Optimization of Pressurized Liquid Extraction of Lycopodiaceae Alkaloids Obtained from Two Lycopodium Species
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of PLE and SPE Purification
2.2. Influence of Solvents Used in the Extraction Method on the Composition of the Extracts Identified by HPLC/ESI-QTOF–MS
2.3. LC–MS Identification of Isolated Alkaloids
2.4. Chemical Composition of Lycopodium clavatum L. and Lycopodium annotinum L.
3. Materials and Methods
3.1. Plant Materials
3.2. Samples Preparation and Extraction Conditions
3.3. Purification of Extracts by the Solid-Phase Extraction
3.4. LC–MS Identification of the Main Isolated Alkaloids
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Da Silva, G.F.; Gandolfi, P.H.K.; Almeida, R.N.; Lucas, A.M.; Cassel, E.; Vargas, R.M.F. Analysis of supercritical fluid extraction of lycopodine using response surface methodology and process mathematical modeling. Chem. Eng. Res. Des. 2015, 100, 353–361. [Google Scholar] [CrossRef]
- Banerjee, J.; Biswas, S.; Madhu, N.R.; Karmakar, S.R.; Biswas, S.J. A better understanding of pharmacological activities and uses of phytochemicals of Lycopodium clavatum: A review. J. Pharmacogn. Phytochem. 2014, 3, 207–210. [Google Scholar]
- Zangara, A. The psychopharmacology of huperzine A: An alkaloid with cognitive enhancing and neuroprotective properties of interest in the treatment of Alzheimer’s disease. Pharmacol. Biochem. Behav. 2003, 75, 675–686. [Google Scholar] [CrossRef]
- Konrath, E.L.; Neves, B.M.; Lunardi, P.S.; Passos, C.S.; Simoes-Pires, A.; Ortega, M.G.; Goncalves, C.A.; Cabrera, J.L.; Moreira, J.C.F.; Henriques, A.T. Investigation of the in vitro and ex vivo acetylcholinesterase and antioxidant activities of traditionally used Lycopodium species from South America on alkaloid extracts. J. Ethnopharmacol. 2012, 139, 58–67. [Google Scholar] [CrossRef] [Green Version]
- Orhan, I.; Kupeli, E.; Sener, B.; Yesilada, E. Appraisal of anti-inflammatory potential of the clubmoss, Lycopodium clavatum L. J. Ethnopharmacol. 2007, 109, 146–150. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.K.; Biswas, R.; Bhattacharyya, S.S.; Paul, S.; Dutta, S.; Pathak, S.; Khuda-Bukhsh, A.R. Lycopodine from Lycopodium clavatum extract inhibits proliferation of HeLa cells through induction of apoptosis via caspase-3 activation. Eur. J. Pharmacol. 2010, 626, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Pathak, S.; Kumar Das, J.; Jyoti Biswas, S.; Khuda-Bukhsh, A.R. Protective potentials of a potentized homeopathic drug, Lycopodium-30, in ameliorating azo dye induced hepatocarcinogenesis in mice. Mol. Cell. Biochem. 2006, 285, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Pathak, S.; Banerjee, A.; Paul, S.; Khuda-Bukhsh, A.R. Protective potentials of a plant extract (Lycopodium clavatum) on mice chronically fed hepato-carcinogens. Indian. J. Exp. Biol. 2009, 47, 602–607. [Google Scholar] [PubMed]
- Li, X.; Kang, M.; Ma, N.; Pang, T.; Zhang, Y.; Jin, H.; Yang, Z.; Song, L. Identification and analysis of chemical constituents and rat serum metabolites in Lycopodium clavatum using UPLC-Q-TOF/MS combined with multiple data-processing approaches. Evid. Based Complement Alternat. Med. 2019, 5165029, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Cummings, J.L.; Vinters, H.V.; Cole, G.M.; Khachaturian, Z.S. Alzheimer’s disease: Etiologies, pathophysiology, cognitive reserve, and treatment opportunities. Neurology 1998, 51, 2–17. [Google Scholar] [CrossRef]
- Ferreira, A.; Rodrigues, M.; Fortuna, A.; Falcao, A.; Alves, G. Huperzine A from Huperzia serrata: A review of its sources, chemistry, pharmacology and toxicology. Phytochem. Rev. 2016, 15, 51–85. [Google Scholar] [CrossRef]
- Wang, R.; Yan, H.; Tang, X.-C. Progress in studies of huperzine A, a natural cholinesterase inhibitor from Chinese herbal medicine. Acta. Pharmacol. Sin. 2006, 27, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.M.; Han, Y.F.; Tang, X.-C. Huperzine A improves cognitive deficits caused by chronic cerebral hypoperfusion in rats. Eur. J. Pharmacol. 2000, 398, 65–72. [Google Scholar] [CrossRef]
- Pepping, J. Huperzine A. Am. J. Health. Syst. Pharm. 2000, 57, 530–534. [Google Scholar] [CrossRef]
- Orhan, I.; Terzioglu, S.; Sener, B. Aplha-onocerin: An acetylcholinesterase inhibitor from Lycopodium clavatum. Planta Med. 2003, 69, 265–267. [Google Scholar] [CrossRef]
- Zuo, Z.-X.; Wang, Y.-J.; Liu, L.; Wang, Y.; Mei, S.-H.; Feng, Z.-H.; Wang, M.; Li, X.-Y. Huperzine A alleviates mechanical allodynia but not spontaneous pain via muscarinic acetylcholine receptors in mice. Neural. Plast. 2015, 453170, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Gang, D.R. The Lycopodium alkaloids. Nat. Prod. Rep. 2004, 21, 752–772. [Google Scholar] [CrossRef] [PubMed]
- Thorroad, S.; Worawittayanont, P.; Khunnawutmanotham, N.; Chimnoi, N.; Jumruksa, A.; Ruchirawat, S.; Thasana, N. Three new Lycopodium alkaloids from Huperzia carinata and Huperzia squarrosa. Tetrahedron 2014, 70, 8017–8022. [Google Scholar] [CrossRef]
- Weller, J.; Budson, A. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Research 2018, 1161, 1–9. [Google Scholar] [CrossRef] [Green Version]
- De Luca, V.; Salim, V.; Atsumi, S.M.; Yu, F. Mining the biodiversity of plants: A revolution in the making. Science. 2012, 336, 1658–1661. [Google Scholar] [CrossRef] [PubMed]
- Halldorsdottir, E.S.; Jaroszewski, J.W.; Olafsdottir, E.S. Acetylcholinesterase inhibitory activity of lycopodane—Type alkaloids from Icelandic Lycopodium annotinum spp. alpestre. Phytochemistry 2010, 71, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.-Q.; Hu, G.-W.; Guo, M.-Q. Components and anti-HepG2 activity comparison of Lycopodium alkaloids from four geographic origins, Evid. Based Complement. Alternat. Med. 2016, 2016, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Liang, H.; Kuang, P.; Yuan, Q.; Wang, Y. Simultaneously preparative purification of Huperzine A and Huperzine B from Huperzia serrata by macroporous resin and preparative high performance liquid chromatography. J. Chromatogr. B 2012, 904, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Choi, Y.M.; Yoo, K.-P. Supercritical fluid extraction of alkaloids. In Alkaloids: Chemical and Biological Perspectives; Pelletetier, S.W., Ed.; Pergamon Press: Amsterdam, The Netherlands, 2001; Volume 15, pp. 415–431. [Google Scholar] [CrossRef]
- Kohler, M.; Haerdi, W.; Christen, P.; Veuthey, J.-L. Extraction of artemisinin and artemisinic acid from Artemisia annua L. using supercritical carbon dioxide. J. Chromatogr. A 1997, 785, 353–360. [Google Scholar] [CrossRef]
- Wang, L.; Weller, C.L. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci. Tech. 2006, 17, 300–312. [Google Scholar] [CrossRef]
- Ahmad, R.; Ahmad, N.; Al-Anaki, W.S.; Ismail, F.A.; Al-Jishi, F. Solvent and temperature effect of accelerated solvent extraction (ASE) coupled with ultra-high-pressure liquid chromatography (UHPLC-PDA) for the determination of methyl xanthines in commercial tea and coffee. Food Chem. 2020, 311, 126021. [Google Scholar] [CrossRef] [PubMed]
- Czernicka, L.; Ludwiczuk, A.; Rój, E.; Marzec, Z.; Jarzab, A.; Kukula-Koch, W. Acetylcholinesterase inhibitors among Zingiber officinale terpens—Extraction conditions and thin layer chromatography- based bioautography studies. Molecules 2020, 25, 1643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mroczek, T.; Mazurek, J. Pressurized liquid extraction and anticholinesterase activity-based thin-layer chromatography with bioautography of Amaryllidaceae alkaloids. Anal. Chim. Acta. 2009, 633, 188–196. [Google Scholar] [CrossRef]
- Souza, M.C.; Silva, L.C.; Chaves, J.O.; Salvador, M.P.; Sanches, V.L.; da Cunha, D.T.; Carneiro, T.F.; Rostagno, M.A. Simultaneous extraction and separation of compounds from mate (Ilex paraguariensis) leaves by pressurized liquid extraction coupled with solid-phase extraction and in-line UV detection. Food Chem. Mol. Sci. 2021, 2, 100008. [Google Scholar] [CrossRef]
- Mroczek, T.; Dymek, A.; Widelski, J.; Wojtanowski, K.K. The bioassay-guided fractionation and identification of potent acetylcholinesterase inhibitors form Narcissus c.v. ‘Hawera’ using optimized vacuum liquid chromatography, high resolution mass spectrometry and bioautography. Metabolites 2020, 10, 395. [Google Scholar] [CrossRef]
- Mroczek, T. Qualitative and quantitative two-dimensional thin-layer chromatography/high performance liquid chromatography/diode-array/electrospray-ionization-time-of-flight mass spectrometry of cholinesterase inhibitors. J. Pharm. Biomed. Anal. 2016, 129, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Mroczek, T.; Widelski, J.; Głowniak, K. Optimization of extraction of pyrrolizidine alkaloids from plant material. Chem. Anal. 2006, 51, 567–580. [Google Scholar]
- Pongpamorn, P.; Wan-erlor, S.; Ruchirawat, S.; Thasana, N. Lycoclavatumide and 8β,11α-dihydroxylycopodine, a new fawcettimine and lycopodine-type alkaloid from Lycopodium clavatum. Tetrahedron 2016, 72, 7065–7069. [Google Scholar] [CrossRef]
Proposed Compound | Annofoline | Dihydrolycopodine | Lycopodine | Deacetylfawcettiine | 8-β,11-α Dihydroxylycopodine | % SUM of Isolated Alkaloids | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Extraction Solvent | avg. (%) | ±SD | avg. (%) | ±SD | avg. (%) | ±SD | avg. (%) | ± SD | avg. (%) | ±SD | |
Methanol | 7.34 | 0.35 | 16.27 | 1.20 | 33.85 | 0.51 | 4.76 | 1.07 | 5.91 | 0.94 | 68.13 |
1% methanolic tartaric acid | 9.90 | 0.47 | 21.46 | 2.14 | 38.13 | 3.24 | n.d.t | 0 | 2.51 | 1.17 | 72.0 |
Ethyl acetate | 28.16 | 3.09 | 1.78 | 0.11 | 17.86 | 2.62 | n.d.t | 0 | n.d.t | 0 | 47.8 |
Dichloromethane | 3.99 | 0.49 | 15.87 | 3.27 | 45.82 | 2.52 | n.d.t | 0 | n.d.t | 0 | 65.68 |
Cyclohexane | n.d.t | 0 | n.d.t | 0 | n.d.t | 0 | n.d.t | 0 | n.d.t | 0 | 0 |
Proposed Compound | Annotinine | Dihydrolycopodine | Acifoline | Annofoline or Epimer | 8-β,11-α Dihydroxylycopodine or Epimer | % SUM of Isolated Alkaloids | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Extraction Solvent | avg. (%) | ±SD | avg. (%) | ±SD | avg. (%) | ±SD | avg. (%) | ±SD | avg. (%) | ±SD | |
Methanol | 21.11 | 0.79 | 1.93 | 0.34 | 12.59 | 0.70 | 17.17 | 0.30 | 9.83 | 0.34 | 62.63 |
1% methanolic tartaric acid | 9.45 | 1.34 | 1.52 | 0.68 | 2.53 | 2.32 | 3.92 | 3.76 | 2.98 | 1.34 | 20.04 |
Ethyl acetate | 41.79 | 3.85 | n.d.t | 0 | 20.66 | 1.53 | 2.38 | 0.90 | n.d.t | 0 | 64.83 |
Dichloromethane | 44.12 | 2.04 | 1.27 | 0.33 | 22.41 | 1.61 | 10.17 | 3.87 | n.d.t | 0 | 77.97 |
Cyclohexane | n.d.t | 0 | n.d.t | 0 | n.d.t | 0 | n.d.t | 0 | n.d.t | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dymek, A.; Widelski, J.; Wojtanowski, K.K.; Płoszaj, P.; Zhuravchak, R.; Mroczek, T. Optimization of Pressurized Liquid Extraction of Lycopodiaceae Alkaloids Obtained from Two Lycopodium Species. Molecules 2021, 26, 1626. https://doi.org/10.3390/molecules26061626
Dymek A, Widelski J, Wojtanowski KK, Płoszaj P, Zhuravchak R, Mroczek T. Optimization of Pressurized Liquid Extraction of Lycopodiaceae Alkaloids Obtained from Two Lycopodium Species. Molecules. 2021; 26(6):1626. https://doi.org/10.3390/molecules26061626
Chicago/Turabian StyleDymek, Aleksandra, Jarosław Widelski, Krzysztof Kamil Wojtanowski, Paulina Płoszaj, Rostyslav Zhuravchak, and Tomasz Mroczek. 2021. "Optimization of Pressurized Liquid Extraction of Lycopodiaceae Alkaloids Obtained from Two Lycopodium Species" Molecules 26, no. 6: 1626. https://doi.org/10.3390/molecules26061626
APA StyleDymek, A., Widelski, J., Wojtanowski, K. K., Płoszaj, P., Zhuravchak, R., & Mroczek, T. (2021). Optimization of Pressurized Liquid Extraction of Lycopodiaceae Alkaloids Obtained from Two Lycopodium Species. Molecules, 26(6), 1626. https://doi.org/10.3390/molecules26061626