Developing a Hazomalania voyronii Essential Oil Nanoemulsion for the Eco-Friendly Management of Tribolium confusum, Tribolium castaneum and Tenebrio molitor Larvae and Adults on Stored Wheat
Abstract
:1. Introduction
2. Results
2.1. Development and Characterization of H. voyronii EO-Based NE
2.2. Insecticidal Efficacy
3. Discussion
4. Materials and Methods
4.1. Essential Oil
4.2. Insects
4.3. Commodity
4.4. Development and Characterization of H. voyronii EO-Based Nanoemulsion
4.5. Insecticidal Assays
4.6. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Rees, D. Insects of Stored Products; Manson Publishing: London, UK, 2004. [Google Scholar]
- Hagstrum, D.W.; Subramanyam, B. Stored-Product Insect Resource; AACC International: St. Paul, MN, USA, 2009. [Google Scholar]
- Robinson, W.H. Urban Insects and Arachnids; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Yezerki, A.; Gilmor, T.P.; Stevens, L. Genetic analysis of benzoquinone production in Tribolium confusum. J. Chem. Ecol. 2004, 30, 1035–1044. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Andrić, G.; Golić, M.P.; Nika, E.P.; Skourti, A.; Kljajić, P.; Papanikolaou, N.E. Biological features and population growth of two Southeastern European Tribolium confusum Jacquelin du Val (Coleoptera: Tenebrionidae) strains. Insects 2020, 11, 218. [Google Scholar] [CrossRef] [Green Version]
- Krinsky, W.L. Beetles (Coleoptera). In Medical and Veterinary Entomology; Mullen, G.R., Durden, L.A., Eds.; Elsevier Academic Press Inc.: London, UK, 2019; pp. 129–143. [Google Scholar]
- Skourti, A.; Kavallieratos, N.G.; Papanikolaou, N.E. Laboratory evaluation of development and survival of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) under constant temperatures. J. Stored Prod. Res. 2019, 83, 305–310. [Google Scholar] [CrossRef]
- Skourti, A.; Kavallieratos, N.G.; Papanikolaou, N.E. Suitability of semolina, cracked wheat and cracked maize as feeding commodities for Tribolium castaneum (Herbst; Coleoptera: Tenebrionidae). Insects 2020, 11, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, D.S. Pests of Storage Foodstuffs and their Control; Kluwer Academic Publishers: New York, NY, USA, 2003. [Google Scholar]
- DeFoliart, G.R. Food, Insects as. In Encyclopedia of Insects; Resh, V.H., Cardé, R.T., Eds.; Elsevier Academic Press Inc.: London, UK, 2009; pp. 376–381. [Google Scholar]
- Vigneron, A.; Jehan, C.; Rigaud, T.; Moret, Y. Immune defenses of a beneficial pest: The mealworm beetle Tenebrio molitor. Front. Physiol. 2019, 10, 138. [Google Scholar] [CrossRef] [PubMed]
- Arthur, F.H. Grain Protectants: Current status and prospects for the future. J. Stored Prod. Res. 1996, 4, 293–302. [Google Scholar] [CrossRef]
- Khaliq, A.; Ullah, M.I.; Afzal, M.; Ali, A.; Sajjad, A.; Ahmad, A.; Khalid, S. Management of Tribolium castaneum using synergism between conventional fumigant and plant essential oils. Int. J. Trop. Insect Sc. 2020, 40, 781–788. [Google Scholar] [CrossRef]
- Cui, K.; Zhang, L.; He, L.; Zhang, Z.; Zhang, T.; Mu, W.; Lin, J.; Liu, F. Toxicological effects of the fungal volatile compound 1-octen-3-ol against the red flour beetle, Tribolium castaneum (Herbst). Ecotox. Environ. Safe. 2021, 208, 111597. [Google Scholar] [CrossRef]
- Giunti, G.; Palermo, D.; Laudani, F.; Algeri, G.M.; Campolo, O.; Palmeri, V. Repellence and acute toxicity of a nano-emulsion of sweet orange essential oil toward two major stored grain insect pests. Ind. Crops Prod. 2019, 142, 111869. [Google Scholar] [CrossRef]
- Giunti, G.; Campolo, O.; Laudani, F.; Zappalà, L.; Palmeri, V. Bioactivity of essential oil-based nano-biopesticides toward Rhyzopertha dominica (Coleoptera: Bostrichidae). Ind. Crops Prod. 2021, 162, 113257. [Google Scholar] [CrossRef]
- Petrović, M.; Popović, A.; Kojić, D.; Šućur, J.; Bursić, V.; Aćimović, M.; Malenčić, Đ.; Stojanović, T.; Vuković, G. Assessment of toxicity and biochemical response of Tenebrio molitor and Tribolium confusum exposed to Carum carvi essential oil. Entomol. Gen. 2019, 38, 333–348. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Boukouvala, M.C.; Ntalli, N.; Kontodimas, D.C.; Cappellacci, L.; Petrelli, R.; Ricciutelli, M.; Benelli, G.; Maggi, F. Efficacy of the furanosesquiterpene isofuranodiene against the stored-product insects Prostephanus truncatus (Coleoptera: Bostrychidae) and Trogoderma granarium (Coleoptera: Dermestidae). J. Stored Prod. Res. 2020, 86, 101553. [Google Scholar] [CrossRef]
- Hashem, A.S.; Awadalla, S.S.; Zayed, G.M.; Maggi, F.; Benelli, G. Pimpinella anisum essential oil nanoemulsions against Tribolium castaneum—insecticidal activity and mode of action. Environ. Sci. Pollut. Res. 2018, 25, 18802–18812. [Google Scholar] [CrossRef] [PubMed]
- Kavallieratos, N.G.; Boukouvala, M.C.; Ntalli, N.; Skourti, A.; Karagianni, E.S.; Nika, E.P.; Kontodimas, D.C.; Cappellacci, L.; Petrelli, R.; Cianfaglione, K.; et al. Effectiveness of eight essential oils against two key stored-product beetles, Prostephanus truncatus (Horn) and Trogoderma granarium Everts. Food Chem. Toxicol. 2020, 139, 111255. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Kavallieratos, N.G.; Benelli, G.; Losic, D.; Rani, P.U.; Desneux, N. Nanoparticles for pest control: Current status and future perspectives. J. Pest Sci. 2018, 91, 1–15. [Google Scholar] [CrossRef]
- Benelli, G. On a magical mystery tour of green insecticide research: Current issues and challenges. Molecules 2020, 25, 5014. [Google Scholar] [CrossRef]
- Pavoni, L.; Pavela, R.; Cespi, M.; Bonacucina, G.; Maggi, F.; Zeni, V.; Canale, A.; Lucchi, A.; Bruschi, F.; Benelli, G. Green micro- and nanoemulsions for managing parasites, vectors and pests. Nanomaterials 2019, 9, 1285. [Google Scholar] [CrossRef] [Green Version]
- Turek, C.; Stintzing, F.C. Stability of essential oils: A review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 40–53. [Google Scholar] [CrossRef]
- Pavela, R.; Pavoni, L.; Bonacucina, G.; Cespi, M.; Kavallieratos, N.G.; Cappellacci, L.; Petrelli, R.; Maggi, F.; Benelli, G. Rationale for developing novel mosquito larvicides based on isofuranodiene microemulsions. J. Pest Sci. 2019, 92, 909–921. [Google Scholar] [CrossRef]
- Pavela, R.; Benelli, G.; Pavoni, L.; Bonacucina, G.; Cespi, M.; Cianfaglione, K.; Bajalan, I.; Morshedloo, M.R.; Lupidi, G.; Romano, D.; et al. Microemulsions for delivery of Apiaceae essential oils—Towards highly effective and eco-friendly mosquito larvicides? Ind. Crops Prod. 2019, 129, 631–640. [Google Scholar] [CrossRef]
- Benelli, G.; Pavoni, L.; Zeni, V.; Ricciardi, R.; Cosci, F.; Cacopardo, G.; Gendusa, S.; Spinozzi, E.; Petrelli, R.; Cappellacci, L.; et al. Developing a highly stable Carlina acaulis essential oil nanoemulsion for managing Lobesia botrana. Nanomaterials 2020, 10, 1867. [Google Scholar] [CrossRef]
- Heydari, M.; Amirjani, A.; Bagheri, M.; Sharifian, I.; Sabahi, Q. Eco-friendly pesticide based on peppermint oil nanoemulsion: Preparation, physicochemical properties, and its aphicidal activity against cotton aphid. Environ. Sci. Pollut. Res. 2020, 27, 6667–6679. [Google Scholar] [CrossRef] [PubMed]
- Rossi, P.; Cappelli, A.; Marinelli, O.; Valzano, M.; Pavoni, L.; Bonacucina, G.; Petrelli, R.; Pompei, P.; Mazzara, E.; Ricci, I.; et al. Mosquitocidal and anti-inflammatory properties of the essential oils obtained from monoecious, male, and female inflorescences of hemp (Cannabis sativa L.) and their encapsulation in nanoemulsions. Molecules 2020, 25, 3451. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, V.; Mukherjee, A.; Chandrasekaran, N. Formulation and characterization of plant essential oil based nanoemulsion: Evaluation of its larvicidal activity against Aedes aegypti. Asian J. Chem. 2013, 25, S321–S323. [Google Scholar]
- Duarte, J.L.; Amado, J.R.R.; Oliveira, A.E.M.F.M.; Cruz, R.A.S.; Ferreira, A.M.; Souto, R.N.P.; Falcão, D.Q.; Carvalho, J.C.T.; Fernandes, C.P. Evaluation of larvicidal activity of a nanoemulsion of Rosmarinus officinalis essential oil. Rev. Bras. Farmacogn. 2015, 25, 189–192. [Google Scholar] [CrossRef] [Green Version]
- Pavela, R.; Pavoni, L.; Bonacucina, G.; Cespi, M.; Cappellacci, L.; Petrelli, R.; Spinozzi, E.; Aguzzi, C.; Zeppa, L.; Ubaldi, M.; et al. Encapsulation of Carlina acaulis essential oil and carlina oxide to develop long-lasting mosquito larvicides: Microemulsions versus nanoemulsions. J. Pest Sci. 2021. [Google Scholar] [CrossRef]
- Lima, L.A.; Ferreira-Sá, P.S.; Garcia, M.D., Jr.; Pereira, V.L.P.; Carvalho, J.C.T.; Rocha, L.; Fernandes, C.P.; Souto, R.N.P.; Araújo, R.S.; Botas, G.; et al. Nano-emulsions of the essential oil of Baccharis reticularia and its constituents as eco-friendly repellents against Tribolium castaneum. Ind. Crops Prod. 2021, 162, 113282. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Rakotosaona, R.; Nzekoue, F.K.; Canale, A.; Nicoletti, M.; Maggi, F. Insecticidal and mosquito repellent efficacy of the essential oils from stem bark and wood of Hazomalania voyronii. J. Ethnopharmacol. 2020, 248, 112333. [Google Scholar] [CrossRef]
- Hobbs, C.A.; Taylor, S.V.; Beevers, C.; Lloyd, M.; Bowen, R.; Lillford, L.; Maronpot, R.; Hayashi, S. Genotoxicity assessment of the flavouring agent, perillaldehyde. Food Chem. Toxicol. 2016, 97, 232–242. [Google Scholar] [CrossRef]
- Oser, B.L.; Ford, R.A. Recent progress in the consideration of flavoring ingredients under the Food Additives Amendment. 11. GRAS substances. Food Technol. 1978, 32, 60–70. [Google Scholar]
- Kavallieratos, N.G.; Michail, E.J.; Boukouvala, M.C.; Nika, E.P.; Skourti, A. Efficacy of pirimiphos-methyl, deltamethrin, spinosad and silicoSec against adults and larvae of Tenebrio molitor L. on wheat, barley and maize. J. Stored Prod. Res. 2019, 83, 161–167. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Papanikolaou, N.E.; Kazani, A.N.; Boukouvala, M.C.; Malesios, C. Using multilevel models to explore the impact of abiotic and biotic conditions on the efficacy of pirimiphos-methyl against Tenebrio molitor L. Environ. Sci. Pollut. Res. 2020. [Google Scholar] [CrossRef]
- Kathirvelu, C.; Maline, A.S.; Raja, B.A.G.; Kavitha, T. Effect of fumigation on Rhyzopertha dominica F. and Tribolium castaneum H. in stored products using essential oils. Ann. Agri Bio Res. 2020, 25, 258–262. [Google Scholar]
- Lee, H.K.; Jeong, G.; Kim, H.K.; Kim, B.S.; Yang, J.O.; Koo, H.N.; Kim, G.H. Fumigation activity against phosphine-resistant Tribolium castaneum (Coleoptera: Tenebrionidae) using carbonyl sulfide. Insects 2020, 11, 750. [Google Scholar] [CrossRef] [PubMed]
- Arthur, F.H. Residual efficacy of aerosols to control Tribolium castaneum and Tribolium confusum. In Proceedings of the 10th International Working Conference on Stored Product Protection, Estoril, Portugal, 27 June–2 July 2010; Carvalho, M.O., Fields, P.G., Adler, C.S., Arthur, F.H., Athanassiou, C.G., Campbell, J.F., Fleurat-Lessard, F., Flinn, P.W., Hodges, R.J., Isikber, A.A., et al., Eds.; Julius Kühn Institut, Bundesforschungsinstitut für Kulturpflanzen: Quedlinburg, Germany, 2010; Volume 425, pp. 789–792. [Google Scholar]
- Deb, M.; Kumar, D. Bioactivity and efficacy of essential oils extracted from Artemisia annua against Tribolium castaneum (Herbst. 1797) (Coleoptera: Tenebrionidae): An eco-friendly approach. Ecotox. Environ. Saf. 2020, 189, 109988. [Google Scholar] [CrossRef]
- Mujeeb, K.A.; Shakoori, A.R. Effect of an organophosphate, pirimiphos-methyl, on esterases of different developmental stages of stored grain pest red flour beetle, Tribolium castaneum (Herbst.)—spectrophotometric analysis. Pak. J. Zool. 2012, 44, 301–312. [Google Scholar]
- Vayias, B.J.; Athanassiou, C.G. Factors affecting the insecticidal efficacy of the diatomaceous earth formulation silicoSec against adults and larvae of the confused flour beetle, Tribolium confusum DuVal (Coleoptera: Tenebrionidae). Crop Prot. 2004, 23, 565–573. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Kavallieratos, N.G. Evaluation of spinetoram and spinosad for control of Prostephanus truncatus, Rhyzopertha dominica, Sitophilus oryzae, and Tribolium confusum on stored grains under laboratory tests. J. Pest Sci. 2014, 87, 469–483. [Google Scholar] [CrossRef]
- Boukouvala, M.C.; Kavallieratos, N.G.; Athanassiou, C.G.; Hadjiarapoglou, L.P. Biological activity of two new pyrrole derivatives against stored-product species: Influence of temperature and relative humidity. Bull. Entomol. Res. 2016, 106, 446–456. [Google Scholar] [CrossRef]
- Boukouvala, M.C.; Kavallieratos, N.G.; Athanassiou, C.G.; Hadjiarapoglou, L.P. Insecticidal effect of two novel pyrrole derivatives against two major stored product insect species. Crop Prot. 2016, 84, 1–7. [Google Scholar] [CrossRef]
- Boukouvala, M.C.; Kavallieratos, N.G.; Athanassiou, C.G.; Benelli, G.; Hadjiarapoglou, L.P. Insecticidal efficacy of six new pyrrole derivatives against four stored-product pests. Environ. Sci. Pollut. Res. 2019, 26, 29845–29856. [Google Scholar] [CrossRef] [PubMed]
- Jankowska, M.; Rogalska, J.; Wyszkowska, J.; Stankiewicz, M. Molecular targets for components of essential oils in the insect nervous system—A review. Molecules 2018, 23, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, C.G.; Jang, M.; Yoon, K.A.; Kim, J. Insecticidal and acetylcholinesterase inhibitory activities of Lamiaceae plant essential oils and their major components against Drosophila suzukii (Diptera: Drosophilidae). Ind. Crops Prod. 2016, 89, 507–513. [Google Scholar] [CrossRef]
- You, C.X.; Wang, Y.; Zhang, W.J.; Yang, K.; Wu, Y.; Geng, Z.F.; Chen, H.P.; Jiang, H.Y.; Du, S.S.; Deng, Z.W.; et al. Chemical constituents and biological activities of the purple Perilla essential oil against Lasioderma serricorne. Ind. Crops Prod. 2014, 61, 331–337. [Google Scholar] [CrossRef]
- Traboulsi, A.F.; El-Haj, S.; Tueni, M.; Taoubi, K.; Nader, N.A.; Mrad, A. Repellency and toxicity of aromatic plant extracts against the mosquito Culex pipiens molestus (Diptera: Culicidae). Pest Manag. Sci. 2005, 61, 597–604. [Google Scholar] [CrossRef] [PubMed]
- Kordali, S.; Aslan, I.; Calmasur, O.; Cakir, A. Toxicity of essential oils isolated from three Artemisia species and some of their major components to granary weevil Sitophilus granarius (L.) (Coleoptera: Curculinonidae). Ind. Crops Prod. 2006, 23, 162–170. [Google Scholar] [CrossRef]
- Kumar, P.; Mishra, S.; Malik, A.; Satya, S. Housefly (Musca domestica L.) control potential of Cymbopogon citratus Stapf. (Poales: Poaceae) essential oil and monoterpenes (citral and 1, 8-cineole). Parasitol. Res. 2013, 112, 69–76. [Google Scholar] [CrossRef]
- Maggi, F.; Benelli, G. Essential oils from aromatic and medicinal plants as effective weapons against mosquito vectors of public health importance. In Mosquito-borne Diseases; Springer: Cham, Switzerland, 2018; pp. 69–129. [Google Scholar]
- Nansen, C.; Subramanyam, B.; Roesli, R. Characterizing spatial distribution of trap captures of beetles in retail pet stores using SADIE® software. J. Stored Prod. Res. 2004, 40, 471–483. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Kavallieratos, N.G.; Sciarretta, A.; Palyvos, N.E.; Trematerra, P. Spatial associations of insects and mites in stored wheat. J. Econ. Entomol. 2011, 104, 104–1752. [Google Scholar] [CrossRef]
- Arthur, F.H.; Campbell, J.F.; Toews, M.D. Distribution, abundance, and seasonal patterns of stored product beetles in a commercial food storage facility. J. Stored Prod. Res. 2014, 56, 21–32. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Athanassiou, C.G.; Guedes, R.N.C.; Drempela, J.D.; Boukouvala, M.C. Invader competition with local competitors: Displacement or coexistence among the invasive khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae), and two other major stored-grain beetles? Front. Plant Sci. 2017, 8, 1837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nika, E.P.; Kavallieratos, N.G.; Papanikolaou, N.E. Linear and non-linear models to explain influence of temperature on life history traits of Oryzaephilus surinamensis (L.). Entomol. Gen. 2021. [Google Scholar] [CrossRef]
- De Vosjoli, P. The Lizard Keeper’s Handbook; Advanced Vivarium Systems: Irvine, CA, USA, 2007. [Google Scholar]
- Kavallieratos, N.G.; Athanassiou, G.G.; Boukouvala, M.C. Insecticidal effect of chlorantraniliprole against major stored-product insect pests in different grain commodities under laboratory tests. Pest Manag. Sci. 2013, 69, 1141–1154. [Google Scholar] [CrossRef] [PubMed]
- Boukouvala, M.C.; Romano, D.; Kavallieratos, N.G.; Athanassiou, C.G.; Stefanini, C.; Canale, A.; Benelli, G. Asymmetric courtship boosts male mating success in the red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J. Stored Prod. Res. 2019, 81, 1–6. [Google Scholar] [CrossRef]
- Cappellani, M.R.; Perinelli, D.R.; Pescosolido, L.; Schoubben, A.; Cespi, M.; Cossi, R.; Blasi, P. Injectable nanoemulsions prepared by high pressure homogenization: Processing, sterilization, and size evolution. Appl. Nanosci. 2018, 8, 1483–1491. [Google Scholar] [CrossRef]
- Abbott, W.S. A Method of Computing the Effectiveness of an Insecticide. J. Econ. Entomol. 1925, 18, 265–266. [Google Scholar] [CrossRef]
- Zar, J.H. Biostatistical analysis; Pearson: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Scheff, D.S.; Arthur, F.H. Fecundity of Tribolium castaneum and Tribolium confusum adults after exposure to deltamethrin packaging. J. Pest Sci. 2018, 91, 717–725. [Google Scholar] [CrossRef]
- Sall, J.; Lehman, A.; Creighton, L. JMP Start Statistics. A Guide to Statistics and Data Analysis Using JMP and JMP IN Software; Duxbury Press: Belmont, CA, USA, 2001. [Google Scholar]
- SAS Institute Inc. Using JMP 14; SAS Institute Inc.: Cary, NC, USA, 2018. [Google Scholar]
- Sokal, R.R.; Rohlf, F.J. Biometry; Freeman & Company: New York, NY, USA, 1995. [Google Scholar]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods; Iowa State University Press: Ames, IA, USA, 1980. [Google Scholar]
- Andrić, G.; Marković, M.M.; Adamović, M.; Daković, A.; Golić, M.P.; Kljajić, P.J. Insecticidal potential of natural zeolite and diatomaceous earth formulations against rice weevil (Coleoptera: Curculionidae) and red flour beetle (Coleoptera: Tenebrionidae). J. Econ. Entomol. 2012, 105, 670–678. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Kavallieratos, N.G.; Evergetis, E.; Katsoula, A.M.; Haroutounian, S. Insecticidal efficacy of silica gel with Juniperus oxycedrus ssp. oxycedrus (Pinales: Cupressaceae) essential oil against Sitophilus oryzae (Coleoptera: Curculionidae) and Tribolium confusum (Coleoptera: Tenebrionidae). J. Econ. Entomol. 2013, 106, 1902–1910. [Google Scholar] [CrossRef]
Between Exposure Intervals | df | F | p |
---|---|---|---|
Intercept | 1 | 892.5 | <0.01 |
Nanoemulsion concentration | 1 | 8.4 | <0.01 |
Insect species-stage | 5 | 67.0 | <0.01 |
Nanoemulsion concentration x insect species-stage | 5 | 0.3 | 0.89 |
Within exposure intervals | df | F | P |
Exposure | 9 | 85.0 | <0.01 |
Exposure x nanoemulsion concentration | 9 | 0.9 | 0.51 |
Exposure x insect species-stage | 45 | 6.1 | <0.01 |
Exposure x nanoemulsion concentration x insect species-stage | 45 | 1.1 | 0.40 |
Exposure | 4 h | 8 h | 16 h | 1 Day | 2 Days | 3 Days | 4 Days | 5 Days | 6 Days | 7 Days | F | p |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Adults | ||||||||||||
500 ppm | 0.0 ± 0.0 Β | 0.0 ± 0.0 Β | 0.0 ± 0.0 Β | 0.0 ± 0.0 Β | 2.2 ± 1.5 AΒ | 3.3 ± 2.4 AΒ | 3.3 ± 2.4 AΒ | 6.7 ± 2.9 AΒ | 9.1 ± 4.0 AΒ | 12.5 ± 4.7 A | 3.1 | <0.01 |
1000 ppm | 0.0 ± 0.0 B | 0.0 ± 0.0 B | 0.0 ± 0.0 B | 0.0 ± 0.0 B | 2.2 ± 1.5 AB | 7.8 ± 3.2 AB | 11.4 ± 4.0 AB | 13.2 ± 3.8 A | 16.5 ± 4.8 A | 18.7 ± 5.4 A | 6.1 | <0.01 |
t | - | - | - | - | 0 | −1.0 | −1.6 | −1.1 | −1.0 | −0.6 | ||
p | - | - | - | - | 1.00 | 0.31 | 0.13 | 0.29 | 0.32 | 0.53 | ||
Larvae | ||||||||||||
500 ppm | 2.2 ± 1.5 D | 8.9 ± 2.6 CD | 10.0 ± 2.9 C | 14.4 ± 2.9 BC | 30.1 ± 4.6 AB | 41.6 ± 5.2 AB | 54.4 ± 5.0 A | 58.2 ± 5.7 A | 60.7 ± 6.8 A | 84.1 ± 4.1 A | 23.3 | <0.01 |
1000 ppm | 4.4 ± 1.8 C | 10.0 ± 2.4 C | 12.6 ± 3.3 BC | 15.1 ± 4.2 BC | 30.3 ± 4.9 AB | 42.7 ± 5.4 A | 54.9 ± 4.5 A | 70.1 ± 3.5 A | 87.1 ± 3.6 A* | 97.4 ± 1.7 A* | 19.7 | <0.01 |
t | −1.0 | −0.5 | −0.5 | 0.4 | <0.1 | −0.2 | −0.1 | −1.9 | −3.3 | −2.9 | ||
p | 0.35 | 0.66 | 0.61 | 0.72 | 1.00 | 0.87 | 0.89 | 0.08 | <0.01 | 0.01 |
Exposure | 4 h | 8 h | 16 h | 1 Day | 2 Days | 3 Days | 4 Days | 5 Days | 6 Days | 7 Days | F | p |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Adults | ||||||||||||
500 ppm | 0.0 ± 0.0 C | 0.0 ± 0.0 C | 0.0 ± 0.0 C | 0.0 ± 0.0 C | 0.0 ± 0.0 C | 0.0 ± 0.0 C | 3.3 ± 1.7 BC | 7.9 ± 2.8 AB | 10.3 ± 2.4 A | 10.3 ± 2.4 A | 11.3 | <0.01 |
1000 ppm | 0.0 ± 0.0 B | 0.0 ± 0.0 B | 1.1 ± 1.1 B | 2.2 ± 2.2 B | 3.3 ± 2.4 AB | 4.4 ± 2.4 AB | 5.6 ± 2.4 AB | 9.3 ± 2.0 A | 10.8 ± 2.5 A | 13.0 ± 3.3 A | 5.9 | <0.01 |
t | - | - | −1 | −1 | −1.5 | −2.0 | −0.6 | −0.8 | −0.1 | −0.3 | ||
p | - | - | 0.33 | 0.33 | 0.15 | 0.07 | 0.58 | 0.44 | 0.95 | 0.8 | ||
Larvae | ||||||||||||
500 ppm | 0.0 ± 0.0 D | 0.0 ± 0.0 D | 1.1 ± 1.1 D | 4.7 ± 2.6 CD | 6.9 ± 3.0 CD | 13.0 ± 4.3 BC | 20.7 ± 3.0 AB | 26.4 ± 1.7 A | 41.9 ± 2.3 A | 59.3 ± 2.9 A | 31.7 | <0.01 |
1000 ppm | 0.0 ± 0.0 F | 1.1 ± 1.1 F | 4.4 ± 2.4 EF | 13.3 ± 4.7 DE | 21.1 ± 6.1 CD* | 28.6 ± 6.2 BCD | 36.0 ± 6.2 ABC | 45.0 ± 6.7 ABC* | 67.7 ± 2.3 AB* | 92.1 ± 2.0 A* | 29.2 | <0.01 |
t | - | −1 | −1.2 | −1.6 | −2.3 | −1.7 | −1.9 | −2.2 | −7.6 | −8.7 | ||
p | - | 0.33 | 0.26 | 0.14 | 0.03 | 0.12 | 0.07 | 0.05 | <0.01 | <0.01 |
Exposure | 4 h | 8 h | 16 h | 1 Day | 2 Days | 3 Days | 4 Days | 5 Days | 6 Days | 7 Days | F | p |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Adults | ||||||||||||
500 ppm | 0.0 ± 0.0 E | 0.0 ± 0.0 E | 6.8 ± 2.4 D | 15.8 ± 4.4 CD | 25.9 ± 4.7 BC | 43.1 ± 9.3 AB | 55.3 ± 6.1 AB | 70.8 ± 6.0 A | 80.1 ± 4.9 A | 94.8 ± 2.8 A | 59.6 | <0.01 |
1000 ppm | 0.0 ± 0.0 E | 0.0 ± 0.0 E | 9.0 ± 2.0 D | 21.7 ± 5.2 CD | 41.3 ± 8.0 BC | 63.3 ± 9.1 AB | 72.5 ± 8.2 AB | 84.3 ± 5.9 AB | 93.5 ± 3.8 AB* | 100.0 ± 0.0 A | 49.1 | <0.01 |
t | - | - | −0.9 | −0.4 | −0.4 | −1.4 | −1.3 | −1.4 | −2.1 | −1.9 | ||
p | - | - | 0.38 | 0.68 | 0.68 | 0.17 | 0.21 | 0.18 | 0.05 | 0.08 | ||
Larvae | ||||||||||||
500 ppm | 0.0 ± 0.0B | 0.0 ± 0.0 B | 0.0 ± 0.0 B | 0.0 ± 0.0 B | 0.0 ± 0.0 B | 1.1 ± 1.1 AB | 2.2 ± 1.5 AB | 3.3 ± 1.7 AB | 5.6 ± 2.4 A | 5.8 ± 2.5 A | 3.0 | <0.01 |
1000 ppm | 0.0 ± 0.0 C | 0.0 ± 0.0 C | 0.0 ± 0.0 C | 0.0 ± 0.0 C | 4.4 ± 2.4 B | 4.4 ± 2.4 B | 5.6 ± 2.4 AB | 5.6 ± 2.4 AB | 5.6 ± 2.4 AB | 10.3 ± 3.8 A | 3.0 | <0.01 |
t | - | - | - | - | −2.0 | −1.2 | −1.1 | −0.6 | 0 | −0.7 | ||
p | - | - | - | - | 0.07 | 0.26 | 0.31 | 0.58 | 1.00 | 0.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kavallieratos, N.G.; Nika, E.P.; Skourti, A.; Ntalli, N.; Boukouvala, M.C.; Ntalaka, C.T.; Maggi, F.; Rakotosaona, R.; Cespi, M.; Perinelli, D.R.; et al. Developing a Hazomalania voyronii Essential Oil Nanoemulsion for the Eco-Friendly Management of Tribolium confusum, Tribolium castaneum and Tenebrio molitor Larvae and Adults on Stored Wheat. Molecules 2021, 26, 1812. https://doi.org/10.3390/molecules26061812
Kavallieratos NG, Nika EP, Skourti A, Ntalli N, Boukouvala MC, Ntalaka CT, Maggi F, Rakotosaona R, Cespi M, Perinelli DR, et al. Developing a Hazomalania voyronii Essential Oil Nanoemulsion for the Eco-Friendly Management of Tribolium confusum, Tribolium castaneum and Tenebrio molitor Larvae and Adults on Stored Wheat. Molecules. 2021; 26(6):1812. https://doi.org/10.3390/molecules26061812
Chicago/Turabian StyleKavallieratos, Nickolas G., Erifili P. Nika, Anna Skourti, Nikoletta Ntalli, Maria C. Boukouvala, Catherine T. Ntalaka, Filippo Maggi, Rianasoambolanoro Rakotosaona, Marco Cespi, Diego Romano Perinelli, and et al. 2021. "Developing a Hazomalania voyronii Essential Oil Nanoemulsion for the Eco-Friendly Management of Tribolium confusum, Tribolium castaneum and Tenebrio molitor Larvae and Adults on Stored Wheat" Molecules 26, no. 6: 1812. https://doi.org/10.3390/molecules26061812
APA StyleKavallieratos, N. G., Nika, E. P., Skourti, A., Ntalli, N., Boukouvala, M. C., Ntalaka, C. T., Maggi, F., Rakotosaona, R., Cespi, M., Perinelli, D. R., Canale, A., Bonacucina, G., & Benelli, G. (2021). Developing a Hazomalania voyronii Essential Oil Nanoemulsion for the Eco-Friendly Management of Tribolium confusum, Tribolium castaneum and Tenebrio molitor Larvae and Adults on Stored Wheat. Molecules, 26(6), 1812. https://doi.org/10.3390/molecules26061812