Assessing Adherence to Antihypertensive Medication by Means of Dose-Dependent Reference Plasma Concentration Ranges and Ultra-High Performance Liquid Chromatography-Ion Trap Mass Spectrometry Analysis
Abstract
:1. Introduction
2. Results
2.1. Development of the Analytical Procedure
2.2. Method Validation
2.3. Applicability and Assessment of Adherence by Using the Dose-Dependent Reference Plasma Concentration Range
3. Discussion
3.1. Development and Validation of the Analytical Procedure
3.2. Applicability and Assessment of Adherence by Using the Dose-Dependent Reference Plasma Concentration Range
4. Materials and Methods
4.1. Chemicals, Reagents, and Human Biosamples
4.2. Preparation of Stock Solutions for Calibrators and Quality Controls
4.3. Sample Preparation
4.4. UHPLC-ITMS Conditions
4.5. Method Validation
4.5.1. Ion Suppression and Enhancement of Coeluting Analytes
4.5.2. Selectivity
4.5.3. Carryover
4.5.4. Calibration
4.5.5. Matrix Effect
4.5.6. Accuracy and Precision
Within-Run Accuracy and Precision
Between-Run Accuracy and Precision
Dilution Integrity
4.5.7. Stability of Stock Solutions
4.5.8. Autosampler Stability
4.6. Applicability and Calculation of the Dose-Dependent Reference Plasma Concentration Range
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Poulter, N.R.; Prabhakaran, D.; Caulfield, M. Hypertension. Lancet 2015, 386, 801–812. [Google Scholar] [CrossRef]
- Ettehad, D.; Emdin, C.A.; Kiran, A.; Anderson, S.G.; Callender, T.; Emberson, J.; Chalmers, J.; Rodgers, A.; Rahimi, K. Blood pressure lowering for prevention of cardiovascular disease and death: A systematic review and meta-analysis. Lancet 2016, 387, 957–967. [Google Scholar] [CrossRef] [Green Version]
- Thomopoulos, C.; Parati, G.; Zanchetti, A. Effects of blood pressure lowering on outcome incidence in hypertension: 7. Effects of more vs. less intensive blood pressure lowering and different achieved blood pressure levels—updated overview and meta-analyses of randomized trials. J. Hypertens. 2016, 34, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wen, Y.; Liu, K.; Sun, L.; Lu, Y.; Yin, Z. Simultaneous determination of a broad range of cardiovascular drugs in plasma with a simple and efficient extraction/clean up procedure and chromatography-mass spectrometry analysis. RSC Adv. 2014, 4, 19629–19639. [Google Scholar] [CrossRef]
- WHO. Adherence to Long-Term Therapies: Evidence for Action. 2003. Available online: https://www.who.int/chp/knowledge/publications/adherence_report/en/ (accessed on 23 February 2021).
- Burnier, M. Drug adherence in hypertension. Pharmacol. Res. 2017, 125, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Overgaauw, N.; Alsma, J.; Brink, A.; Hameli, E.; Bahmany, S.; Peeters, L.E.J.; Van Den Meiracker, A.H.; Schuit, S.C.E.; Koch, B.C.P.; Versmissen, J. Drug nonadherence is a common but often overlooked cause of hypertensive urgency and emergency at the emergency department. J. Hypertens. 2019, 37, 1048–1057. [Google Scholar] [CrossRef] [PubMed]
- Saguner, A.M.; Dur, S.; Perrig, M.; Schiemann, U.; Stuck, A.E.; Burgi, U.; Erne, P.; Schoenenberger, A.W. Risk factors promoting hypertensive crises: Evidence from a longitudinal study. Am. J. Hypertens. 2010, 23, 775–780. [Google Scholar] [CrossRef]
- Jung, O.; Gechter, J.L.; Wunder, C.; Paulke, A.; Bartel, C.; Geiger, H.; Toennes, S.W. Resistant hypertension? Assessment of adherence by toxicological urine analysis. J. Hypertens. 2013, 31, 766–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, P.; Patel, P.; Horne, R.; Buchanan, H.; Williams, B.; Tomaszewski, M. How to Screen for Non-Adherence to Antihypertensive Therapy. Curr. Hypertens. Rep. 2016, 18, 89. [Google Scholar] [CrossRef]
- Ewen, S.; Meyer, M.R.; Cremers, B.; Laufs, U.; Helfer, A.G.; Linz, D.; Kindermann, I.; Ukena, C.; Burnier, M.; Wagenpfeil, S.; et al. Blood pressure reductions following catheter-based renal denervation are not related to improvements in adherence to antihypertensive drugs measured by urine/plasma toxicological analysis. Clin. Res. Cardiol. 2015, 104, 1097–1105. [Google Scholar] [CrossRef]
- Kunz, M.; Lauder, L.; Ewen, S.; Bohm, M.; Mahfoud, F. The Current Status of Devices for the Treatment of Resistant Hypertension. Am. J. Hypertens. 2020, 33, 10–18. [Google Scholar] [CrossRef]
- Vitolins, M.Z.; Rand, C.S.; Rapp, S.R.; Ribisl, P.M.; Sevick, M.A. Measuring adherence to behavioral and medical interventions. Control. Clin. Trials 2000, 21, 188S–194S. [Google Scholar] [CrossRef]
- Norell, S.E. Accuracy of patient interviews and estimates by clinical staff in determining medication compliance. Soc. Sci. Med. E 1981, 15, 57–61. [Google Scholar] [CrossRef]
- Richter, L.H.J.; Jacobs, C.M.; Mahfoud, F.; Kindermann, I.; Bohm, M.; Meyer, M.R. Development and application of a LC-HRMS/MS method for analyzing antihypertensive drugs in oral fluid for monitoring drug adherence. Anal. Chim. Acta 2019, 1070, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Tomaszewski, M.; White, C.; Patel, P.; Masca, N.; Damani, R.; Hepworth, J.; Samani, N.J.; Gupta, P.; Madira, W.; Stanley, A.; et al. High rates of non-adherence to antihypertensive treatment revealed by high-performance liquid chromatography-tandem mass spectrometry (HP LC-MS/MS) urine analysis. Heart 2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helfer, A.G.; Michely, J.A.; Weber, A.A.; Meyer, M.R.; Maurer, H.H. Orbitrap technology for comprehensive metabolite-based liquid chromatographic-high resolution-tandem mass spectrometric urine drug screening—exemplified for cardiovascular drugs. Anal. Chim. Acta 2015, 891, 221–233. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Patel, P.; Strauch, B.; Lai, F.Y.; Akbarov, A.; Gulsin, G.S.; Beech, A.; Maresova, V.; Topham, P.S.; Stanley, A.; et al. Biochemical Screening for Nonadherence Is Associated With Blood Pressure Reduction and Improvement in Adherence. Hypertension 2017, 70, 1042–1048. [Google Scholar] [CrossRef] [PubMed]
- Hamdidouche, I.; Jullien, V.; Boutouyrie, P.; Billaud, E.; Azizi, M.; Laurent, S. Routine urinary detection of antihypertensive drugs for systematic evaluation of adherence to treatment in hypertensive patients. J. Hypertens. 2017, 35, 1891–1898. [Google Scholar] [CrossRef] [PubMed]
- Helfer, A.G.; Michely, J.A.; Weber, A.A.; Meyer, M.R.; Maurer, H.H. Liquid chromatography-high resolution-tandem mass spectrometry using Orbitrap technology for comprehensive screening to detect drugs and their metabolites in blood plasma. Anal. Chim. Acta 2017, 965, 83–95. [Google Scholar] [CrossRef]
- Peters, F.T. Recent developments in urinalysis of metabolites of new psychoactive substances using LC-MS. Bioanalysis 2014, 6, 2083–2107. [Google Scholar] [CrossRef]
- Punt, A.M.; Stienstra, N.A.; van Kleef, M.E.A.; Lafeber, M.; Spiering, W.; Blankestijn, P.J.; Bots, M.L.; van Maarseveen, E.M. Screening of cardiovascular agents in plasma with LC-MS/MS: A valuable tool for objective drug adherence assessment. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1121, 103–110. [Google Scholar] [CrossRef]
- Lum, G.; Mushlin, B. Urine Drug Testing: Approaches to Screening and Confirmation Testing. Lab. Med. 2004, 35, 368–373. [Google Scholar] [CrossRef]
- Ritscher, S.; Hoyer, M.; Georges, C.; Wunder, C.; Wallemacq, P.; Persu, A.; Obermuller, N.; Toennes, S.W. Benefit of serum drug monitoring complementing urine analysis to assess adherence to antihypertensive drugs in first-line therapy. PLoS ONE 2020, 15, e0237383. [Google Scholar] [CrossRef] [PubMed]
- Ritscher, S.; Hoyer, M.; Wunder, C.; Obermuller, N.; Toennes, S.W. Evaluation of the dose-related concentration approach in therapeutic drug monitoring of diuretics and beta-blockers—drug classes with low adherence in antihypertensive therapy. Sci. Rep. 2019, 9, 15652. [Google Scholar] [CrossRef] [PubMed]
- van der Nagel, B.C.H.; Versmissen, J.; Bahmany, S.; van Gelder, T.; Koch, B.C.P. High-throughput quantification of 8 antihypertensive drugs and active metabolites in human plasma using UPLC-MS/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1060, 367–373. [Google Scholar] [CrossRef] [PubMed]
- De Nicolo, A.; Avataneo, V.; Rabbia, F.; Bonifacio, G.; Cusato, J.; Tomasello, C.; Perlo, E.; Mulatero, P.; Veglio, F.; Di Perri, G.; et al. UHPLC-MS/MS method with protein precipitation extraction for the simultaneous quantification of ten antihypertensive drugs in human plasma from resistant hypertensive patients. J. Pharm. Biomed. Anal. 2016, 129, 535–541. [Google Scholar] [CrossRef]
- Schwabe, U.; Paffrath, D.; Ludwig, W.-D.; Klauber, J. Arzneiverordnungs-Report 2018; Springer: Heidelberg, Germany, 2018. [Google Scholar]
- Schwabe, U.; Paffrath, D.; Ludwig, W.-D.; Klauber, J. Arzneiverordnungs-Report 2019; Springer: Heidelberg, Germany, 2019. [Google Scholar]
- EMA. Guideline on Bioanalytical Method Validation, 2015th ed.; European Medicines Agency: London, UK, 2011; Volume EMEA/CHMP/EWP/192217/2009 Rev.1 Corr.2. [Google Scholar]
- Caspar, A.T.; Meyer, M.R.; Maurer, H.H. Blood plasma level determination using an automated LC-MS(n) screening system and electronically stored calibrations exemplified for 22 drugs and two active metabolites often requested in emergency toxicology. Drug Test. Anal. 2018. [Google Scholar] [CrossRef] [Green Version]
- Schulz, M.; Schmoldt, A.; Andresen-Streichert, H.; Iwersen-Bergmann, S. Revisited: Therapeutic and toxic blood concentrations of more than 1100 drugs and other xenobiotics. Crit. Care 2020, 24, 195. [Google Scholar] [CrossRef]
- Baselt, R.C. Disposition of Toxic Drugs and Chemicals in Man, 11th ed.; Biomedical Publications: Seal Beach, CA, USA, 2017. [Google Scholar]
- Avataneo, V.; De Nicolo, A.; Rabbia, F.; Sciandra, M.; Tosello, F.; Cusato, J.; Perlo, E.; Fatiguso, G.; Allegra, S.; Favata, F.; et al. A simple UHPLC-PDA method with a fast dilute-and-shot sample preparation for the quantification of canrenone and its prodrug spironolactone in human urine samples. J. Pharmacol. Toxicol. Methods 2018, 94, 29–35. [Google Scholar] [CrossRef]
- Remane, D.; Meyer, M.R.; Wissenbach, D.K.; Maurer, H.H. Ion suppression and enhancement effects of co-eluting analytes in multi-analyte approaches: Systematic investigation using ultra-high-performance liquid chromatography/mass spectrometry with atmospheric-pressure chemical ionization or electrospray ionization. Rapid Commun. Mass Spectrom. 2010, 24, 3103–3108. [Google Scholar] [CrossRef]
- GTFCh. Recommendations of criteria for development and validation of analytical methods for estimating concentrations of drugs in blood to be used in 24/7 clinical toxicology. Toxichem Krimtech 2018, 85, 35. [Google Scholar]
- Schulz, M.; Iwersen-Bergmann, S.; Andresen, H.; Schmoldt, A. Therapeutic and toxic blood concentrations of nearly 1000 drugs and other xenobiotics. Crit. Care 2012, 16, R136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rognstad, S.; Soraas, C.L.; Bergland, O.U.; Hoieggen, A.; Strommen, M.; Helland, A.; Opdal, M.S. Establishing Serum Reference Ranges for Antihypertensive Drugs. Ther. Drug Monit. 2021, 43, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Hiemke, C.; Bergemann, N.; Clement, H.W.; Conca, A.; Deckert, J.; Domschke, K.; Eckermann, G.; Egberts, K.; Gerlach, M.; Greiner, C.; et al. Consensus Guidelines for Therapeutic Drug Monitoring in Neuropsychopharmacology: Update 2017. Pharmacopsychiatry 2017, 15, 1645–3265. [Google Scholar] [CrossRef] [Green Version]
Analyte | Cal 1 (≡LLOQ) | Cal 2 | Cal 3 | Cal 4 | Cal 5 | Cal 6 (=ULOQ) | LLOQ QC | Low QC | Med QC | High QC | Weigh-ting |
---|---|---|---|---|---|---|---|---|---|---|---|
Amlodipine | 10 | 50 | 100 | 150 | 200 | 250 | 10 | 30 | 120 | 240 | 1/x |
Bisoprolol | 5 | 25 | 50 | 75 | 100 | 125 | 5 | 15 | 60 | 120 | 1/x2 |
Candesartan | 10 | 50 | 100 | 150 | 200 | 250 | 10 | 30 | 120 | 240 | 1/x2 |
Canrenone | 20 | 100 | 200 | 300 | 400 | 500 | 20 | 60 | 240 | 480 | 1/x2 |
Carvedilol | 1 | 5 | 10 | 15 | 20 | 25 | 1 | 3 | 12 | 24 | 1/x2 |
Metoprolol | 10 | 50 | 100 | 150 | 200 | 250 | 10 | 30 | 120 | 240 | 1/x2 |
Olmesartan | 5 | 25 | 50 | 75 | 100 | 125 | 5 | 15 | 60 | 120 | 1/x |
Torasemide | 5 | 25 | 50 | 75 | 100 | 125 | 5 | 15 | 60 | 120 | equal |
Valsartan | 10 | 50 | 100 | 150 | 200 | 250 | 10 | 30 | 120 | 240 | 1/x |
Analyte | Precursor Ion m/z | Retention Order | tR, min |
---|---|---|---|
Amlodipine | 409.15 | 6 | 8.8 |
Bisoprolol | 326.23 | 2 | 5.2 |
Candesartan | 441.17 | 7 | 10.5 |
Canrenone | 341.21 | 10 | 11.7 |
Carvedilol | 407.20 | 5 | 7.8 |
Diazepam-d5 (IS) | 290.11 | 8 | 11.3 |
Metoprolol | 268.19 | 1 | 4.2 |
Olmesartan | 447.21 | 3 | 5.7 |
Torasemide | 349.13 | 4 | 6.1 |
Valsartan | 436.23 | 9 | 11.5 |
Analyte | Low QC | CV, % | High QC | CV, % |
---|---|---|---|---|
IS-Normalized Matrix Factor | IS-Normalized Matrix Factor | |||
Amlodipine | 2.54 | 26 * | 1.37 | 16 * |
Bisoprolol | 1.12 | 11 | 1.07 | 13 |
Candesartan | 0.82 | 24 * | 0.96 | 17 * |
Canrenone | 1.10 | 11 | 0.99 | 10 |
Carvedilol | 1.15 | 19 * | 1.08 | 7 |
Metoprolol | 1.16 | 17 * | 1.07 | 10 |
Olmesartan | 0.95 | 22 * | 0.96 | 17 * |
Torasemide | 1.06 | 12 | 1.08 | 12 |
Valsartan | 1.12 | 42 * | 1.07 | 25 * |
Analyte | Sample ID | Measured Plasma Conc. ng/mL | Daily Dose, mg | Therapeutic Plasma Conc., ng/mL [32] | t1/2, h [33] | tmax, h [33] | Calculated Reference Plasma Conc., ng/mL |
---|---|---|---|---|---|---|---|
Bisoprolol | 2 | 5.9 | 2.5 | 10–100 (↓) | 7–15 | 2 | 2.0–21 (5 mg) (⟷) |
4 | 27 | 10 | 10–100 (⟷) | 4.8–52 (⟷) | |||
6 | 17 | 5 | 10–100 (⟷) | 2.0–21 (⟷) | |||
9 | 9 | 5 | 10–100 (↓) | 2.0–21 (⟷) | |||
12 | 17 | 5 | 10–100 (⟷) | 2.0–21 (⟷) | |||
13 | <LLOQ (5 ng/mL) | 2.5 | 10–100 (↓) | 2.0–21 (5 mg) (?) | |||
14 | 5.5 | 5 | 10–100 (↓) | 2.0–21 (⟷) | |||
Candesartan | 12 | 66 | 8 | 80–400 (↓) | 8–13 | 9.2–61 (↑) | |
14 | 160 | 32 | 80–400 (⟷) | 4 | 39–260 (⟷) | ||
15 | 92 | 32 | 80–400 (⟷) | 39–260 (⟷) | |||
16 | 83 | 16 | 80–400 (⟷) | 18–120 (⟷) | |||
17 | 49 | 16 | 80–400 (↓) | 18–120 (⟷) | |||
Canrenone | 4 | 90 | 50 | 50–500 (⟷) | 13–23 | 2 | 160–600 (100 mg) (↓) |
Carvedilol | 18 | 2.4 | 6.25 | 20–300 (↓) | 4–7 | 1 | 0.36–58 (12.5 mg) (⟷) |
Metoprolol | 5 | 38 | 50 | 20–600 (⟷) | 2.5–7.5 | 1 | 0.10–72 (⟷) |
7 | <LLOQ (10 ng/mL) | 100 | 20–600 (↓) | 2 | 0.26–140 (?) | ||
Olmesartan | 1 | 52 | 40 | 100–1000 (↓) | 6–15 | 2 | 55–830 (↓) |
3 | 1100 | 40 | 100–1000 (↑) | 55–830 (↑) | |||
10 | 14 | 20 | 100–1000 (↓) | 26–390 (↓) | |||
Torasemide | 6 | 41 | 10 | 64–2000 (↓) | 2–6 | 1 | 0.47–1600 (⟷) |
8 | 240 | 10 | 64–2000 (⟷) | 0.47–1600 (⟷) | |||
11 | 18 | 10 | 64–2000 (↓) | 0.47–1600 (⟷) | |||
13 | 30 | 10 | 64–2000 (↓) | 0.47–1600 (⟷) | |||
14 | 170 | 5 | 64–2000 (⟷) | 0.47–1600 (10 mg) (⟷) | |||
18 | 9.2 | 2.5 | 64–2000 (↓) | 0.47–1600 (10 mg) (⟷) | |||
Valsartan | 6 | 920 | 320 | 800–6000 (⟷) | 4–12 | 3 | 240–11,000 (⟷) |
11 | 3000 | 320 | 800–6000 (⟷) | 240–11,000 (⟷) | |||
19 | 410 | 320 | 800–6000 (↓) | 240–11,000 (⟷) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wagmann, L.; Vollmer, A.C.; Lauder, L.; Mahfoud, F.; Meyer, M.R. Assessing Adherence to Antihypertensive Medication by Means of Dose-Dependent Reference Plasma Concentration Ranges and Ultra-High Performance Liquid Chromatography-Ion Trap Mass Spectrometry Analysis. Molecules 2021, 26, 1495. https://doi.org/10.3390/molecules26051495
Wagmann L, Vollmer AC, Lauder L, Mahfoud F, Meyer MR. Assessing Adherence to Antihypertensive Medication by Means of Dose-Dependent Reference Plasma Concentration Ranges and Ultra-High Performance Liquid Chromatography-Ion Trap Mass Spectrometry Analysis. Molecules. 2021; 26(5):1495. https://doi.org/10.3390/molecules26051495
Chicago/Turabian StyleWagmann, Lea, Aline C. Vollmer, Lucas Lauder, Felix Mahfoud, and Markus R. Meyer. 2021. "Assessing Adherence to Antihypertensive Medication by Means of Dose-Dependent Reference Plasma Concentration Ranges and Ultra-High Performance Liquid Chromatography-Ion Trap Mass Spectrometry Analysis" Molecules 26, no. 5: 1495. https://doi.org/10.3390/molecules26051495
APA StyleWagmann, L., Vollmer, A. C., Lauder, L., Mahfoud, F., & Meyer, M. R. (2021). Assessing Adherence to Antihypertensive Medication by Means of Dose-Dependent Reference Plasma Concentration Ranges and Ultra-High Performance Liquid Chromatography-Ion Trap Mass Spectrometry Analysis. Molecules, 26(5), 1495. https://doi.org/10.3390/molecules26051495