Can Serendipity Still Hold Any Surprises in the Coordination Chemistry of Mixed-Donor Macrocyclic ligands? The Case Study of Pyridine-Containing 12-Membered Macrocycles and Platinum Group Metal ions PdII, PtII, and RhIII
Abstract
:1. Introduction
2. Results
2.1. Coordination Chemistry of L1 towards PdII, PtII, RhIII
2.2. Coordination Chemistry of L2 towards PdII, PtII, RhIII
2.3. Coordination Chemistry of L3 towards PdII, PtII, RhIII
DFT Calculations on the Complex Cation [Pt(L3)(μ-1,3-MeCONH)PtCl(MeCN)]2+
3. Materials and Methods
3.1. General Procedure for the Synthesis of the PdII, PtII, RhIII Complexes of L1-L3
3.2. Theoretical Calculations
3.3. X-ray Crystallography
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Gloe, K. Macrocyclic Chemistry, Current Trends and Future Perspectives; Springer: New York, NY, USA, 2005; ISBN 1-4020-3364-8. [Google Scholar]
- Fitzpatrick, D.W.; Ulrich, H.J. Macrocyclic Chemistry: New Research Developments (Chemistry Research and Applications); Nova Science Pub. Inc.: Hauppauge, NY, USA, 2010; ISBN 1608768961. [Google Scholar]
- Zolotov, Y.A. Macrocyclic Compounds in Analytical Chemistry; Wiley & Sons: New York, NY, USA, 1997; ISBN 0-471-17262-6. [Google Scholar]
- Davis, F.; Higson, S. Macrocycles: Construction, Chemistry and Nanotechnology Applications; Wiley: Chichester, UK, 2011; ISBN 978-0-470-71462-1. [Google Scholar]
- Marsault, E.; Peterson, M.L. Practical Medicinal Chemistry with Macrocycles: Design, Synthesis, and Case Studies; Wiley: Chichester, UK, 2017; ISBN 1119092566. [Google Scholar]
- Levin, E.I. Macrocycles in Drug Discovery; RSC Publishing: Cambridge, UK, 2014; ISBN 978-1-84973-701-2. [Google Scholar]
- Gaeta, C.; Wang, D.-X. New Macrocycles and Their Supramolecular Perspectives; Frontiers Media SA: Losanne, Switzerland, 2020; ISBN 978-2-88963-630-3. [Google Scholar]
- Prodi, L.; Bolletta, F.; Montaldi, M.; Zaccheroni, N. Luminescent chemosensors for transition metal ions. Coord. Chem. Rev. 2000, 205, 59–83. [Google Scholar] [CrossRef]
- Balzani, V.; Credi, A.; Venturi, M. Molecular Devices and Machines, A Journey into the Nanoworld; Wiley-VCH: Wheinheim, Germany, 2003; ISBN 3-527-30506-8. [Google Scholar]
- Formica, M.; Fusi, V.; Giorgi, L.; Micheloni, M. New fluorescent chemosensors for metal ions in solution. Coord. Chem. Rev. 2012, 256, 170–192. [Google Scholar] [CrossRef]
- Lindoy, L.F. The Chemistry of Macrocyclic Ligands Complexes; Cambridge University Press: Cambridge, UK, 1989; ISBN 052125261X. [Google Scholar]
- Cronin, L. Macrocyclic coordination chemistry. Annu. Rep. Prog. Chem. Sect. A Inorg. Chem. 2005, 101, 319–347. [Google Scholar] [CrossRef]
- Blake, A.J.; Bencini, A.; Caltagirone, C.; De Filippo, G.; Dolci, L.S.; Garau, A.; Isaia, F.; Lippolis, V.; Mariani, P.; Prodi, L.; et al. A new pyridine-based 12-membered macrocycle functionalised with different fluorescent subunits: Coordination chemistry towards CuII, ZnII, CdII, HgII, and PbII. Dalton Trans. 2004, 2771–2779. [Google Scholar] [CrossRef] [PubMed]
- Aragoni, M.C.; Arca, M.; Bencini, A.; Blake, A.J.; Caltagirone, C.; De Filippo, G.; Devillanova, F.A.; Garau, A.; Gelbrich, T.; Hursthouse, M.B.; et al. Tuning the selectivity/specificity of fluorescent metal ion sensors based on N2S2 pyridine-containing macrocyclic ligands by changing the fluorogenic sub-unit: Spectrofluorimetric and metal ion binding studies. Inorg. Chem. 2007, 46, 4548–4559. [Google Scholar] [CrossRef] [PubMed]
- Shamsipur, M.; Sadeghi, M.; Alizadeh, K.; Bencini, A.; Valtancoli, B.; Garau, A.; Lippolis, V. Novel fluorimetric bulk optode membrane based on 5,8-bis(5’-chloro-8’-hydroxy-7’-quinolinyl)methyl)-2,11-dithia-5,8-diaza-2,6-pyridinophane for selective detection of lead(II) ions. Talanta 2010, 80, 2023–2033. [Google Scholar] [CrossRef] [PubMed]
- Shamsipur, M.; Zahedi, M.M.; De Filippo, G.; Lippolis, V. Development of a novel flow injection liquid-liquid microextraction method for on-line separation, preconcentration and fluorimeteric determination of zinc(II) using 5-(8-hydroxy-2-quinolinylmethyl)-2,8-dithia-5-aza-2,6-pyridinophane as a sensitive and selective fluorescent chemosensor. Talanta 2011, 85, 687–693. [Google Scholar]
- Shamsipur, M.; Sadeghi, M.; Garau, A.; Lippolis, V. An efficient and selective flourescent chemical sensor based on 5-(8-hydroxy-2-quinolinylmethyl)-2,8-dithia-5-aza-2,6-pyridinophane as a new fluoroionophore for determination of iron(III) ions. A novel probe for iron speciation. Anal. Chim. Acta 2013, 761, 169–177. [Google Scholar] [CrossRef]
- Aragoni, M.C.; Arca, M.; Bencini, A.; Caltagirone, C.; Garau, A.; Isaia, F.; Light, M.E.; Lippolis, V.; Lodeiro, C.; Mameli, M.; et al. Zn2+/Cd2+ optical discrimination by fluorescent chemosensors based on 8-hydroxyquinoline derivatives and sulfur-containing macrocyclic units. Dalton Trans. 2013, 42, 14516–14530. [Google Scholar] [CrossRef]
- Bazzicalupi, C.; Caltagirone, C.; Cao, Z.; Chen, Q.; Di Natale, C.; Garau, A.; Lippolis, V.; Lvova, L.; Liu, H.; Lundström, I.; et al. Multimodal use of new coumarin-based fluorescent chemosensors: Towards highly selective optical sensors for Hg2+ probing. Chem. A Eur. J. 2013, 19, 14639–14653. [Google Scholar] [CrossRef] [PubMed]
- Arca, M.; Caltagirone, C.; De Filippo, G.; Formica, M.; Fusi, V.; Giorgi, L.; Lippolis, V.; Prodi, L.; Rampazzo, E.; Scorciapino, M.A.; et al. A fluorescent ratiometric nanosized system for the determination of PdII in water. Chem. Commun. 2014, 50, 15259–15262. [Google Scholar] [CrossRef] [PubMed]
- Lvova, L.; Caroleo, F.; Garau, A.; Lippolis, V.; Giorgi, L.; Fusi, V.; Zaccheroni, N.; Lombardo, M.; Prodi, L.; Di Natale, C.; et al. A fluorescent sensor array based on heteroatomic macrocyclic fluorophores for the detection of polluting species in natural water samples. Front. Chem. Sect. Anal. Chem. 2018, 6, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Blake, A.J.; Demartin, F.; Devillanova, F.A.; Garau, A.; Isaia, F.; Lippolis, V.; Schröder, M.; Verani, G. A new class of mixed aza-thioether crown containing a 1,10-phenanthroline sub-unit. J. Chem. Soc. Dalton Trans. 1996, 3705–3712. [Google Scholar] [CrossRef]
- Aragoni, M.C.; Arca, M.; Demartin, F.; Devillanova, F.A.; Isaia, F.; Garau, A.; Lippolis, V.; Jalali, F.; Papke, U.; Shamsipur, M.; et al. Fluorometric Chemosensors. Interaction of toxic heavy metal ions PbII, CdII, and HgII with novel mixed-donor phenanthroline-containing macrocycles: Spectrofluorometric, conductometric, and crystallographic studies. Inorg. Chem. 2002, 41, 6623–6632. [Google Scholar] [CrossRef] [PubMed]
- Casula, A.; Nairi, V.; Fernández-Moreira, V.; Laguna, A.; Lippolis, V.; Garau, A.; Gimeno, M.C. Re(I) derivatives functionalised with thioether crowns containing the 1,10-phenanthroline subunit as a new class of chemosensors. Dalton Trans. 2015, 44, 18506–18517. [Google Scholar] [CrossRef] [PubMed]
- Aragoni, M.C.; Arca, M.; Bencini, A.; Biagini, S.; Blake, A.J.; Caltagirone, C.; Demartin, F.; De Filippo, G.; Devillanova, F.A.; Garau, A.; et al. Interaction of mixed-donor macrocycles containing the 1,10-phenanthroline subunit with selected transition and post-transition metal ions: Metal ion recognition in competitive liquid-liquid solvent extraction of CuII, ZnII, PbII, CdII, AgI, and HgII. Inorg. Chem. 2008, 47, 8391–8404. [Google Scholar] [CrossRef]
- Shamsipur, M.; Javanbakht, M.; Mousavi, M.F.; Ganjali, M.R.; Lippolis, V.; Garau, A.; Tei, L. Copper(II)-selective membrane electrodes based on some recently synthesized mixed aza-thioether crowns containing a 1,10-phenanthroline sub-unit. Talanta 2001, 55, 1047–1054. [Google Scholar] [CrossRef]
- Shamsipur, M.; Javanbakht, M.; Lippolis, V.; Garau, A.; De Filippo, G.; Ganjali, M.R.; Yari, A. Novel Ag+ ion-selective electrodes based on two new mixed azathioether crowns containing a 1,10-phenanthroline sub-unit. Anal. Chim. Acta 2002, 462, 225–234. [Google Scholar] [CrossRef]
- Shamsipur, M.; Javanbakht, M.; Ganjali, M.R.; Mousavi, M.F.; Lippolis, V.; Garau, A. Mixed aza-thioether crowns containing a 1,10-phenanthroline sub-unit as neutral ionophores for silver ion. Electroanalysis 2002, 14, 1691–1698. [Google Scholar] [CrossRef]
- Shamsipur, M.; Kazemi, S.Y.; Azimi, G.; Madaeni, S.S.; Lippolis, V.; Garau, A.; Isaia, F. Selective transport of silver ion through a supported liquid membrane using some mixed aza-thioether crowns containing a 1,10-phenanthroline sub-unit as specific ion carriers. J. Membr. Sc. 2003, 215, 87–93. [Google Scholar] [CrossRef]
- Shamsipur, M.; Hashemi, O.R.; Lippolis, V. A supported liquid membrane system for simultaneous separation of silver(I) and mercury(II) from dilute feed solutions. J. Membr. Sc. 2006, 282, 322–327. [Google Scholar] [CrossRef]
- Shamsipur, M.; Hashemi, B.; Dehdashtian, S.; Mohammadi, M.; Gholivand, M.B.; Garau, A.; Lippolis, V. Silver ion imprinted polymer nanobeads based on a aza-thioether crown containing a 1,10-phenanthroline subunit for solid phase extraction and for voltammetric and potentiometric silver sensors. Anal. Chim. Acta 2014, 852, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Contu, F.; Demartin, F.; Devillanova, F.A.; Garau, A.; Isaia, F.; Lippolis, V.; Salis, A.; Verani, G. Conformationally locked mixed aza-thioether macrocycles: Synthesis and structures of complexes of PdII, PtII and RhIII of 2,5,8-trithia-[9](2,9)-1,10-phenanthrolinophane. J. Chem. Soc. Dalton Trans. 1997, 4401–4405. [Google Scholar] [CrossRef]
- Arca, M.; Blake, A.J.; Casabò, J.; Demartin, F.; Devillanova, F.A.; Garau, A.; Isaia, F.; Lippolis, V.; Kivekas, R.; Muns, V.; et al. Conformationally locked pentadentate macrocycles containing the 1,10-phenanthroline unit. Synthesis and crystal structure of 5-oxa-2,8-dithia[9](2,9)-1,10-phenanthrolinophane (L) and its coordination properties to NiII, PdII, PtII, RhIII and RuII. J. Chem. Soc. Dalton Trans. 2001, 1180–1188. [Google Scholar] [CrossRef]
- Casabo, J.; Escriche, L.; Alegret, S.; Jaime, C.; Perez-Jimenez, C.; Ruis, J.; Molins, E.; Miravitlles, C.; Teixidor, F.; Mestres, L. Pyridine-based macrocycles containing N, O, and S and their use as ion-selective electrodes. Crystal structures of 15-aza-6-oxa-3,9-dithiabicyclo[9.3.1]pentadeca-1(15),11,13-triene and (15-aza-6-oxa-3,9-dithiabicyclo[9.3.1]pentadeca-1(15),11,13-triene)dichlorocopper(II). Inorg. Chem. 1991, 30, 1893–1898. [Google Scholar]
- Rasheed, O.K.; Bawn, C.; Davies, D.; Raftery, J.; Victorica-Yrzebal, I.; Pritchard, R.; Zhou, H.; Quayle, P. The Synthesis of group 10 and 11 metal complexes of 3,6,9-trithia-1-(2,6)-pyridinacyclodecaphane and their use in A3-coupling reactions. Eur. J. Org. Chem. 2017, 35, 5252–5261. [Google Scholar] [CrossRef] [Green Version]
- Reddy, P.J.; Ravichandran, V.; Chacko, K.K. Structure of the 2,5,8-trithia[9](2,6)pyridinophane-silver nitrate complex (1:1). Acta Cryst. 1989, C45, 1871–1874. [Google Scholar] [CrossRef]
- Sobhia, M.E.; Panneerselvam, K.; Chacko, K.K. Crystal structure of the 2:1 complex of mercury(II) chloride with trithiapyridino-12-crown-4 having unusual mercury coordination. Inorg. Chem. Acta 1992, 194, 93–97. [Google Scholar] [CrossRef]
- Blake, A.J.; Caçote, M.H.M.; Devillanova, F.A.; Garau, A.; Isaia, F.; Lippolis, V.; Pereira, C.M.; Silva, F.; Tei, L. Coordination Chemistry of 2,5,8-Trithia[9],(2,9)-1,10-phenanthrolinophane (L) toward Rhodium(III) at the Polarised Water/1,2-Dichloroethane Interface—A Possible New Approach to the Problem of Separating RhIII from Chloride Media. Eur. J. Inorg. Chem. 2002, 7, 1816–1822. [Google Scholar] [CrossRef]
- Weber, G.; Jones, P.G.; Sheldrick, G.M. 2,5,8-Trithia[9](2,6)-pyridinophane, C11H15NS3. Acta Cryst. C 1983, C39, 389–391. [Google Scholar] [CrossRef]
- Huheey, J.E.; Keiter, E.A.; Keiter, R.L. Inorganic Chemistry, Principles of Structures and Reactivity, 4th ed.; Harper Collins: New York, NY, USA, 1993; p. 292. [Google Scholar]
- Lous, R.; Pelissard, D.; Weiss, R. Complexes métalliques avec des ligands macrocycliques pentadentates. Structure cristalline et moléculaire du complexe [Pd(C10H22H2OS2)] (NO3)2. Acta Crystallogr. 1974, B30, 1889–1894. [Google Scholar] [CrossRef]
- Lucas, C.R.; Liang, W.; Miller, D.O.; Bridson, J.N. Metal complexes of 1-oxa-4,7-dithiacyclononane. Inorg. Chem. 1997, 36, 4508–4513. [Google Scholar] [CrossRef]
- Concolino, T.E.; Eglin, J.L.; Staples, R.J. Structural and spectroscopic characterization of the dirhenium acetamidate products resulting from the hydrolysis of acetonitrile. Polyhedron 1999, 18, 915–921. [Google Scholar] [CrossRef]
- Shishilov, O.N.; Akhmadullina, N.S.; Rezinkova, Y.N.; Podobedov, R.E.; Churakov, A.V.; Efimenko, I.A. Reactivity of polynuclear palladium carboxylate complexes towards acetonitrile: Synthesis and X-ray study of Pd2(C6H4-o-C(=NH)CH3)2(CH3CO2)2 and Pd5(CH3C(=N)OC(=N)CH3)(NO)(NO2)x(RCO2)7−x. Dalton Trans. 2013, 42, 3712–3720. [Google Scholar] [CrossRef]
- Adrian, R.A.; Zhu, S.; Powell, D.R.; Broker, G.A.; Tiekink, E.R.T.; Walmsley, J.A. Dinuclear palladium(II) complexes with bridging amidate ligands. Dalton Trans. 2007, 4399–4404. [Google Scholar] [CrossRef] [PubMed]
- Cook, T.R.; Surendranath, Y.; Nocera, D.G. Chlorine Photoelimination from a Diplatinum Core: Circunventing the Back Reaction. J. Am. Chem. Soc. 2009, 131, 28–29. [Google Scholar] [CrossRef]
- Powers, D.C.; Hwang, S.J.; Anderson, B.L.; Yang, H.; Zheng, S.-L.; Chen, Y.-S.; Cook, T.R.; Gabbaï, F.P.; Nocera, D.G. Stereoelectronic effects in Cl2 elimination from binuclear Pt(II) complexes. Inorg. Chem. 2016, 55, 11815–11820. [Google Scholar] [CrossRef] [PubMed]
- Number of Structurally Independent Fragments Found for Discrete Structures of Binuclear Complexes Containing a Pt-Pt Bond: Pt4-Pt4: 53; Pt4-Pt5: 23; Pt4-Pt6: 2; Pt5-Pt5: 226; Pt5-Pt6: 43, Pt6-Pt6: 155; Pt7-Pt7: 3 (see Figure 9; ConQuest v.2020.2, CSD release, CCDC 2020). Available online: https://www.ccdc.cam.ac.uk/ (accessed on 8 January 2021).
- Appleton, T.G.; Barnham, K.J.; Byriel, K.A.; Hall, J.R.; Kennard, C.H.L.; Mathieson, M.T.; Penman, K.G. Reactions of nitroplatinum complexes. 2. Reactions of K2[PtNO4]2 and related complexes with aqueous acids (CH3CO2H, HClO4, CF3SO3H, HNO3, and H2SO4): Pathways to platinum(III) complexes with acetate bridges. Crystal Structure of K2[{Pt(NO2)2(μ-CH3CO2)}2]H2O. Inorg. Chem. 1995, 34, 6040–6052. [Google Scholar]
- Uson, R.; Fornies, J.; Tomas, M.; Casas, J.M.; Cotton, F.A.; Falvello, L.R.; Feng, X. Synthesis and structural characterization of the Pt2(II,III) complex (NBu4)[(C6F5)2Pt(μ-C6F5Cl)Pt(C6F5)2] and the Pt2(III,III) Complex (NBu4)[(C6F5)2Pt(μ-C6F5Cl)(μ-C6F5)Pt(C6F5)2]. Ligand Reactivity of a Bridging C6F5 Group. J. Am. Chem. Soc. 1993, 115, 4145–4154. [Google Scholar] [CrossRef]
- Bennett, M.A.; Bhargava, S.K.; Boas, J.F.; Boere, R.T.; Bond, A.M.; Edwards, A.J.; Guo, S.-X.; Hammerl, A.; Pilbrow, J.R.; Priver, S.H.; et al. Electrochemically informed synthesis and characterization of salts of the [Pt2(μ-κAs,κC-C6H3-5-Me-2-AsPh2)4]+ lantern complex containing a Pt−Pt Bond of Order ½. Inorg. Chem. 2005, 44, 2472–2482. [Google Scholar] [CrossRef]
- Canty, A.J.; Gardiner, M.G.; Jones, R.C.; Rodemann, T.; Sharma, M. Binuclear intermediates in oxidation reactions: [(Me3SiC≡C)Me2(bipy)Pt−PtMe2(bipy)]+ in the oxidation of PtIIMe2(bipy) (bipy = 2,2′-bipyridine) by IPh(C≡CSiMe3)(OTf) (OTf = Triflate). J. Am. Chem. Soc. 2009, 131, 7236–7237. [Google Scholar] [CrossRef]
- Luedtke, A.T.; Goldberg, K.I. Reductive elimination of ethane from five-coordinate Platinum(IV) alkyl complexes. Inorg. Chem. 2007, 46, 8496–8498. [Google Scholar] [CrossRef]
- Pham, D.M.; Rios, D.; Olmstead, M.M.; Balch, A.L. Assisted self-association of dicyanoaurate, [Au(CN)2]−, and dicyanoargentate, [Ag(CN)2]−, through hydrogen bonding to metal ammonia complexes. Inorg. Chim. Acta 2005, 358, 4261–4269. [Google Scholar] [CrossRef]
- Vicente, J.; Arcas, A.; Fernandez-Hernandez, J.M.; Sironi, A.; Masciocchi, N. An unprecedented process involving normal and redox transmetallation reactions between Hg and Pt affording the unexpected K[Pt2{CH2C(O)Me}6(μ-Cl)3] complex: The key role of X-ray powder diffraction in unravelling its nature and structure. Chem. Commun. 2005, 10, 1267–1269. [Google Scholar] [CrossRef]
- Koch, W.; Holthausen, M.C. A Chemist’s Guide to Density Functional Theory; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2001; ISBN 9783527303724. [Google Scholar]
- Pintus, A.; Aragoni, M.C.; Bellec, N.; Devillanova, F.A.; Lorcy, D.; Isaia, F.; Lippolis, V.; Randall, R.A.M.; Roisnel, T.; Slawin, A.M.Z.; et al. Structure-property relationships in PtII diimine-dithiolate nonlinear optical chromophores based on arylethylene-1,2-dithiolate and 2-thioxothiazoline-4,5-dithiolate. Eur. J. Inorg. Chem. 2012, 2012, 3577–3594. [Google Scholar] [CrossRef]
- Maiore, L.; Aragoni, M.C.; Deiana, C.; Cinellu, M.A.; Isaia, F.; Lippolis, V.; Pintus, A.; Serratrice, M.; Arca, M. Structure-activity relationships in cytotoxic AuI/AuIII complexes derived from 2-(2′-pyridyl)benzimidazole. Inorg. Chem. 2014, 53, 4068–4080. [Google Scholar] [CrossRef]
- Cinellu, M.A.; Arca, M.; Ortu, F.; Stoccoro, S.; Zucca, A.; Pintus, A.; Maiore, L. Structural, theoretical and spectroscopic characterisation of a series of novel gold (I)-norbornene complexes supported by phenanthrolines: Effects of the supporting ligand. Eur. J. Inorg. Chem. 2019, 2019, 4784–4795. [Google Scholar] [CrossRef]
- Pintus, A.; Aragoni, M.C.; Cinellu, M.A.; Maiore, L.; Isaia, F.; Lippolis, V.; Orrù, G.; Tuveri, E.; Zucca, A.; Arca, M. [Au(pyb-H)(mnt)]: A novel gold(III) 1,2-dithiolene cyclometalated complex with antimicrobial activity (pyb-H = C-deprotonated 2-benzylpyridine; mnt = 1,2-dicyanoethene-1,2-dithiolate). J. Inorg. Biochem. 2017, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Romanova, J.; Ranga Prabhath, M.R.; Jarowski, P.D. Relationship between metallophilic interactions and luminescent properties in Pt(II) complexes: TD-DFT guide for the molecular design of light-responsive materials. J. Phys. Chem. C 2016, 120, 2002–2012. [Google Scholar] [CrossRef]
- Huang, S.; Yang, B.; Zhong, J.; Zhang, H. A theoretical investigation on the metal–metal interaction in a series of pyrazolate bridged platinum(II) complexes. Synth. Met. 2015, 205, 222–227. [Google Scholar] [CrossRef]
- Novikov, A.S. Strong metallophilic interactions in nickel coordination compounds. Inorg. Chim. Acta 2018, 483, 21–25. [Google Scholar] [CrossRef]
- Blake, A.J.; Donamaría, R.; Lippolis, V.; López-de-Luzuriaga, J.M.; Monge, M.; Olmos, M.E.; Seal, A.; Weinstein, J.A. Unequivocal experimental evidence of the relationship between emission energies and aurophilic interactions. Inorg. Chem. 2019, 58, 4954–4961. [Google Scholar] [CrossRef] [PubMed]
- Noodleman, L. Valence bond description of antiferromagnetic coupling in transition metal dimers. J. Chem. Phys. 1981, 74, 5737–5743. [Google Scholar] [CrossRef]
- Noodleman, L.; Davidson, E.R. Ligand spin polarization and antiferromagnetic coupling in transition metal dimers. Chem. Phys. 1986, 109, 131–143. [Google Scholar] [CrossRef]
- Noodleman, L.; Case, D.A. Density-functional theory of spin polarization and spin coupling in iron-sulfur clusters. Adv. Inorg. Chem 1992, 38, 60070–60077. [Google Scholar]
- Onofrio, N.; Mouesca, J.M. Analysis of the singlet-triplet splitting computed by the density functional theory-broken-symmetry method: Is it an exchange coupling constant? Inorg. Chem. 2011, 50, 5577–5586. [Google Scholar] [CrossRef] [PubMed]
- Pintus, A.; Ambrosio, L.; Aragoni, M.C.; Binda, M.; Coles, S.J.; Hursthouse, M.B.; Isaia, F.; Lippolis, V.; Meloni, G.; Natali, D.; et al. Photoconducting devices with response in the Visible–Near-Infrared Region based on neutral Ni complexes of aryl-1,2-dithiolene ligands. Inorg. Chem. 2020, 59, 6410–6421. [Google Scholar] [CrossRef]
- Aragoni, M.C.; Caltagirone, C.; Lippolis, V.; Podda, E.; Slawin, A.M.Z.; Woollins, J.D.; Pintus, A.; Arca, M. Diradical character of neutral heteroleptic bis(1,2-dithiolene) metal complexes: Case study of [Pd(Me2timdt)(mnt)] (Me2timdt = 1,3-dimethyl-2,4,5-trithioxoimidazolidine; mnt2– = 1,2-dicyano-1,2-ethylenedithiolate). Inorg. Chem. 2020, 59, 17385–17401. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models. J. Chem. Phys. 1998, 108, 664–675. [Google Scholar] [CrossRef]
- Schäfer, A.; Horn, H.; Ahlrichs, R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys. 1992, 97, 2571–2577. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Roy, L.E.; Hay, P.G.; Martin, R.L. Revised Basis Sets for the LANL Effective Core Potentials. J. Chem. Theory Comput. 2008, 4, 1029–1031. [Google Scholar] [CrossRef]
- Ortiz, J.V.; Hay, P.J.; Martin, R.L. Role of d and f orbitals in the geometries of low-valent actinide compounds. Ab initio studies of U(CH3)3, Np(CH3)3, and Pu(CH3)3. J. Am. Chem. Soc. 1992, 114, 2736–2737. [Google Scholar] [CrossRef]
- Danks, J.P.; Champness, N.R.; Schröder, M. Chemistry of mixed nitrogen- and sulfur-donor tridentate macrocycles. Coord. Chem. Rev. 1998, 174, 417–468. [Google Scholar] [CrossRef]
- Blake, A.J.; Schröder, M. Chemistry of thioether macrocyclic complexes. Adv. Inorg. Chem. 1990, 35, 1–80. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Rev. B.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Schuchardt, K.L.; Didier, B.T.; Elsethagen, T.; Sun, L.; Gurumoorthi, V.; Chase, J.; Li, J.; Windus, T.L. Basis set exchange: A community database for computational sciences. J. Chem. Inf. Model. 2007, 47, 1045–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reed, A.E.; Weinstock, R.B.; Weinhold, F. Natural population analysis. J. Chem. Phys. 1985, 83, 735–746. [Google Scholar] [CrossRef]
- Dennington, R.D.; Keith, T.A.; Millam, J.M. GaussView 6.0. 16; Semichem. Inc.: Shawnee, KS, USA, 2016. [Google Scholar]
- Schaftenaar, G.; Noordik, J.H. Molden: A pre- and post-processing program for molecular and electronic structures. J. Comput. Aided. Mol. Des. 2000, 14, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Skripnikov, L.V. Chemissian Version 4.53; Visualization Computer Program: Petersburg, Russia, 2017. [Google Scholar]
- Altomare, G.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M.; Polidori, G. SIR92—A program for automatic solution of crystal structures by direct methods. J. Appl. Crystallogr. 1994, 27, 435–436. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garau, A.; Picci, G.; Arca, M.; Blake, A.J.; Caltagirone, C.; Filippo, G.D.; Demartin, F.; Isaia, F.; Lippolis, V.; Pintus, A.; et al. Can Serendipity Still Hold Any Surprises in the Coordination Chemistry of Mixed-Donor Macrocyclic ligands? The Case Study of Pyridine-Containing 12-Membered Macrocycles and Platinum Group Metal ions PdII, PtII, and RhIII. Molecules 2021, 26, 1286. https://doi.org/10.3390/molecules26051286
Garau A, Picci G, Arca M, Blake AJ, Caltagirone C, Filippo GD, Demartin F, Isaia F, Lippolis V, Pintus A, et al. Can Serendipity Still Hold Any Surprises in the Coordination Chemistry of Mixed-Donor Macrocyclic ligands? The Case Study of Pyridine-Containing 12-Membered Macrocycles and Platinum Group Metal ions PdII, PtII, and RhIII. Molecules. 2021; 26(5):1286. https://doi.org/10.3390/molecules26051286
Chicago/Turabian StyleGarau, Alessandra, Giacomo Picci, Massimiliano Arca, Alexander J. Blake, Claudia Caltagirone, Greta De Filippo, Francesco Demartin, Francesco Isaia, Vito Lippolis, Anna Pintus, and et al. 2021. "Can Serendipity Still Hold Any Surprises in the Coordination Chemistry of Mixed-Donor Macrocyclic ligands? The Case Study of Pyridine-Containing 12-Membered Macrocycles and Platinum Group Metal ions PdII, PtII, and RhIII" Molecules 26, no. 5: 1286. https://doi.org/10.3390/molecules26051286
APA StyleGarau, A., Picci, G., Arca, M., Blake, A. J., Caltagirone, C., Filippo, G. D., Demartin, F., Isaia, F., Lippolis, V., Pintus, A., Scorciapino, M. A., & Aragoni, M. C. (2021). Can Serendipity Still Hold Any Surprises in the Coordination Chemistry of Mixed-Donor Macrocyclic ligands? The Case Study of Pyridine-Containing 12-Membered Macrocycles and Platinum Group Metal ions PdII, PtII, and RhIII. Molecules, 26(5), 1286. https://doi.org/10.3390/molecules26051286