculite nanocomposite coated multilayer packaging film. J. Food Sci. 2018, 83, 349–357. [Google Scholar] [CrossRef]
- Ye, C.; Chi, H. A review of recent progress in drug and protein. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 83, 233–246. [Google Scholar] [CrossRef]
- Torres-Giner, S.C.; Prieto, C.; Lagaron, J.M. Nanomaterials to Enhance Food Quality, Safety, and Health Impact. Nanomaterials 2020, 10, 1–7, In Nanomaterials to Enhance Food Quality, Safety, and Health Impact. Printed Edition of the Special Issue. Nanomaterials www.mdpi.com/journal/nanomaterials Eds. Lagaron, J.M.; Torres-Giner, S.C; Prieto, C. 2020. [Google Scholar] [CrossRef]
- Assadpour, E.; Jafari, S.M. A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by various nanocarriers. Crit. Rev. Food Sci. Nutr. 2019, 59, 3129–3151. [Google Scholar] [CrossRef]
- Wardhono, E.Y.; Wahyudi, H.; Agustina, S.; Oudet, F.; Pinem, P.M.; Clausse, D.; Saleh, K.; Guenin, E. Ultrasonic Irradiation Coupled with Microwave Treatment for Eco-friendly Process of Isolating Bacterial Cellulose Nanocrystals. Nanomaterials 2018, 8, 859, reprinted in Nanomaterials 2020, 7–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guzman-Puyol, S.; Ceseracciu, L.; Tedeschi, G.; Marras, S.; Scarpellini, A.; Benítez, J.J.; Athanassiou, A.; Heredia-Guerrero, J.A. Transparent and Robust All-Cellulose Nanocomposite Packaging Materials Prepared in a Mixture of Trifluoroacetic Acid and Trifluoroacetic Anhydride. Nanomaterials, 2019; 9, 368, reprinted in Nanomaterials 2020, 21–34. [Google Scholar]
- Castro-Mayorga, J.L.; Fabra, M.J.; Cabedo, L.; Lagaron, J.M. On the use of the electrospinning coating technique to produce antimicrobial polyhydroxyalkanoate materials containing in situ-stabilized silver nanoparticles. Nanomaterials 2017, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Castro Mayorga, J.L.; Fabra Rovira, M.J.; Cabedo Mas, L.; Sánchez Moragas, G.; Lagarón Cabello, J.M. Antimicrobial nanocomposites and electrospun coatings based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and copper oxide nanoparticles for active packaging andcoating applications. J. Appl. Polym. Sci. 2018, 135, 45673. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.; Li, C.; Li, X.; Zhou, M.; Sun, J.; Sheng, F.; Shi, S.; Lu, L. Zinc oxide/silver bimetallic nanoencapsulated in PVP/PCL nanofibres for improved antibacterial activity. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1248–1257. [Google Scholar] [CrossRef] [Green Version]
- Melendez-Rodriguez, B.; Figueroa-Lopez, K.J.; Bernardos, A.; Martínez-Máñez, R.; Cabedo, L.; Torres-Giner, S.; Lagaron, J.M. Electrospun Antimicrobial Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Containing Eugenol Essential Oil Encapsulated in Mesoporous Silica Nanoparticles. Nanomaterials 2019, 9, 227, reprinted in Nanomaterials 2020, 135–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vera, P.; Canellas, E.; Nerín, C. New Antioxidant Multilayer Packaging with Nanoselenium to Enhance the Shelf-Life of Market Food Products. Nanomaterials 2018, 8, 837, reprinted in Nanomaterials 2020, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Cherpinski, A.; Gozutok, M.; Sasmazel, H.T.; Torres-Giner, S.; Lagaron, J.M. Electrospun Oxygen Scavenging Films of Poly(3-hydroxybutyrate) Containing Palladium Nanoparticles for Active Packaging Applications. Nanomaterials 2018, 8, 469, reprinted in Nanomaterials 2020, 65–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherpinski, A.; Szewczyk, P.K.; Gruszczynski, A.; Stachewicz, U.; Lagaron, J.M. Oxygen-Scavenging Multilayered Biopapers Containing Palladium Nanoparticles Obtained by the Electrospinning Coating Technique. Nanomaterials 2019, 9, 262, reprinted in Nanomaterials 2020, 84–102. [Google Scholar] [CrossRef] [Green Version]
- Jampilek, J.; Kos, J.; Kralova, K. Review Potential of Nanomaterial Applications in Dietary Supplements and Foods for Special Medical Purposes. Nanomaterials 2019, 9, 296, reprinted in Nanomaterials 2020, 236–277. [Google Scholar] [CrossRef] [Green Version]
- Rao, P.J.; Naidu, M.M. Nanoencapsulation of Bioactive Compounds for Nutraceutical Food. In Nanoscience in Food and Agriculture 2. Sustainable Agriculture Reviews; Ranjan, S., Dasgupta, N., Lichtfouse, E., Eds.; Springer: Cham, Switzerland, 2016; Volume 21, pp. 129–156. [Google Scholar]
- Corradini, C.; Lantano, C.; Cavazza, A. Innovative analytical tools to characterize prebiotic carbohydrates of functional food interest. Anal. Bioanal. Chem. 2013, 405, 4591–4605. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.L.; Peng, S.F.; Chen, X.; Zhu, Y.Q.; Zou, L.Q.; Liu, W.; Liu, C.M. Pluronics modified liposomes for curcumin encapsulation: Sustained release, stability and bioaccessibility. Food Res. Int. 2018, 108, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Esfanjani, A.F.; Assadpour, E.; Jafari, S.M. Improving the bioavailability of phenolic compounds by loading them within lipid-based nanocarriers. Trends Food Sci. Technol. 2018, 76, 56–66. [Google Scholar] [CrossRef]
- Kong, R.; Xia, Q.; Liu, G.Y. Preparation and characterization of vitamin A palmitate-loaded nanostructured lipid carriers as delivery systems for food products. Adv. Mater. Res. 2011, 236–238, 1818–1823. [Google Scholar] [CrossRef]
- Paucar, O.C.; Tulini, F.L.; Thomazini, M.; Balieiro, J.C.C.; Pallone, E.M.J.A.; Favaro-Trindade, C.S. Production by spray chilling and characterization of solid lipid microparticles loaded with vitamin D3. Food Bioprod. Process. 2016, 100, 344–350. [Google Scholar] [CrossRef]
- Hategekirnana, J.; Masamba, K.G.; Ma, J.G.; Zhong, F. Encapsulation of vitamin E: Effect of physicochemical properties of wall material on retention and stability. Carbohydr. Polym. 2015, 124, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Wen, Y.B.; Huq, T.; Ni, Y.H. Cellulosic nanomaterials in food and nutraceutical ppplications: A review. J. Agric. Food Chem. 2018, 66, 8–19. [Google Scholar] [CrossRef]
- Huq, T.; Fraschini, C.; Khan, A.; Riedl, B.; Bouchard, J.; Lacroix, M. Alginate based nanocomposite formicroencapsulation of probiotic: Effect of cellulose nanocrystal (CNC) and lecithin. Carbohydr. Polym. 2017, 168, 61–69. [Google Scholar] [CrossRef]
- Guo, C.J.; Yin, J.G.; Chen, D.Q. Co-encapsulation of curcumin and resveratrol into novel nutraceutical hyalurosomes nano-food delivery system based on oligo-hyaluronic acid-curcumin polymer. Carbohydr. Polym. 2018, 181, 1033–1037. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.Q.; Tan, C.; Xue, J.; Lou, X.W.; Zhang, X.M.; Feng, B.A. Chitosan/tripolyphosphate-nanoliposomes core-shell nanocomplexes as vitamin E carriers: Shelf-life and thermal properties. Int. J. Food Sci. Technol. 2014, 49, 1367–1374. [Google Scholar] [CrossRef]
- Ge, J.; Yue, P.X.; Chi, J.P.; Liang, J.; Gao, X.L. Formation and stability of anthocyanins-loaded nanocomplexes prepared with chitosan hydrochloride and carboxymethyl chitosan. Food Hydrocoll. 2018, 74, 23–31. [Google Scholar] [CrossRef]
- Acevedo-Fani, A.; Soliva-Fortuny, R.; Martin-Belloso, O. Photo-protection and controlled release of folic acid using edible alginate/chitosan nanolaminates. J. Food Eng. 2018, 229, 72–82. [Google Scholar] [CrossRef]
- Papagiannopoulos, A.; Vlassi, E. Stimuli-responsive nanoparticles by thermal treatment of bovine serum albumin inside its complexes with chondroitin sulfate. Food Hydrocoll. 2019, 87, 602–610. [Google Scholar] [CrossRef]
- Dai, L.; Wei, Y.; Sun, C.X.; Mao, L.K.; McClements, D.J.; Gao, Y.X. Development of protein-polysaccharide-surfactant ternary complex particles as delivery vehicles for curcumin. Food Hydrocoll. 2018, 85, 75–85. [Google Scholar] [CrossRef]
- Kian, L.K.; Jawaid, M. Surface functionalization of cellulose biocomposite for food packaging application In Biopolymers and Biocomposites from Agro-Waste for Packaging Applications; Saba, N., Jawaid, M., Thariq, M., Eds.; Woodhead Publishing, Elsevier: Cambridge, UK, 2021; pp. 255–269. [Google Scholar]
- Razavi, R.; Tajik, H.; Moradi, M.; Molaei, R.; Ezati, P. Antimicrobial, microscopic and spectroscopic properties of cellulose paper coated with chitosan sol-gel solution formulated by epsilon-poly-L-lysine and its application in active food packaging. Carbohydr. Res. 2020, 489, 107912. [Google Scholar] [CrossRef] [PubMed]
- Marrez, D.A.; Abdelhamid, A.E.; Darwesh, O.M. Eco-friendly cellulose acetate green synthesized silver nano-composite as antibacterial packaging system for food safety. Food Packag. Shelf Life 2019, 20, 100302. [Google Scholar] [CrossRef]
- Thiagamani, S.M.K.; Rajini, N.; Siengchin, S.; Varada Rajulu, A.; Hariram, N.; Ayrilmis, N. Influence of silver nanoparticles on the mechanical, thermal and antimicrobial properties of cellulose-based hybrid nanocomposites. Compos. Part B Eng. 2019, 165, 516–525. [Google Scholar] [CrossRef]
- Fathi, M.; Donsi, F.; McClements, D.J. Protein-based delivery systems for the nanoencapsulation of food ingredients. Compr. Rev. Food Sci. 2018, 17, 920–936. [Google Scholar] [CrossRef] [Green Version]
- Ramos, O.L.; Pereira, R.N.; Martins, A.; Rodrigues, R.; Fucinos, C.; Teixeira, J.A.; Pastrana, L.; Malcata, F.X.; Vicente, A.A. Design of whey protein nanostructures for incorporation and release of nutraceutical compounds in food. Crit. Rev. Food Sci. Nutr. 2017, 57, 1377–1393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madalena, D.A.; Ramos, O.L.; Pereira, R.N.; Bourbon, A.I.; Pinheiro, A.C.; Malcata, F.X.; Teixeira, J.A.; Vicente, A.A. In vitro digestion and stability assessment of β-lactoglobulin/riboflavin nanostructures. Food Hydrocoll. 2016, 58, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Ochnio, M.E.; Martinez, J.H.; Allievi, M.C.; Palavecino, M.; Martinez, K.D.; Perez, O.E. Proteins as nano-carriers for bioactive compounds. The case of 7S and 11S soy globulins and folic acid complexation. Polymers 2018, 10, 149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- David, S.; Livney, Y.D. Potato protein based nanovehicles for health promoting hydrophobic bioactives in clear beverages. Food Hydrocoll. 2016, 57, 229–235. [Google Scholar] [CrossRef]
- Ramos-Hernández, J.A.; Ragazzo-Sánchez, J.A.; Calderón-Santoyo, M.; Ortiz-Basurto, R.I.; Prieto, C.; Lagaron, J.M. Use of Electrosprayed Agave Fructans as Nanoencapsulating Hydrocolloids for Bioactives. Nanomaterials 2018, 8, 868, reprinted in Nanomaterials 2020, 278–288. [Google Scholar]
- Peinado, I.; Mason, M.; Romano, A.; Biasioli, F.; Scampicchio, M. Stability of β-carotene in polyethylene oxide electrospun nanofibers. Appl. Surf. Sci. 2016, 370, 111–116. [Google Scholar] [CrossRef]
- Liu, Q.-R.; Wang, W.; Qi, J.; Huang, Q.; Xiao, J. Oregano essential oil loaded soybean polysaccharide films: Effect of Pickering type immobilization on physical and antimicrobial properties. Food Hydrocoll. 2019, 87, 165–172. [Google Scholar] [CrossRef]
- Dammak, I.; Lourenco, R.V.; Amaral Sobral, P.J. Active gelatin films incorporated with Pickering emulsions encapsulating hesperidin: Preparation and physicochemical characterization. J. Food Eng. 2019, 240, 9–20. [Google Scholar] [CrossRef]
- Xiong, Y.; Li, S.; Warner, R.D.; Fang, Z. Effect of oregano essential oil and resveratrol nanoemulsion loaded pectin edible coating on the preservation of pork loin in modified atmosphere. Food Control 2020, 114, 107226. [Google Scholar] [CrossRef]
- Almasi, H.; Azizi, S.; Amjadi, S. Development and characterization of pectin films activated by nanoemulsion and Pickering emulsion stabilized marjoram (Origanum majorana L.) essential oil. Food Hydrocoll. 2020, 99, 105338. [Google Scholar] [CrossRef]
- Norcino, L.; Mendes, J.; Natarelli, C.; Manrich, A.; Oliveira, J.; Mattoso, L. Pectin films loaded with copaiba oil nanoemulsionsfor potential use as bio-based active packaging. Food Hydrocoll. 2020, 106, 105862. [Google Scholar] [CrossRef]
- Hemmatkhah, F.; Zeynali, F.; Almasi, H. Encapsulated cumin seed essential oil-loaded active papers: Characterization and evaluation of the effect on quality attributes of beef hamburger. Food Bioprocess. Technol. 2020, 13, 533–547. [Google Scholar] [CrossRef]
- Li, M.; Zhang, F.; Liu, Z.; Guo, X.; Wu, Q.; Qiao, L. Controlled release system by active gelatin film incorporated with β-cyclodextrin-thymol inclusion complexes. Food Bioprocess. Technol. 2018, 11, 1695–1702. [Google Scholar] [CrossRef]
- Aytac, Z.; Dogan, S.Y.; Tekinay, T.; Uyar, T. Release and antibacterial activity of allyl isothiocyanate/β-cyclodextrin complex encapsulated in electrospun nanofibers. Colloids Surf. B Biointerfaces 2014, 120, 125–131. [Google Scholar] [CrossRef]
- Aytac, Z.; Ipek, S.; Durgun, E.; Tekinay, T.; Uyar, T. Antibacterial electrospun zein nanofibrous web encapsulating thymol/cyclodextrin-inclusion complex for food packaging. Food Chem. 2017, 233, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Aytac, Z.; Kusku, S.I.; Durgun, E.; Uyar, T. Encapsulation of gallic acid/cyclodextrin inclusion complex in electrospun polylactic acid nanofibers: Release behavior and antioxidant activity of gallic acid. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 63, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Aytac, Z.; Kusku, S.I.; Durgun, E.; Uyar, T. Quercetin/β-cyclodextrin inclusion complex embedded nanofibres: Slow release and high solubility. Food Chem. 2016, 197, 864–871. [Google Scholar] [CrossRef]
- Cui, H.; Bai, M.; Lin, L. Plasma-treated poly(ethylene oxide) nanofibers containing tea tree oil/beta-cyclodextrin inclusion complex for antibacterial packaging. Carbohydr. Polym. 2018, 179, 360–369. [Google Scholar] [CrossRef]
- Wu, J.; Wang, J.; Cheng, C.; Chen, L.; Wen, C.; Zhang, Q. Physicochemical, antioxidant, in vitro release, and heat sealing properties of fish gelatin films incorporated with β-cyclodextrin/curcumin complexes for apple juice preservation. Food Bioprocess. Technol. 2018, 11, 447–461. [Google Scholar] [CrossRef]
- Chen, H.; Li, L.; Ma, Y.; Mcdonald, T.P.; Wang, Y. Development of active packaging film containing bioactive components encapsulated in b-cyclodextrin and its application. Food Hydrocoll. 2019, 90, 360–366. [Google Scholar] [CrossRef]
- Buendia, L.; Soto, S.; Ros, M.; Antolinos, V.; Navarro, L.; Sanchez, M.J.; Martınez, G.B.; Lopez, A. Innovative cardboard active packaging with a coating including encapsulated essential oils to extend cherry tomato shelf life. LWT Food Sci. Technol. 2019, 116, 108584. [Google Scholar]
- Buendía-Moreno, L.; Soto-Jover, S.; Ros-Chumillas, M.; Antolinos-López, V.; Navarro-Segura, L.; Sánchez-Martínez, M.J.; Martínez−Hernández, G.B.; López−Gómez, A. An innovative active cardboard box for bulk packaging of fresh bell pepper. Postharvest Biol. Technol. 2020, 164, 1111711. [Google Scholar] [CrossRef]
- Meira, S.M.M.; Zehetmeyer, G.; Scheibel, J.M.; Werner, J.O.; Brandelli, A. Starch-halloysite nanocomposites containing nisin: Characterization and inhibition of Listeria monocytogenes in soft cheese. Food Sci. Technol. 2016, 68, 226–234. [Google Scholar] [CrossRef]
- Echeverria, I.; Lopez-Caballero, M.E.; Gomez-Guillen, M.C.; Mauri, A.N.; Montero, M.P. Active nanocomposite films based on soy proteins-montmorillonite-clove essential oil for the preservation of refrigerated bluefin tuna (Thunnus thynnus) fillets. Int. J. Food Microbiol. 2018, 266, 142–149. [Google Scholar] [CrossRef]
- Campos-Requena, V.H.; Rivas, B.L.; Perez, M.A.; Garrido-Miranda, K.A.; Pereira, E.D. Release of essential oil constituent from thermoplastic starch/layered silicate bionanocomposite film as a potential active packaging material. Eur. Polym. J. 2018, 109, 64–71. [Google Scholar] [CrossRef]
- Jahed, E.; Alizadeh Khaledabad, M.; Rezazad Bari, M.; Almasi, H. Effect of cellulose and lignocellulose nanofibers on the properties of Origanum vulgare ssp. gracile essential oil-loaded chitosan films. React. Funct. Polym. 2017, 117, 70–80. [Google Scholar] [CrossRef]
- Jahed, E.; Alizadeh Khaledabad, M.; Almasi, H.; Hasanzadeh, R. Physicochemical properties of Carum copticum essential oil loaded chitosan films containing organic nanoreinforcements. Carbohydr. Polym. 2017, 164, 325–338. [Google Scholar] [CrossRef]
- Ranjbaryan, S.; Pourfathi, B.; Almasi, H. Reinforcing and release controlling effect of cellulose nanofiber in sodium caseinate films activated by nanoemulsified cinnamon essential oil. Food Packag. Shelf Life 2019, 21, 100341. [Google Scholar] [CrossRef]
- Vahedikia, N.; Garavand, F.; Tajeddin, B.; Cacciotti, I.; Jafari, S.M.; Omidi, T.; Zahedi, Z. Biodegradable zein film composites reinforced with chitosan nanoparticles and cinnamon essential oil: Physical, mechanical, structural and antimicrobial attributes. Colloids Surf. B Biointerfaces 2019, 177, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Dairi, N.; Ferfera-Harrar, H.; Ramos, M.; Garrigos, C.M. Cellulose acetate/AgNPs-organoclay and/or thymol nano-biocomposite films with combined antimicrobial/antioxidant properties for active food packaging use. Int. J. Biol. Macromol. 2019, 121, 508–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammadalinejhad, S.; Almasi, H.; Esmaiili, M. Simultaneous green synthesis and in-situ impregnation of silver nanoparticles into organic nanofibers by Lythrum salicaria extract: Morphological, thermal, antimicrobial and release properties. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 105, 110115. [Google Scholar] [CrossRef] [PubMed]
- Bayazidi, P.; Almasi, H.; Khosrowshahi, A. Immobilization of lysozyme on bacterial cellulose nanofibers: Characteristics, antimicrobial activity and morphological properties. Int. J. Biol. Macromol. Part B 2018, 107, 2544–2551. [Google Scholar] [CrossRef]
- Alizadeh-Sani, M.; Rhim, J.W.; Azizi-Lalabadi, M.; Hemmati-Dinarvand, M.; Ehsani, A. Preparation and characterization of functional sodium caseinate/guar gum/TiO2/cumin essential oil composite film. Int. J. Biol. Macromol. 2020, 145, 835–844. [Google Scholar] [CrossRef] [PubMed]
- Amjadi, S.; Almasi, H.; Ghorbani, M.; Ramazani, S. Reinforced ZnONPs/rosemary essential oil-incorporated zein electrospun nanofibers by j-carrageenan. Carbohydr. Polym. 2020, 232, 115800. [Google Scholar] [CrossRef]
- Amjadi, S.; Almasi, H.; Ghorbani, M.; Ramazani, S. Preparation and characterization of TiO2NPs and betanin loaded zein/sodium alginate nanofibers. Food Packag. Shelf Life 2020, 24, 100504. [Google Scholar] [CrossRef]
- Amjadi, S.; Nazari, M.; Alizadeh, S.A.; Hamishehkar, H. Multifunctional betanin nanoliposomes-incorporated gelatin/chitosan nanofiber/ZnO nanoparticles nanocomposite film for fresh beef preservation. Meat Sci. 2020, 167, 108161. [Google Scholar] [CrossRef]
- Barba, C.; Eguinoa, A.; Mate, J.I. Preparation and characterization of b-cyclodextrin inclusion complexes as a tool of a controlled antimicrobial release in whey protein edible films. LWT Food Sci. Technol. 2015, 64, 1362–1369. [Google Scholar] [CrossRef]
- Perumal, A.B.; Sellamuthu, P.S.; Nambiar, R.B.; Sadiku, E.R.; Adeyeye, O.A. Biocomposite Reinforced with Nanocellulose for Packaging Applications Green Biopolymers and their Nanocomposites. In Green Biopolymers and Their Nanocomposites Materials Horizons: From Nature to Nanomaterials; Gnanasekaran, D., Ed.; Springer: Singapore, 2019; pp. 83–123. [Google Scholar]
- Ghanbarzadeh, B.; Oleyaei, S.A.; Almasi, H. Nanostructured Materials Utilized in Biopolymer-based Plastics for Food Packaging Applications. Crit. Rev. Food Sci. Nutr. 2015, 55, 1699–1723. [Google Scholar] [CrossRef]
- Vasile, C. (Ed.) Polymeric Nanomaterials in Nanomedicine. In Polymeric Nanomaterials for Nanotherapeutics; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–67. [Google Scholar]
- Pamfil, D.; Vasile, C. Responsive Polymeric Nanotherapeutics. In Polymeric Nanomaterials for Nanotherapeutics; Vasile, C., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 67–122. [Google Scholar]
- Ruiz-Rico, M.; Perez-Esteve, E.; Lerma-Garcia, M.J.; Marcos, M.D.; Martinez-Manez, R.; Barat, J.M. Protection of folic acid through encapsulation in mesoporous silica particles included in fruit juices. Food Chem. 2017, 218, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Constantinescu-Aruxandei, D.; Frincu, R.M.; Capra, L.; Oancea, F. Selenium analysis and speciation in dietary supplements based on next-generation selenium ingredients. Nutrients 2018, 10, 1466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres-Giner, S.; Echegoyen, Y.; Teruel-Juanes, R.; Badia, J.D.; Ribes-Greus, A.; Lagaron, J.M. Electrospun Poly(ethylene-co-vinyl alcohol)/Graphene Nanoplatelets Composites of Interest in Intelligent Food Packaging Applications. Nanomaterials 2018, 8, 745, reprinted in Nanomaterials 2020, 180–198. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Huo, X.; Guo, R.; Zhang, Q.; Lin, J. Exploring Protein-Inorganic Hybrid Nanoflowers and Immune Magnetic Nanobeads to Detect Salmonella typhimurium. Nanomaterials 2018, 8, 1006, reprinted in Nanomaterials 2020 199–211. [Google Scholar] [CrossRef] [Green Version]
- Lesiak, A.; Drzozga, K.; Cabaj, J.; Banski, M.; Malecha, K.; Podhorodecki, A. Review. Optical Sensors Based on II-VI Quantum Dots. Nanomaterials 2019, 9, 192, reprinted in Nanomaterials 2020, 212–235. [Google Scholar] [CrossRef] [Green Version]
- Ede, J.D.; Ong, K.J.; Goergen, M.; Rudie, A.; Pomeroy-Carter, C.A.; Shatkin, J.A. Review Risk Analysis of Cellulose Nanomaterials by Inhalation: Current State of Science. Nanomaterials 2019, 9, 337, reprinted in Nanomaterials 2020, 34–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolarova Raskova, Z.; Stahel, P.; Sedlarikova, J.; Musilova, L.; Stupavska, M.; Lehocky, M. The effect of plasma pretreatment and cross-linking degree on the physical and antimicrobial properties of nisin-coated PVA films. Mater. Sci. Eng. C 2018, 11, 1451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muriel-Galet, V.; Talbert, J.N.; Hernandez-Munoz, P.; Gavara, R.; Goddard, J. Covalent immobilization of lysozyme on ethylene vinyl alcohol films for nonmigrating antimicrobial packaging applications. J. Agric. Food Chem. 2013, 61, 6720–6727. [Google Scholar] [CrossRef] [Green Version]
- Wong, L.W.; Hou, C.Y.; Hsieh, C.C.; Chang, C.K.; Wu, Y.S.; Hsieh, C.-W.J.L. Preparation of antimicrobial active packaging film by capacitively coupled plasma treatment. LWT Food Sci. Technol. 2020, 117, 108612. [Google Scholar] [CrossRef]
- Fajardo, P.; Balaguer, M.P.; Gomez-Estaca, J.; Gavara, R.; Hernandez-Munoz, P. Chemically modified gliadins as sustained release systems for lysozyme. Food Hydrocoll. 2014, 41, 53–59. [Google Scholar] [CrossRef]
- Mulla, M.; Ahmed, J.; Al-Attar, H.; Castro-Aguirre, E.; Arfat, Y.A.; Auras, R. Antimicrobial efficacy of clove essential oil infused into chemically modified LLDPE film for chicken meat packaging. Food Control 2017, 73, 663–671. [Google Scholar] [CrossRef]
- Ma, W.; Tang, C.-H.; Yin, S.-W.; Yang, X.-Q.; Qi, J.-R. Genipin-crosslinked gelatin films as controlled releasing carriers of lysozyme. Food Res. Int. 2013, 51, 321–324. [Google Scholar] [CrossRef]
- De Dicastillo, C.L.; Rodrıguez, F.; Guarda, A.; Galotto, M.J. Antioxidant films based on cross-linked methyl cellulose and native Chilean berry for food packaging applications. Carbohydr. Polym. 2016, 136, 1052–1060. [Google Scholar] [CrossRef] [PubMed]
- Benbettaïeb, N.; Karbowiak, T.; Debeaufort, F. Bioactive edible films for food applications: Influence of the bioactive compounds on film structure and properties. Crit. Rev. Food Sci. Nutr. 2019, 59, 1137–1153. [Google Scholar]
- Tavassoli-Kafrani, E.; Shekarchizadeh, H.; Masoudpour-Behabadi, M.H. Development of edible films and coatings from alginates and carrageenans. Carbohydr. Polym. 2016, 137, 360–374. [Google Scholar] [CrossRef] [PubMed]
- Bierhalz, A.C.; da Silva, M.A.; Braga, M.E.; Sousa, H.J.; Kieckbusch, T.G. Effect of calcium and/or barium crosslinking on the physical and antimicrobial properties of natamycin-loaded alginate films. LWT Food Sci. Technol. 2014, 57, 494–501. [Google Scholar] [CrossRef] [Green Version]
- Song, F.; Zhang, L.-M.; Shi, J.-F.; Li, N.-N. Novel casein hydrogels: Formation, structure and controlled drug release. Colloids Surf. B Biointerfaces 2010, 79, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Tormos, C.J.; Abraham, C.; Madihally, S.V. Improving the stability of chitosan-gelatin-based hydrogels for cell delivery using transglutaminase and controlled release of doxycycline. Drug Deliv. Transl. Res. 2015, 5, 575–584. [Google Scholar] [CrossRef]
- De Souza, P.M.; Fernandez, A.; Lopez-Carballo, G.; Gavara, R.; Hernandez-Munoz, P. Modified sodium caseinate films as releasing carriers of lysozyme. Food Hydrocoll. 2010, 24, 300–306. [Google Scholar] [CrossRef]
- Marani, P.L.; Bloisi, G.D.; Petri, D.F. Hydroxypropylmethylcellulose films crosslinked with citric acid for control release of nicotine. Cellulose 2015, 22, 3907–3918. [Google Scholar] [CrossRef]
- Teng, W.; Cappello, J.; Wu, X. Physical crosslinking modulates sustained drug release from recombinant silk-elastinlike protein polymer for ophthalmic applications. J. Control. Release 2011, 156, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Martinez, A.W.; Caves, J.M.; Ravi, S.; Li, W.; Chaikof, E.L. Effects of crosslinking on the mechanical properties, drug release and cytocompatibility of protein polymers. Acta Biomater. 2014, 10, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Bajpai, S.; Bajpai, M.; Shah, F.F. Alginate dialdehyde (AD)-crosslinked casein films: Synthesis, characterization and water absorption behavior. Des. Monomers Polym. 2016, 19, 406–419. [Google Scholar] [CrossRef] [Green Version]
- Rocha-Garcia, D.; Guerra-Contreras, A.; Reyes-Hernandez, J.; Palestino, G. Thermal and kinetic evaluation of biodegradable thermo-sensitive gelatin/poly(ethylene glycol) diamine crosslinked citric acid hydrogels for controlled release of tramadol. Eur. Polym. J. 2017, 89, 42–56. [Google Scholar] [CrossRef]
- Ghorpade, V.S.; Yadav, A.V.; Dias, R.J. Citric acid crosslinked β-cyclodextrin /carboxymethylcellulose hydrogel films for controlled delivery of poorly soluble drugs. Carbohydr. Polym. 2017, 164, 339–348. [Google Scholar] [CrossRef]
- Kanatt, S.R.; Makwana, S.H. Development of active, water resistant carboxymethyl cellulose-poly vinyl alcohol-Aloe vera packaging film. Carbohydr. Polym. 2020, 227, 115303. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.A.; Gonzaga, M.L.; Bastos, M.S.; Magalhaes, H.C.; Benevides, S.D.; Furtado, R.F.; Zambelli, R.A.; Garruti, D.S. Packaging with cashew gum/gelatin/essential oil for bread: Release potential of the citral. Food Packag. Shelf Life 2020, 23, 100431. [Google Scholar] [CrossRef]
- Nascimento, L.G.L.; Casanova, F.; Silva, N.F.N.; de Carvalho Teixeira, A.V.N.; Junior, P.P.S.P.; Vidigal, M.C.T.R.; Stringheta, P.C.; de Carvalho, A.F. Use of a crosslinked casein micelle hydrogel as a carrier for jaboticaba (Myrciaria cauliflora) extract. Food Hydrocoll. 2020, 106, 105872. [Google Scholar] [CrossRef]
- Vasile, C. Radiation mediated bioactive compound immobilization on polymers to obtain multifunctional food packaging materials. In Proceedings of the International Conference on Applications of Radiation Science and Technology, ICARST ’2017, Vienna, Austria, 24–28 April 2017; Available online: https://media.superevent.com/documents/20170425/8584c618df6eb47383529f034c356728/c.-vasile.pdf (accessed on 21 February 2021).
- Vasle, C. Project: Improving food safety through the development and implementation of active and biodegradable food packaging systems (ACTIBIOSAFE) 1SEE/30.06.2014. Project final results and courses sustained by Vasile, C. Projects financed under health & food safety and renewable energy domains. Programe RO14 “Research within Priority Sectors” RO14 “Research within Priority Sectors”. In Proceedings of the Committee Meeting Iasi, Iasi, Romania, 24 October 2017. [Google Scholar]
- Heidemann, H.M.; Dotto, M.E.R.; Laurindo, J.B.; Carciofi, B.A.M.; Costa, C. Cold plasma treatment to improve the adhesion of cassava starch films onto PCL and PLA surface. Colloids Surf. A Physicochem. Eng. Asp. 2019, 580, 123739. [Google Scholar] [CrossRef]
- Honarvar, Z.; Farhoodi, M.; Khani, M.R.; Mohammadi, A.; Shokri, B.; Ferdowsi, R.; Shojaee-Aliabadi, S. Application of cold plasma to develop carboxymethyl cellulose-coated polypropylene films containing essential oil. Carbohydr. Polym. 2017, 176, 1–10. [Google Scholar] [CrossRef]
- Ren, Y.; Ding, Z.; Wang, C.; Zang, C.; Zhang, Y.; Xu, L. Influence of DBD plasma pretreatment on the deposition of chitosan onto UHMWPE fiber surfaces for improvement of adhesion and dyeing properties. Appl. Surf. Sci. 2017, 396, 1571–1579. [Google Scholar] [CrossRef]
- Lee, K.T. Quality and safety aspects of meat products as affected by various physical manipulations of packaging materials. Meat Sci. 2010, 86, 138–150. [Google Scholar] [CrossRef]
- Deng, L.; Li, X.; Miao, K.; Mao, X.; Han, M.; Li, D.; Mu, C.; Ge, L. Development of disulfide bond crosslinked gelatine-polylysine active edible film with antibacterial and antioxidant activities. Food Bioprocess. Technol. 2020, 13, 577–588. [Google Scholar] [CrossRef]
- Menzel, C.; Olsson, E.; Plivelic, T.S.; Andersson, R.; Johansson, C.; Kuktaite, R.; Jearnstreom, L.; Koch, K. Molecular structure of citric acid cross-linked starch films. Carbohydr. Polym. 2013, 96, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Zumbrunnen, D.A.; Subrahmanian, R.; Kulshreshtha, B.; Mahesha, C. Smart blending technology enabled by chaotic advection. Adv. Polym. Technol. 2006, 25, 152–169. [Google Scholar] [CrossRef]
- LaCoste, A.; Schaich, K.M.; Zumbrunnen, D.; Yam, K.L. Advancing controlled release packaging through smart blending. Packag. Technol. Sci. 2005, 18, 77–87. [Google Scholar] [CrossRef]
- Jeong, Y.-J.; Kim, M.-K.; Song, H.-J.; Kanga, E.-J.; Ock, S.-A.; Kumara, B.M.; Balasubramaniana, S.; Rhoa, G.-J. Effect of α-tocopherol supplementation during boar semen cryopreservation on sperm characteristics and expression of apoptosis related genes. Cryobiology 2009, 58, 181–189. [Google Scholar] [CrossRef]
- Li, X.Y.; Chen, X.G.; Sun, Z.W.; Park, H.J.; Cha, D.S. Preparation of alginate/chitosan/carboxymethyl chitosan complex microcapsules and application in Lactobacillus casei ATCC 393. Carbohydr. Polym. 2011, 83, 1479–1485. [Google Scholar] [CrossRef]
- Zuidam, N.J.; Shimoni, E. Overview of microencapsulates for use in food products or processes and methods to make them. In Encapsulation Technologies for Active Food Ingredients and Food Processing; Zuidam, N.J., Nedovic, V., Eds.; Springer: New York, NY, USA, 2010; Volume 1, pp. 3–29. [Google Scholar]
- Nedovic, V.; Kalusevic, A.; Manojlovic, V.; Levic, S.; Bugarski, B. An overview of encapsulation technologies for food applications. Procedia Food Sci. 2011, 1, 1806–1815. [Google Scholar] [CrossRef] [Green Version]
- Murugesan, R.; Orsat, V. Spray drying for the production of nutraceutical ingredients—A review. Food Bioprocess. Technol. 2011, 5, 3–14. [Google Scholar] [CrossRef]
- Anandharamakrishnan, C.; Ishwarya, P. Spray Drying Techniques for Food Ingredient Encapsulation; IFT Press, Wiley Blackwell: Chicago, IL, USA, 2015; 525p. [Google Scholar]
- Jafari, S.M.; McClements, D.J. Nanoemulsions: Formulation, Applications, and Characterization; Academic Press: San Diego, CA, USA, 2018. [Google Scholar]
- Pâslaru Stoleru, E.; Munteanu, B.S.; Vasile, C. Electrospun Nanostructures as Biodegradable Composite Materials for Biomedical Applications. In Biodegradable Polymeric Nanocomposites Advances in Biomedical Applications; Depan, D., Ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2016. [Google Scholar]
- Munteanu, B.S.; Vasile, C. Electrospun Polymeric Nanostructures With Applications in Nanomedicine. In Polymeric Nanomaterials for Nanotherapeutics; Vasile, C., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 261–299. [Google Scholar]
- Aytac, Z.; Keskin, N.O.S.; Tekinay, T.; Uyar, T. Antioxidant α-tocopherol/γ-cyclodextrin–inclusion complex encapsulated poly(lactic acid) electrospun nanofibrous web for food packaging. J. Appl. Polym. Sci. 2017, 134. [Google Scholar] [CrossRef]
- Munteanu, B.S.; Aytac, Z.; Pricope, G.M.; Uyar, T.; Vasile, C. Polylactic acid (PLA)/Silver-NP/Vitamin E bionanocomposite electrospun nanofibers with antibacterial and antioxidant activity. J. Nanoparticles Res. 2014, 16, 2643. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.; Chiang, S.W.; Chu, X.; Du, H.; Li, J.; Gan, L.; Xu, C.; Yao, Y.; He, Y.; Li, B.; et al. Effects of solvent on structures and properties of electrospun poly(ethylene oxide) nanofibers. J. Appl. Polym. Sci. 2018, 135, 45787. [Google Scholar] [CrossRef]
- Li, F.; Zhao, Y.; Song, Y. Core-Shell Nanofibers: Nano-Channel and Capsule by Coaxial Electrospinning. In Nanofibers; Kumar, A., Ed.; IntechOpen: London, UK, 2010; pp. 419–438. [Google Scholar]
- Vasile, C.; Tudorachi, N.; Zaharescu, T.; Darie-Nița, R.N.; Cheaburu-Yilmaz, C.N. Study on Thermal Behavior of Some Biocompatible and Biodegradable Materials Based on Plasticized PLA, Chitosan, and Rosemary Ethanolic Extract. Int. J. Polym. Sci. 2020, 11–12, 1–18. [Google Scholar] [CrossRef]
- Vogler, E.A. Structure and reactivity of water at biomaterial surfaces. Adv. Colloid Interface Sci. 1998, 74, 69–117. [Google Scholar] [CrossRef]
- Vasile, C.; Pascu, M.C. (Eds.) Surface Properties of Polymers; Research Signpost: Kerala, India, 2008. [Google Scholar]
- Issart, A.; Godin, S.; Preud’homme, H.; Bierla, K.; Allal, A.; Szpunar, J. Direct screening of food packaging materials for post-polymerization residues, degradation products and additives by liquid extraction surface analysis nanoelectrospray mass spectrometry (LESA-nESI-MS). Anal. Chim. Acta 2019, 1058, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Aznar, M.; Alfaro, P.; Nerín, C.; Jones, E.; Riches, E. Progress in mass spectrometry for the analysis of set-off phenomena in plastic food packaging materials. J. Chromatogr. A 2016, 1453, 124–133. [Google Scholar] [CrossRef]
- Anukiruthika, T.; Sethupathy, P.; Wilson, A.; Kashampur, K.; Moses, J.A.; Anandharamakrishnan, C. Multilayer packaging: Advances in preparation techniques and emerging food applications. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1156–1186. [Google Scholar] [CrossRef] [Green Version]
- Andre, C.; Castanheira, I.; Cruz, J.M.; Paseiro, P.; Sanches-Silva, A. Analytical strategies to evaluate antioxidants in food: A review. Trends Food Sci. Technol. 2010, 21, 229–246. [Google Scholar] [CrossRef]
- Van den Berg, R.; Haenen, G.R.M.M.; van den Berg, H.; Bast, A. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem. Anal. Nutr. Clin. Methods Sect. 1999, 66, 511–517. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Rawdkuen, S.; Suthiluk, P.; Kamhangwong, D.; Benjakul, S. Antimicrobial activity of some potential activecompounds against food spoilage microorganisms. Afr. J. Biotechnol. 2012, 11, 13914–13921. [Google Scholar] [CrossRef] [Green Version]
- Lucera, A.; Conte, A.; Del Nobile, M.A. Volatile compounds usage in active packaging systems. In Antimicrobial Food Packaging; Barros-Velázquez, J., Ed.; Academic Press: San Diego, CA, USA, 2016; pp. 319–327. [Google Scholar]
- Souza Silva, E.A.; Risticevic, S.; Pawliszyn, J. Recent trends in SPME concerning sorbent materials, configurations and in vivo applications. TrAC Trends Anal. Chem. 2013, 43, 24–36. [Google Scholar] [CrossRef]
- Ruvalcaba, J.E.; Durán-Guerrero, E.; Barroso, C.G.; Castro, R. Development of a stir bar sorptive extraction method to study different beer styles volatile profiles. Food Res. Int. 2019, 126, 108680. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, É.C.; Echegoyen, Y.; Cruz, S.A.; Nerin, C. Comparison between solid phase microextraction (SPME) and hollow fiber liquid phase microextraction (HFLPME) for determination of extractables from post-consumer recycled PET into food simulants. Talanta 2014, 127, 59–67. [Google Scholar] [CrossRef]
- Aznar, M.; Alfaro, P.; Nerin, C.; Kabir, A.; Furton, K.G. Fabric phase sorptive extraction: An innovative sample preparation approach applied to the analysis of specific migration from food packaging. Anal. Chim. Acta 2016, 936, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Otoukesh, M.; Nerín, C.; Aznar, M.; Kabir, A.; Furton, K.G.; Eshaghi, Z. Determination of adhesive acrylates in recycled polyethylene terephthalate by fabric phase sorptive extraction coupled to ultra performance liquid chromatography-mass spectrometry. J. Chromatogr. A 2019, 1602, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Vera, P.; Canellas, E.; Nerín, C. Compounds responsible for off-odors in several samples composed by polypropylene, polyethylene, paper and cardboard used as food packaging materials. Food Chem. 2019, 309, 125792. [Google Scholar] [CrossRef] [PubMed]
- Kassouf, A.; El Rakwe, M.; Chebib, H.; Ducruet, V.; Rutledge, D.N.; Maalouly, J. Independent components analysis coupled with 3D-front-face fluorescence spectroscopy to study the interaction between plastic food packaging and olive oil. Anal. Chim. Acta 2014, 839, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Vera, P.; Canellas, E.; Nerín, C. Identification of non volatile migrant compounds and NIAS in polypropylene films used as food packaging characterized by UPLC-MS/QTOF. Talanta 2018, 188, 750–762. [Google Scholar] [CrossRef]
- Canellas, E.; Nerín, C.; Moore, R.; Silcock, P. New UPLC coupled to mass spectrometry approaches for screening of non-volatile compounds as potential migrants from adhesives used in food packaging materials. Anal. Chim. Acta 2010, 666, 62–69. [Google Scholar] [CrossRef]
- Wrona, M.; Nerín, C. Analytical Approaches for Analysis of Safety of Modern Food Packaging. Molecules 2020, 25, 752. [Google Scholar] [CrossRef] [Green Version]
- Úbeda, S.; Aznar, M.; Vera, P.; Nerín, C.; Henríquez, L.; Taborda, L.; Restrepo, C. Overall and specific migration from multilayer high barrier food contact materials—Kinetic study of cyclic polyester oligomers migration. Food Addit. Contam. Part. A 2017, 34, 1784–1794. [Google Scholar] [CrossRef] [PubMed]
- Gavril, G.-L.; Wrona, M.; Bertella, A.; Swieca, M.; Râpa, M.; Salafranca, J.; Nerín, C. Influence of medicinal and aromatic plants into risk assessment of a new bioactive packaging based on polylactic acid (PLA). Food Chem. Toxicol. 2019, 132, 1–11. [Google Scholar] [CrossRef]
- Becerril, R.; Manso, S.; Nerín, C. Metabolites identified as interaction products between EOs from food packaging and selected microorganisms. LWT Chem. Food Sci. Technol. 2019, 116, 108518. [Google Scholar] [CrossRef]
- Frankel, E.N. Oxidation of polyunsaturated lipids and its nutritional significance. Abs. Pap. Am. Chem. Soc. 1994, 208, 51. [Google Scholar]
- Osorio, J.; Aznar, M.; Nerín, C. Identification of key odorant compounds in starch-based polymers intended for food contact materials. Food Chem. 2019, 285, 39–45. [Google Scholar] [CrossRef]
- De la Calle, I.; Menta, M.; Klein, M.; Séby, F. Study of the presence of micro- and nanoparticles in drinks and foods by multiple analytical techniques. Food Chem. 2018, 266, 133–145. [Google Scholar] [CrossRef]
- Irvine, A. EU Regulation 10/2011. Available online: https://www.smithers.com/resources/2016/jul/migration-testing-simulants (accessed on 21 February 2021).
- Bailey, A.; Batarseh, L.; Begley, T.; Twaroski, M. US FDA Food Contact Materials Regulations. In Plastic Packaging: Interactions with Food and Pharmaceuticals; Piringer, O.G., Baner, A.L., Eds.; Wiley-VCH: Weinheim, Germany, 2008; pp. 417–438. [Google Scholar]
- Hernández-Munoz, P.; Catalá, R.; Gavara, R. Simple method for the selection of the appropriate food simulant for the evaluation of a specific food/packaging interaction. J. Food Addit. Contam. 2002, 19 (Suppl. S1), 192–200. [Google Scholar] [CrossRef]
- Official Journal of the European Union, Commission Regulation (EC) No 450/2009 of 29 May 2009 on active and intelligent materials and articles intended to come into contact with food. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:135:0003:0011:EN:PDF (accessed on 21 February 2021).
- Störmer, A.; Bott, J.; Kemmer, D.; Franz, R. Review Critical review of the migration potential of nanoparticles in food contact plastics. Trends Food Sci. Technol. 2017, 63, 39–50. [Google Scholar] [CrossRef]
- Franz, R. Migration modelling from food-contact plastics into foodstufs as a new tool for consumer exposure estimation. Food Addit. Contam. 2005, 22, 920–937. [Google Scholar] [CrossRef]
- Mastromatteo, M.; Mastromatteo, M.; Conte, A.; Del Nobile, M.A.J. Advances in controlled release devices for food packaging applications. Trends Food Sci. Technol. 2010, 21, 591–598. [Google Scholar] [CrossRef]
- Lee, D.S.; Yam, K.L.; Piergiovanni, L. Migration and food packaging interactions. In Food Packaging Science and Technology; Lee, D.S., Yam, K.L., Piergiovanni, L., Eds.; CRC Press: New York, NY, USA, 2008; pp. 109–138. [Google Scholar]
- Mercea, P. Models for Diffusion in Polymers. In Plastic Packaging: Interactions with Food and Pharmaceuticals, 2nd ed.; Piringer, O.G., Baner, A.L., Eds.; Wiley-VCH: Weinheim, Germany, 2008; pp. 123–163. [Google Scholar]
- Piringer, O. A Uniform Model for Prediction of Diffusion Coefficients with Emphasis on Plastic Materials. In Plastic Packaging: Interactions with Food and Pharmaceuticals, 2nd ed.; Piringer, O.G., Baner, A.L., Eds.; Wiley-VCH: Weinheim, Germany, 2008; pp. 163–195. [Google Scholar]
- Tosa, V.; Mercea, P. Solution of the Diffusion Equation for Multilayer Packaging. In Plastic Packaging: Interactions with Food and Pharmaceuticals, 2nd ed.; Piringer, O.G., Baner, A.L., Eds.; Wiley-VCH: Weinheim, Germany, 2008; pp. 247–263. [Google Scholar]
- Peppas, N.A. Analysis of Fickian and non-Fickian drug release from polymers. Pharm. Acta Helv. 1985, 60, 110–111. [Google Scholar]
- Poças, M.F.; Oliveira, J.C.; Oliveira, F.A.R.; Hogg, T. A critical survey of predictive mathematical models for migration from packaging. Crit. Rev. Food Sci. Nutr. 2008, 48, 913–928. [Google Scholar] [CrossRef]
- Conte, A.; Lecce, L.; Iannetti, M.; Nobile, M.A. Study on the Influence of Bio-Based Packaging System on Sodium Benzoate Release Kinetics. Foods 2020, 9, 1010. [Google Scholar] [CrossRef]
- Lee, D.S.; Yam, K.L. Effect of tocopherol loading and diffusivity on effectiveness of antioxidant packaging. CyTA J. Food 2013, 11, 89–93. [Google Scholar] [CrossRef]
- Rossi, L. Community Legislation on Materials and Articles Intended to Come into Contact with Foodstuffs. In Plastic Packaging: Interactions with Food and Pharmaceuticals, 2nd ed.; Piringer, O.G., Baner, A.L., Eds.; Wiley-VCH: Weinheim, Germany, 2008; pp. 441–499. [Google Scholar]
- Mercea, P.; Petrescu, L.; Piringer, O.; Tosa, V. User-Friendly Software for Migration Estimations. In Plastic Packaging: Interactions with Food and Pharmaceuticals, 2nd ed.; Piringer, O.G., Baner, A.L., Eds.; Wiley-VCH: Weinheim, Germany, 2008; pp. 263–297. [Google Scholar]
- Centre for Wood Science & Technology. Institute for Sustainable Construction; Edinburgh Napier University. Available online: https://blogs.napier.ac.uk/cwst/carmen-mihaela-popescu/ (accessed on 21 February 2021).
- Yu, W.X.; Hu, C.Y.; Wang, Z.W. Release of Potassium Sorbate from Pectin/Carboxymethyl Cellulose Films into Food Simulant. J. Food Process. Preserv. 2017, 41. [Google Scholar] [CrossRef]
- Colin-Chavez, C.; Soto-Valdez, H.; Peralta, E.; Lizardi-Mendoza, J.; Balandran-Quintana, R. Diffusion of natural astaxanthin from polyethylene active packaging films into a fatty food simulant. Food Res. Int. 2013, 54, 873–880. [Google Scholar] [CrossRef]
- Koontz, J.L.; Marcy, J.E.; O’Keefe, S.F.; Duncan, S.E.; Long, T.E.; Moffitt, R.D. Polymer processing and characterization of LLDPE films loaded with α-tocopherol, quercetin, and their cyclodextrin inclusion complexes. J. Appl. Polym. Sci. 2010, 117, 2299–2309. [Google Scholar] [CrossRef]
- Chalier, P.; Ben Arfa, A.; Guillard, V.; Gontard, N. Moisture and temperature triggered release of a volatile active agent from soy protein coated paper: Effect of glass transition phenomena on carvacrol diffusion coefficient. J. Agric. Food Chem. 2009, 57, 658–665. [Google Scholar] [CrossRef] [PubMed]
- Graciano-Verdugo, A.Z.; Soto-Valdez, H.; Peralta, E.; Cruz-Zarate, P.; Islas-Rubio, A.R.; Sanchez-Valdes, S.; Sanchez-Escalante, A.; Gonzalez-Mendez, N.; Gonzalez-Rıos, H. Migration of α-tocopherol from LDPE films to corn oil and its effect on the oxidative stability. Food Res. Int. 2010, 43, 1073–1078. [Google Scholar] [CrossRef]
- Heirlings, L.; Siro, I.; Devlieghere, F.; Van Bavel, E.; Cool, P.; De Meulenaer, B.; Vansant, E.F.; Debevere, J. Influence of polymer matrix and adsorption onto silica materials on the migration of α-tocopherol into 95% ethanol from active packaging. Food Addit. Contamin. 2004, 21, 1125–1136. [Google Scholar] [CrossRef]
- Marcos, B.; Sarraga, C.; Castellari, M.; Kappen, F.; Schennink, G.; Arnau, J. Development of biodegradable films with antioxidant properties based on polyesters containing a-tocopherol and olive leaf extract for food packaging applications. Food Packag. Shelf Life. 2014, 1, 140–150. [Google Scholar] [CrossRef] [Green Version]
- Ortiz-Vazquez, H.; Shin, J.; Soto-Valdez, H.; Auras, R. Release of butylated hydroxytoluene (BHT) from Poly(lactic acid) films. Polym. Test. 2011, 30, 463–471. [Google Scholar] [CrossRef]
- Zhu, X.; Lee, D.; Yam, K. Release property and antioxidant effectiveness of tocopherol-incorporated LDPE/PP blend films. Food Addit. Contam. Part. A 2012, 29, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Balaguer, M.P.; Lopez-Carballo, G.; Catala, R.; Gavara, R.; Hernandez-Munoz, P. Antifungal properties of gliadin films incorporating cinnamaldehyde and application in active food packaging of bread and cheese spread foodstuffs. Intern. J. Food Microbiol. 2013, 166, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.M.; An, D.S.; Park, H.J.; Park, J.M.; Lee, D.S. Properties of nisin-incorporated polymer coatings as antimicrobial packaging materials. Packag. Technol. Sci. 2002, 15, 247–254. [Google Scholar] [CrossRef]
- Arrieta, M.P.; Castro-López, M.A.D.M.; Rayón, E.; Barral-Losada, L.F.; López-Vilariño, J.M.; López, J.; González-Rodrıguez, M.V. Plasticized poly (lactic acid)–poly (hydroxybutyrate)(PLA–PHB)blends incorporated with catechin intended for active food-packaging applications. J. Agric. Food Chem. 2014, 62, 10170–10180. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, A. Predicting Target Release Profile of Antimicrobials from Controlled Release Packaging. Ph.D. Thesis, Rutgers The State University of New Jersey, New Brunswick, NJ, USA, May 2012. [Google Scholar] [CrossRef]
- Fang, Z.; Zhao, Y.; Warner, R.D.; Johnson, S.K. Active and intelligent packaging in meat industry. Trends Food Sci. Technol. 2017, 61, 60–71. [Google Scholar] [CrossRef]
- Wang, Y.C.; Lu, L.; Gunasekaran, S. Biopolymer/gold nanoparticles composite plasmonic thermal history indicator to monitor quality and safety of perishable bioproducts. Biosens. Bioelectron. 2017, 92, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Taoukis, P.S.; Fu, B.; Labuza, T.P. Time temperature indicators. Food Technol. 1991, 45, 70–82. [Google Scholar]
- Lim, S.; Gunasekaran, S.; Imm, J.Y. Gelatin-templated gold nanoparticles as novel time-temperature indicator. J. Food Sci. 2012, 77, N45–N49. [Google Scholar] [CrossRef]
- Bibi, F.; Guillaume, C.; Gontard, N.; Sorli, B. A review: RFID technology having sensing aptitudes for food industry and their contribution to tracking and monitoring of food products. Trends Food Sci. Technol. 2017, 62, 91–103. [Google Scholar] [CrossRef]
- Realini, C.E.; Marcos, B. Active and intelligent packaging systems for a modern society. Meat Sci. 2014, 98, 404–419. [Google Scholar] [CrossRef] [Green Version]
- Bodenhamer, W.T. Method and Apparatus for Selective Biological Material Detection. U.S. Patent 6,841,392, 15 August 2001. [Google Scholar]
- Ribeiro-Santos, R.; Andrade, M.; Melo, N.R.D.; Sanches-Silva, A. Use of essential oils in active food packaging: Recent advances and future trends. Trends Food Sci. Technol. 2017, 61, 132–140. [Google Scholar] [CrossRef]
- Kaiser, K.; Schmid, M.; Schlummer, M. Recycling of polymer-based multilayer packaging: A review. Recycling 2017, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Briassoulis, D.; Giannoulis, A. Evaluation of the functionality of bio-based food packaging films. Polym. Test. 2018, 69, 39–51. [Google Scholar] [CrossRef]
- Horodytska, O.; Valdés, F.J.; Fullana, A. Plastic flexible films waste management—A state of art review. Waste Manag. 2018, 77, 413–425. [Google Scholar] [CrossRef]
- Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32011R0010 (accessed on 22 October 2020).
Active Compounds (AC) | Packaging Structure | Effectiveness | Reference |
---|---|---|---|
Natamycin and/or nisin | Polyvinylidene chloride (PVDC) (active) or nitrocellulose (NC) coated on PE | Inhibition of selected microorganisms in cheese | [88] |
Nisin | HPMC (active) coated on PE | Preservation of food shelf life | [89] |
Nisin | Cellulose coated on PE | Inhibition of L. monocytogenes in tofu | [90] |
Nisin or nisaplin | Ethylcellulose (EC)/HPMC (active layer)/EC | Food simulant analysis: EC was effective to delay release of nisin | [91] |
Nisin or nisaplin | polyvinylchloride (PVC) (active layer) coated on low-density polyethylene LDPE | Inhibited microbial growth on cheese | [92] |
Lysozyme | Layer by layer assembled chitosan organic rectorite and sodium alginate coated on cellulose acetate | Effective to inhibit growth of Escherichia coli and Staphylococcus aureus, and extend shelf life of pork for 3 days | [93] |
Sodium benzoate and potassium sorbate | Pectin, pullulan, and chitosan as edible coating | Effective to reduce weight loss, fruit softening, delayed color degradation and titratable soluble solid in strawberry | [94] |
Ascorbic acid and tocopherol | Tetraethyl orthosilicate and a mixture of alcoxysilane containing organic moieties (active) coated on polyamide-polyethylene (PA/PE) | Inhibition of oxidation shown by ferric reducing antioxidant power assay in EtOH | [95] |
Sesamol or BHT | (1) LLDPE/HDPE (active)/HDPE, (2) HDPE /HDPE (active)/ethylene-vinyl acetate (EVA), (3) HDPE/HDPE (BHT)/EVA | Effective to inhibit lipid oxidation in linoleic acid and breakfast cereal | [66] |
Cinnamon oil active with or without encapsulation in polyvinyl alcohol (PVA) | PVA coated on polypropylene (PP) and laminated with LDPE | Effective to repel instar larvae in a retail box containing flour | [96] |
Chitosan oligomer | Thin layer of chitosan oligomers sandwiched in thermoplastic corn starch film | Effective to inhibit growth of yeast and mold in strawberries, ricotta, and flavored breads | [97] |
Catechin (1–3%) antioxidant | Bilayer based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/plasticized electrospun poly(lactic acid) (PLA)/ poly(3-hydroxybutyrate) (PHB) nanofiber blends. 15 wt% of oligomeric lactic acid was added as a plasticizer to increase stretchability | Bilayer films showed appropriate disintegration in compost conditions in around three months. Thus, they show their potential as biobased and biodegradable active packaging for fatty food products | [98] |
Potassium sorbate | LDPE/polyamide (PA)/LDPE | The film samples within the liquid medium with low pH values had the highest diffusion coefficient | [99] |
Scrophularia striata Boiss. extract (SE) | Bacterial cellulose (BCel)/BCel/BCel | Release rate and diffusion coefficient of SE in 95% ethanol simulant significantly decreased by lamination. Also, the dependency of SE release to temperature decreased after lamination | [100] |
Quercetin | HDPE/LDPE/LDPE-EVA | The diffusion coefficient for films decreased by increasing the EVA amounts in inner layer, from 30% to 50%. The antioxidant activity values of the films were also enhanced as the EVA amount increased | [101] |
Gallic acid (GA) | Polylactide (PLA)/PLA | The release rate of GA from the bilayer PLA films rapidly increased during the first 5 h of immersion. The PLA multilayers presented a high sustained release of GA, having the capacity to deliver the bioactive for over 1000 h | [102] |
Tea polyphenols | Polypropylene (PP)/PVA/PP | Microporous PP films with different pore size were used as the inner layer. The diffusion coefficient for the films increased with the increase of pore size. TP release rate could be controlled by adjusting the pore size of the inner layer | [15] |
Tea polyphenols | Zein/zein-gelatin/gelatin | Multilayer films exhibited prolonged release manner in comparison to mono- or bi-layer films | [103] |
AC | Packaging, Structure/Preparation Method/Composition | Improvements | Reference |
---|---|---|---|
Lipid, Polysaccharide, and Protein-Based Systems | |||
Encapsulated oregano EO | Soluble soybean polysaccharide films/ Pickering emulsion stabilized by complex coacervates of acid-soluble soy protein and soluble soybean polysaccharide | By encapsulation, was immobilized and held more EO in the film matrix; films exhibited prolonged antimicrobial activity | [146] |
Hesperidin Pickering emulsion stabilized with chitosan NPs | Activated gelatin film | Good compatibility and better antioxidant activity were the achievements of hesperidin encapsulation before loading to film | [147] |
Oregano EO, resveratrol | Pectin/nanoemulsion | Nanoactive film showed the best performance on pork loin preservation, ascribed to the smaller particle size with enhanced preservative of EO | [148] |
Nanoemulsion and Pickering emulsion-stabilized marjoram EO | Pectin-based active film | Whey protein isolate (WPI)-inulin microcapsule was more effective than nanoemulsion; release controlling of marjoram EO | [149] |
Copaiba oil | Pectin/Nanoemulsion | Good compatibility of oil with film matrix was observed by nanoemulsion formation. Improved antimicrobial activity against S. aureus and E. coli | [150] |
Encapsulated cumin seed EO | Pectin | Active papers containing WPI-inulin stabilized EO had the maximum effect on controlling the microbial growth and lipid oxidation of beef hamburger in comparison to free and nanoemulsion stabilized samples | [151] |
Cyclodextrin (CD) Inclusion Complexes | |||
Tymol/β-CD complex | Thymol inclusion complex was incorporated into gelatin film’s casting solution | Release rate of thymol decreased after complexation and sustained release (235 h) of thymol was achieved by incorporating β-CD/thymol inclusion complexes into the gelatin films | [152] |
-Gallic acid -allyl isothiocyanate -quercetin/β-CD complex | -PLA electrospun nanofibers/β-CD complex -PVA nanofibers / -polyacrylic acid (PAA) nanofibers/β-CD complex | Improvement in preservation rate, stability, and antibacterial activity | [153,154,155,156] |
Tea tree oil (TTO)/β-CD complex | Poly(ethylene oxide) (PEO) | The release efficiency of the antibacterial agent from PEO nanofibers and the antibacterial activity of PEO nanofibers were improved. The highest antibacterial activity was observed against Escherichia coli | [157] |
Curcumin/β-CD complex | Gelatin | Slower release of curcumin and better preservation of color and polyphenol contents of apple juice were observed by using curcumin/b-CD complex | [158] |
Citral and transcinnamaldehyde/β-CD complex | EVOH | Low diffusion coefficient and high equilibrium concentration of active compounds was observed. The shelf life of beef was extended by inclusion complex formation | [159] |
Carvacrol, oregano, and cinnamon EO/β-CD complex | Cardboard tray | Beneficial effect of active compounds on cherry tomato and bell pepper was maintained until day 24 and 18, respectively. Decay incidences reduced significantly | [160,161] |
Nanocomposites | |||
Nisin | Starch/ Halloysite nanotubes 1D | Swelling of film decreased and its antimicrobial activity increased in the presence of halloysite | [162] |
Clove EO | Soy protein isolate / MMT1D | MMT decreased the release of clove EO and prolonged its antimicrobial and antioxidant activity over time without observing the diffusion of the clay’s own metals | [163] |
Carvacrol | Thermoplastic starch/neat and modified MMT1D | Organo-modified MMTs were more effective that Na-MMT in the release controlling of carvacrol, having a higher intermolecular affinity | [164] |
Origanum vulgare ssp. gracile and Carum copticum EOs | Chitosan/cellulose and Lignocellulose nanofibers 2D | The active film had high antioxidant and antimicrobial activity, showing the release-controlling effect of CNF and LCNFa on the bioactive compounds from films | [165,166] |
Cinnamon EO (CEO) | Sodium caseinate/cellulose nanofiber 2D | The CEO release ratio decreased by the addition of cellulose nanofiber (CNF). The increasing effect of temperature on CEO release decreased by incorporation of CNF | [167] |
Cinnamon EO | Zein/Chitosan NPs 3D | The co-presence of CEO and CSNPs provided stronger inhibitory effects on E. coli and S. aureus, due to the enhanced delivery of EO, by loading in CSNPs | [168] |
Thymol | CA films/AgNPs/gelatin-modified MMT | Swelling of the polymer structure, determining the diffusion of thymol to simulant media could be decreased in the presence of AgNPs and MMT. The release-controlling effect of MMT and AgNPs was different, and MMT had a higher delaying effect on the thymol volatizing process during film drying and storage, resulting in an upper remaining thymol amount in the films | [169] |
Lythrum salicaria extract | Cellulosic nanomaterials | Immobilization of antimicrobial NPs or antimicrobial enzymes without a considerable decrease in their activity | [170,171] |
Cumin EO | Sodium caseinate/TiO2 NPs 3D guar gum | The mechanical, barrier and antimicrobial properties of films increased synergistically when the TiO2 and cumin EO were added together | [172] |
Rosemary EO; Betanin | Zein/j-carrageenan electrospun nanofibers incorporated with ZnO NPs; zein-sodium alginate nanofibers/TiO2 NPs | Mechanical and water barrier properties of nanofibers were improved and their hydrophilicity decreased by adding ZnO NPs. However, the presence of ZnO had no significant effect on the antioxidant and antimicrobial activity of the films. | [173,174,175] |
Method Type | Polymer | AC | Modification | Effect on AC Release | Reference | ||||
---|---|---|---|---|---|---|---|---|---|
Physical methods | |||||||||
Plasma treatment | Polyvinyl alcohol (PVA) films | Nisin antimicrobial agent | Extent of nisin adhesion | A better adhesion of biologically active peptide-nisin to the polymer was obtained. It was also confirmed the nisin long-term stability on the PVA films | [187] | ||||
UV irradiation treatment | Ethylene -vinyl alcohol (EVOH) surface | Lysozyme | There were generated carboxylic acid groups, and the lysozyme was covalently attached to the functionalized polymer surface | Immobilized lysozyme reduces the growth of Gram-positive bacteria (Micrococcus lysodeikticus and Listeria monocytogenes), without migration of the lysozyme from the film; the enzymatic activity was decreased, being retained the entire antimicrobial activity. | [188] | ||||
Plasma treatment | LDPE | Gallic acid coated low-density polyethylene (LDPE) antimicrobial film | Surface functionalization | A slower release of gallic acid was observed after plasma treatment. The prepared films exhibited strong activity against E. coli and S. aureus | [189] | ||||
Wet Chemical Methods | |||||||||
Chemically modified gliadin films | Protein | Cinnamaldehyde carrying lysozyme | As sustained release systems | The release rate of the antimicrobial agent was controlled by the reticulation of the protein matrix, and the degree of crosslinking led to the slower release of the AC | [190] | ||||
Chromic acid treatment and coating with clove EO | Linear low-density polyethylene (LLDPE) surface | Clove EO | Effective against selected pathogens, namely Salmonella typhimurium and L. monocytogenes. | The growth of pathogens was completely restricted in minced chicken samples on the fifth day of storage, and no further growth was detected during the 21 days storage period | [191] | ||||
Crosslinking | |||||||||
AC | System Polymer/Crosslinking Agent | Modification | Reference | ||||||
Lysozyme | Lysozyme enzyme from the gelatin films/Genipin less toxic than glutaraldehyde (GA) | The release kinetic profile of lysozyme from the neat gelatin films started with a burst effect, followed by subsequent slower release. After crosslinking, the burst release tended to be weakened and the cumulative release decreased | [192] | ||||||
Maqui (Aristotelia chilensis) berry fruit extract or murta fruit extract, as a source of natural antioxidants | Methyl cellulose (MC)/glutaraldehyde | GA decreased water solubility, swelling and water vapor permeability (WVP) of the MC films, and the release of phenolic compounds decreased with the increase of the concentration of GA. | [193] | ||||||
Lysozyme/Cinnamaldehyde antimicrobial and antifungal activity | Proteins–gliadin/crosslinking agent, due to its specific chemical structure consisting of a phenyl group attached; glandin | Gliadin film crosslinked with cinnamaldehyde preserved its integrity in water and prolonged the release of antimicrobial agent; a greater degree of crosslinking led to a slower release of lysozyme, i.e., the films with a loosely crosslinked structure released a greater amount of lysozyme, exhibiting a higher antimicrobial activity. | [190,194] | ||||||
Natamycin | Ionic crosslinking between proteins (e.g., sodium caseinate) and polysaccharides (e.g., chitosan, alginate) | Water and mechanical resistance, barrier properties, cohesiveness, rigidity and also release controlling can be improved by the addition of Ca2 and barium ions. Interaction between natamycin and alginate chains in Ba-Ca films was stronger than that in the Ca-Ca and Ca-Ba films, therefore Ba-Ca films had the lowest natamycin’s diffusion coefficient. | [195,196] | ||||||
Transglutaminase (TGase).Microbial, Vitamin B12 | Enzyme-mediated crosslinking of the biodegradable films. Protein polymerization in presence of TGase to crosslink the casein system for the controlled release of VB12. | The casein hydrogel strength increased by the increase of TGase amount. | [197] | ||||||
Doxycycline | Chitosan/gelatin-based hydrogels after TGase treatment | controlled release | [198] | ||||||
Lysozyme | Sodium caseinate films activated with lysozyme with three crosslinking agents including glyoxal, calcium chloride, and TGase. | A slow release of lysozyme was achieved after the addition of glyoxal, by modulation in the antimicrobial activity against M. lysodeikticus and Staphococcus aureus. Crosslinking with glyoxal generated a caseinate network, able to release enzymatic activity in a gradual manner. However, calcium chloride and TGase caused stronger interactions in caseinate network, almost blocking enzyme release; adequate antimicrobial activity was not found in films | [199] | ||||||
Nicotine | Chemical crosslinkers are polycarboxylic acids, able to crosslink carbohydratesby reaction with hydroxyl groups. Hydroxypropyl methylcellulose (HPMC) films were crosslinked with citric acid of nicotine. | Water insoluble films were created by crosslinking of HPMC with citric acid. At pH 2, pH 5.5 and pH 9, the released nicotine is diprotonated, monoprotonated and uncharged, respectively. The release rate tended to increase as the medium ionic strength increased | [200] | ||||||
Ciprofloxacin | Recombinant silk-elastin like protein polymer/Ethanol or methanol vapor | Ethanol-treated film had the lowest swelling ratio, but the methanol-treated sample exhibited better release controlling of drug during 220 h | [201] | ||||||
Rapamycin | Elastin-like protein polymers Rapamycin Genipin (solution), glutaraldehyde (solution and vapor) and disulfide (solution and vapor) | The best drug release-controlling effect was observed for disulfide, followed by glutaraldehyde in vapor state | [202] | ||||||
Gentamicin sulfate | Sodium caseinate/ Alginate dialdehyde | Diffusion-controlled release of gentamicin was observed from the crosslinked films. The dynamic release was best interpreted by the Schott kinetic model | [203] | ||||||
Tramadol | Gelatin/poly(ethylene glycol)/Citric acid | Slower release and maintaining of drug for a long time was achieved after crosslinking | [204] | ||||||
Ketoconazole | β-cyclodextrin (β-CD)/ carboxymethylcellulose/Citric acid | β-CD and citric acid helped to minimize the burst effect and retarded the release of ketoconazole | [205] | ||||||
Aloe vera gel extract | CMC-PVA/ Citric acid | Citric acid improved mechanical properties and diminished water solubility of the film. The shelf life of minced chicken meat was prolonged by using crosslinked active film | [206] | ||||||
Esential Oil citral | Cashew gum-gelatin/ Ferulic acid | Antifungal activity of crosslinked film was observed for 6 days at the surface of bread, in comparison to 3 days of control | [207] | ||||||
Jaboticaba anthocyanins | Casein hydrogel/Tgase | T-gase slower release rate of anthocyanins was observed for TGase treated hydrogels, at all studied pH values (2–7) | [208] |
Food Simulant | Method | Description Analytical | Comments |
---|---|---|---|
A | Ethanol 10% (v/v) | SPME-GC–MS; PLC–Q-TOF-MSE | Either by HS or total immersion modes |
B | Acetic acid 3% (v/v) | SPME-GC–MS; UPLC–Q-TOF-MSE | Either by HS or total immersion modes |
C | Ethanol 20% (v/v) | SPME-GC–MS; UPLC–Q-TOF-MSE | Either by HS or total immersion modes |
D1 | Ethanol 20% (v/v) | SPME-GC–MS; UPLC–Q-TOF-MSE | If SPME-GC–MS with total immersion of fiber is performed sample should be diluted at least five times. |
D2 | Any vegetable oil containing less than 1% unsaponifiable matter can be replaced by 95% ethanol and isooctane Liquid injection | GC–MS; UPLC–Q-TOF-MSE (reverse-phase column for 95% ethanol and normal-phase mode for isooctane) | If oil is used, it needs to be extracted. HS-SPME-GC–MS is also available for oil. When using 95% ethanol and isooctane, they can be concentrated under gentle stream of nitrogen, to gain sensitivity. |
E | Poly(2,6-diphenyl-p-phenyleneoxide), known as Tenax®, particle size 60–80 mesh, pore size 200 nm | Liquid injection GC–MS; UPLC–Q-TOF-MS | Needs to be extracted with some organic solvent, like—for example—ethanol or methanol; they can be concentrated under gentle stream of nitrogen to gain sensitivity. Three sequential extractions are usually applied |
Samples | Peppas/Power Law Model | First Order Kinetic Model | Diffusion Model | Kp | |||||
---|---|---|---|---|---|---|---|---|---|
n | R2 | k × 103 (h−n) | R2 | k1 × 103 (h−n) | R2 | D × 10−13 (m2/s) | R2 | ||
PLA/PEG/0.5R | 0.37 | 0.99 | 85.12 | 0.98 | 5.20 | 0.84 | 1.70 | 0.98 | 1.06 |
PLA/PEG/3CS/0.5R | 0.23 | 0.98 | 147.78 | 0.99 | 5.17 | 0.81 | 2.05 | 0.97 | 0.95 |
PLA/PEG/6CS/0.5R | 0.38 | 0.99 | 72.92 | 0.99 | 3.70 | 0.92 | 1.05 | 0.99 | 0.64 |
Active Compounds | Packaging | D × 10−10 (cm2/s) | Kn | T (°C) | Release media | Reference |
---|---|---|---|---|---|---|
Model 1 | ||||||
Potassium sorbate | LMP/CMC 8/2 | 0.0026 | 0.00062 | 4 | 95% EtOH | [277] |
LMP/CMC 4:6 | 0.0150 | 0.00505 | 25 | |||
LMP/CMC 4:6 | 0.0311 | 0.01758 | 60 | |||
Eugenol | SPI | 0.003 | 1155 | 5 | Olive oil | [39] |
Cinnamaldehyde | SPI | 0.001 | 1445 | 5 | Olive oil | |
Eugenol | SPI | 0.003 | 1155 | 5 | Olive oil | |
Isoeugenol | SPI | 0.01 | 535 | 5 | Olive oil | |
Astaxanthin | LDPE | 0.354 | 55.54 | 95% EtOH | [278] | |
Lysozyme | CA with various CA/H2O ratios and porosities | 1.50–23.3 | 234–826 | 4 | Water | [74] |
L-ascorbic acid | CA with various CA/acetone/H2O ratios and porosities | 1.67–15 | 169–2439 | 4 | Water | [75] |
Tocopherol | Ziegler-Natta LLDPE | 4.2 | 83% | 30 | Coconut oil | [279] |
Model 2 | ||||||
Carvacrol | Soy-protein-coated paper, under various RH (60%- 80%) | 0.0011–0.075 | NA | 5 | H2O & n-pentane mixture | [280] |
0.0085–0.0878 | (50/50) | 20 | ||||
Quercetin | EVA | 133 | 0.01 | RT | 95% EtOH | [39] |
Tocopherol | HDPE/EVOH/LDPE (active) | 0.234 | 27.91 | 20 | Whole milk powder | [80] |
Tocopherol | LDPE wt% various loadings of tocopherol | 0.13–0.14 | NA | 5 | Corn oil | [281] |
0.71–0.96 | 20 | |||||
3.03–5.11 | 30 | |||||
Tocopherol | LDPE | 0.264 | NA | 95% EtOH | [282] | |
Nisin | EVA | 1130 | NA | 10 | 66% H2O, 32% PO w/2% emulsifier | [22] |
Tocopherol | Ecoflex | 983 | NA | 30 | 95% EtOH | [283] |
BHT | PLA | 19.04 | 12.61 | 43 | 95% EtOH | [284] |
Model 3 | ||||||
Clove essential oil H2O | EVA 0.25 | 0.25 | NA | 23 | 0.30 | [61] |
Tocopherol | LDPE | 4.60 | NA | 40 | 95% EtOH | [285] |
Cinnamaldehyde | Gliadin w/ various loading of cinnamaldehyde | 0.0488–1.31 | NA | 20 | Released into headspace | [286] |
Quercetin | LDPE | 1.15 × 10−5 | 001 | RT | 95% EtOH | [39] |
Nisin | Acrylic polymer (active) coated paper | 420 | 1.3% 105 | 10 | Water | [287] |
Catechin | PLA | 0.019 | NA | 40 | 50% EtOH | [288] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasile, C.; Baican, M. Progresses in Food Packaging, Food Quality, and Safety—Controlled-Release Antioxidant and/or Antimicrobial Packaging. Molecules 2021, 26, 1263. https://doi.org/10.3390/molecules26051263
Vasile C, Baican M. Progresses in Food Packaging, Food Quality, and Safety—Controlled-Release Antioxidant and/or Antimicrobial Packaging. Molecules. 2021; 26(5):1263. https://doi.org/10.3390/molecules26051263
Chicago/Turabian StyleVasile, Cornelia, and Mihaela Baican. 2021. "Progresses in Food Packaging, Food Quality, and Safety—Controlled-Release Antioxidant and/or Antimicrobial Packaging" Molecules 26, no. 5: 1263. https://doi.org/10.3390/molecules26051263
APA StyleVasile, C., & Baican, M. (2021). Progresses in Food Packaging, Food Quality, and Safety—Controlled-Release Antioxidant and/or Antimicrobial Packaging. Molecules, 26(5), 1263. https://doi.org/10.3390/molecules26051263