Behaviors of Perfluorocarbon Emulsion during Dissolution of Oxide Layers
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characteristics of the P-BED
2.2. Dissolution Characteristics of the Oxide Layer Using P-BED
(△G = −66.56 kcal, at 45 °C)
(△G = −39.52 kcal, at 45 °C)
(△G = −27.04 kcal, at 45 °C)
2.3. P-BED Behaviors during the Dissolution of the Oxide Layer
3. Materials and Methods
3.1. Materials
3.2. P-BED Preparation
3.3. Dissolution Test
3.4. Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Provens, H. Primary circuit contamination in nuclear power plants: Contribution to occupational exposure. In Proceedings of the Towards Harmonisation of Radiation Protection in Europe: European IRPA Congress 2002, Florence, Italy, 8–11 October 2002. [Google Scholar]
- Vinod, K.; Rajeev, G.; Raman, C.; M, S.; Rakesh, K.S. Chemical, biological, radiological, and nuclear decontamination: Recent trends and future perspective. J. Pharm. Bioallied Sci. 2010, 2, 220–238. [Google Scholar]
- Remark, J.F. A Review of Plant Decontamination Methods; NP–6169; EPRI: Palo Alto, CA, USA; Marietta, GA, USA, 1989. [Google Scholar]
- Jeikwon, M.; Seonbyung, K.; Wangkyu, C.; Byungseon, C.; Dongyoung, C.; Bumkyoung, S. The Status and Prospect of Decommissioning Technology Development at KAERI. JNFCWT 2019, 17, 139–165. [Google Scholar]
- Wen-Tien, T.; Horng-Ping, C.; Wu-Yuan, H. A review of uses, environmental hazards and recovery/recycle technologies of perfluorocarbons (PFCs) emissions from the semiconductor manufacturing processes. J. Loss Prev. Process. Ind. 2002, 15, 65–75. [Google Scholar]
- Charles, D.A. Fluorinated gases for semiconductor manufacture: Process advances in chemical vapor deposition chamber cleaning. J. Fluor. Chem. 2003, 122, 105–112. [Google Scholar]
- Hui-Jun, W.; Gye-Nam, K.; Chung-Hun, J.; Jin-Ho, P.; Won-Zin, O. PFC Ultrasonic Decontamination Efficiency on the Various Types of Metal Specimens. J. Korean Radioact. Waste Soc. 2005, 3, 293–300. [Google Scholar]
- PF-5058. Available online: Multimedia.3m.com/mws/media/244053O/performance-fluid-pf-5058-product-information.pdf (accessed on 11 January 2021).
- Ilie, S.; Setnescu, R.; Teissandier, B. Chemical and Radiolytical Characterization of Perfluorocarbon Fluids Used as Coolants for LHC Experiments: Radiolysis Effect in Perfluorohexane Fluids; CERN-TS-Note-2007-005; CERN: Geneva, Switzerland, 2007. [Google Scholar]
- Arthur, E.D.; Robert, K.; Jason, A.; Justin, D.; Josh, J.; Adam, K. Separation and Extraction of Plutonium in Mixed Waste; INIS-US-0199; Bartlett Services, Inc.: Plymoufh, MA, USA, 2002. [Google Scholar]
- Huijun, W.; Kyenam, K.; Wangkyu, C.; Chonghun, C. A Study on the Decontamination of Radioactively Contaminated Facility by the PFC Spray Method. In Proceedings of the Korean Society of Environmental Engineers 2007 Autumn Conference, Chuncheon, Korea, 11–12 November 2007. [Google Scholar]
- Guoshen, S.; Chenghong, J.; Chao, L.; Xuejiao, S.; Xuan, Y.; Ziliang, D.; Kai, Y.; Zhuang, L. TaOx decorated perfluorocarbon nanodroplets as oxygen reservoirs to overcome, tumor hypoxia and enhance cancer radiotherapy. Biomaterials 2017, 112, 257–263. [Google Scholar]
- Ulrich, F.; Zhaoping, D.; Hendrik, H.; Sebastian, J.; Gaby, R.; Christoph, J.; Rolf, S.; Jürgen, S. In Vivo Monitoring of Inflammation After Cardiac and Cerebral Ischemia by Fluorine Magnetic Resonance Imaging. Circulation 2008, 118, 140–148. [Google Scholar]
- Paul, E.H.; Henrik, G.K.; Veronica, V.; James, B.B. Vibrational and Electronic Spectroscopy of Sulfuric Acid Vapor. J. Phys. Chem. A 2003, 107, 1112–1118. [Google Scholar]
- David, F.C.; Jeffrey, R.; Watts, R.O. The Infrared Absorption Spectrum of Water. Aust. J. Phys. 1982, 35, 623–638. [Google Scholar]
- Andra, D.; Tatiana, T.; Adriana, S.; Ionut, R.A.; Simona, N.; Viorel, N.; Angela, S.; Mihail–Lucian, P.; Mihaela, O.R. Spectroscopic Characterization of Emulsions Generated with a New Laser-Assisted Device. Molecules 2020, 25, 1729. [Google Scholar]
- Hong, Z.; Stephen, G.W. Teflon AF Materials. Topics Curr. Chem. 2012, 308, 307–338. [Google Scholar]
- Mohammad, S.C.; Wenshan, Z.; Shalini, K.; John, H.; Xingcai, Z.; Pradip, D.; David, A.W.; Rainer, H. Dendronized fluorosurfactant for highly stable water-in-fluorinated oil emulsions with minimal inter-droplet transfer of small molecules. Nat. Commun. 2019, 10, 4546. [Google Scholar]
- David, J.M.; Sied, M.J. Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Adv. Colloid Interface Sci. 2018, 251, 55–79. [Google Scholar]
- Pick, M.E. Development of nitric acid permanganate pre-oxidation and its application in POD process for PWR decontamination. In Proceedings of the Decontamination of Nuclear Facilities, Toronto, ON, Canada, 19–22 September 1982. [Google Scholar]
- Maroo, S.; Chandramohan, P.; Srinivasan, M.P.; Velmurugan, S. Chemical dissolution of iron substituted chromium oxide by dissolved ozone. Progress Nuclear Energy 2020, 120, 103189. [Google Scholar] [CrossRef]
- Widya, E.K. Modification of Carbon Felt for Construction of Air-Breathing Cathode and Its Application in Microbial Fuel Cell; Institut teknologi Bandung, Material Chemistry, Université Montpellier: Montpellier, France, 2019. [Google Scholar]
Element | Atomic Percent (%) | ||
---|---|---|---|
0.37 M H2SO4 + 0.13 mM KMnO4 | 0.18 M H2SO4 + 0.13 mM KMnO4 | 0.00 M H2SO4 + 0.13 mM KMnO4 | |
O | 7.96 | 59.44 | 65.96 |
Cr | 17.07 | 17.96 | 15.96 |
Fe | 67.89 | 22.01 | 17.41 |
Ni | 7.08 | 0.58 | 0.66 |
Total | 100.00 | 100.00 | 100.00 |
Element | Atomic Percent (%) | ||
---|---|---|---|
0.37 M H2SO4 + 0.00 mM KMnO4 | 0.37 M H2SO4 + 0.06 mM KMnO4 | 0.37 M H2SO4 + 0.13 mM KMnO4 | |
O | 44.17 | 32.97 | 7.96 |
Cr | 16.23 | 9.80 | 17.07 |
Fe | 37.98 | 54.09 | 67.89 |
Ni | 1.61 | 3.15 | 7.08 |
Total | 100.00 | 100.00 | 100.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, N.; Won, H.; Jung, C.; Kim, S.; Eun, H.; Kim, Y. Behaviors of Perfluorocarbon Emulsion during Dissolution of Oxide Layers. Molecules 2021, 26, 1329. https://doi.org/10.3390/molecules26051329
Chang N, Won H, Jung C, Kim S, Eun H, Kim Y. Behaviors of Perfluorocarbon Emulsion during Dissolution of Oxide Layers. Molecules. 2021; 26(5):1329. https://doi.org/10.3390/molecules26051329
Chicago/Turabian StyleChang, Naon, Huijun Won, Chonghun Jung, Seonbyeong Kim, Heechul Eun, and Yongsoo Kim. 2021. "Behaviors of Perfluorocarbon Emulsion during Dissolution of Oxide Layers" Molecules 26, no. 5: 1329. https://doi.org/10.3390/molecules26051329
APA StyleChang, N., Won, H., Jung, C., Kim, S., Eun, H., & Kim, Y. (2021). Behaviors of Perfluorocarbon Emulsion during Dissolution of Oxide Layers. Molecules, 26(5), 1329. https://doi.org/10.3390/molecules26051329