The Common Cichory (Cichorium intybus L.) as a Source of Extracts with Health-Promoting Properties—A Review
Abstract
:1. Introduction
2. Botanical Characteristics
3. Chemical Composition
4. Health-Promoting Properties
4.1. Antiviral Properties
4.2. Antibacterial and Antifungal Properties
4.3. Anti-Protozoal and Antiparasitic Properties
4.4. Hepatoprotective Properties
4.5. Antidiabetes Properties
4.6. Effect on the Immune System
4.7. Analgesic Properties
4.8. Anti-Cancer Properties
4.9. Hypotensive Effect
4.10. Anti-Inflammatory Properties
4.11. Anti-Neurotoxic Properties
5. Culinary Applications of the Common Cichory
6. Allergies to the Common Cichory
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Street, R.A.; Sidana, J.; Prinsloo, G. Cichorium Intybus: Traditional Uses, Phytochemistry, Pharmacology, and Toxicology. Available online: https://www.hindawi.com/journals/ecam/2013/579319/ (accessed on 10 July 2020).
- Puhlmann, M.-L.; de Vos, W.M. Back to the Roots: Revisiting the Use of the Fiber-Rich Cichorium IntybusL. Taproots. Available online: https://pubmed.ncbi.nlm.nih.gov/32199025/ (accessed on 10 July 2020).
- Anju Javed, G.; Javaid, R.; Ahmed, F. Kasni (Cichorium Intybus): A Unani Hepatoprotective Drug. J. Drug Deliv. Ther. 2020, 10, 238–241. [Google Scholar] [CrossRef]
- Bischoff, T.A.; Kelley, C.J.; Karchesy, Y.; Laurantos, M.; Nguyen-Dinh, P.; Arefi, A.G. Antimalarial Activity of Lactucin and Lactucopicrin: Sesquiterpene Lactones Isolated from Cichorium intybus L. J. Ethnopharmacol. 2004, 95, 455–457. [Google Scholar] [CrossRef]
- Peña-Espinoza, M.; Valente, A.H.; Thamsborg, S.M.; Simonsen, H.T.; Boas, U.; Enemark, H.L.; López-Muñoz, R.; Williams, A.R. Antiparasitic Activity of Chicory (Cichorium Intybus) and Its Natural Bioactive Compounds in Livestock: A Review. Parasit Vectors 2018, 11, 475. [Google Scholar] [CrossRef]
- Bahmani, M.; Shahinfard, N.; Rafieian-kopaei, M.; Saki, K.; Shahsavari, S.; Ghafourian, S.; Baharvand-Ahmadi, B. Chicory: A Review on Ethnobotanical Effects of Cichorium intybus L. J. Chem. Pharm. Sci. 2015, 8, 672–682. [Google Scholar]
- Bais, H.P.; Ravishankar, G.A. Cichorium Intybus L—Cultivation, Processing, Utility, Value Addition and Biotechnology, with an Emphasis on Current Status and Future Prospects. J. Sci. Food Agric. 2001, 81, 467–484. [Google Scholar] [CrossRef]
- Das, S.; Vasudeva, N.; Sharma, S.K. Cichorium Intybus: A Concise Report on Its Ethnomedicinal, Botanical, and Phytopharmacological Aspects. Drug Dev. Ther. 2016. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. Medical Importance of Cichorium Intybus—A Review. Available online: /paper/Medical-importance-of-Cichorium-intybus-%E2%80%93-A-review-Al-Snafi/77964e86cb3301db42461c83f5bd1534683aabdb (accessed on 10 July 2020).
- Nartowska, J. Cykoria Podróznik-Wędujące Ziele. Available online: https://panacea.pl/articles.php?id=5001 (accessed on 4 December 2020).
- Nwafor, I.C.; Shale, K.; Achilonu, M.C. Chemical Composition and Nutritive Benefits of Chicory (Cichorium Intybus) as an Ideal Complementary and/or Alternative Livestock Feed Supplement. Available online: https://www.hindawi.com/journals/tswj/2017/7343928/ (accessed on 10 July 2020).
- Nørbæk, R.; Nielsen, K.; Kondo, T. Anthocyanins from Flowers of Cichorium Intybus. Phytochemistry 2002, 60, 357–359. [Google Scholar] [CrossRef]
- Eray, N.; Kartal, D.; Çelik, I. Antioxidant Properties of Cichorium Intybus L. (Chicory) Extracts and Their Cytotoxic Effects on HepG2 Cells. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi 2020, 30, 444–453. [Google Scholar] [CrossRef]
- Petrovic, J.; Stanojkovic, A.; Comic, L.; Curcic, S. Antibacterial Activity of Cichorium Intybus. Fitoterapia 2004, 75, 737–739. [Google Scholar] [CrossRef]
- Rahimullah, T.G. Phytochemical and Antibacterial Screening of Cichorium Intybus Seeds Use in Traditional Medicine Systems in Pakistan. Int. J. Basic Med Sci. Pharm. (IJBMSP) 2019, 8, 2049–4963. [Google Scholar]
- Jasim, R.S. Antioxidant, Antimicrobial Activities and Phytochemical Constituents of Cichorium Intybus L. Aerial Parts. Available online: https://scialert.net/fulltext/?doi=ijb.2018.24.29 (accessed on 10 July 2020).
- Shad, M.A.; Nawaz, H.; Rehman, T.; Ikram, N. Determination of Some Biochemicals, Phytochemicals and Antioxidant Properties of Different Parts of Cichorium Intybus L.: A Comparative Study. Available online: http://thejaps.org.pk/docs/v-23-4/18.pdf (accessed on 10 July 2020).
- Jancic, D.; Todorovic, V.; Sircelj, H.; Dodevska, M.; Beljkas, B.; Znidarcic, D.; Sobajic, S. Biologically active compounds and antioxidant capacity of cichorium intybus l. leaves from montenegro. Ital. J. Food Sci. 2017, 29. [Google Scholar] [CrossRef]
- Abbas, Z.K.; Saggu, S.; Sakeran, M.I.; Zidan, N.; Rehman, H.; Ansari, A.A. Phytochemical, Antioxidant and Mineral Composition of Hydroalcoholic Extract of Chicory (Cichorium Intybus L.) Leaves. Saudi J. Biol. Sci. 2015, 22, 322–326. [Google Scholar] [CrossRef] [Green Version]
- Saeed, M.; Abd El-Hack, M.E.; Alagawany, M.; Arain, M.A.; Arif, M.; Mirza, M.A.; Naveed, M.; Chao, S.; Sarwar, M.; Sayab, M. Chicory (Cichorium Intybus) Herb: Chemical Composition, Pharmacology, Nutritional and Healthical Applications. Int. J. Pharmacol. 2017, 13, 351–360. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Wang, Q.; Liu, Y.; Chen, G.; Cui, J. Antimicrobial and Antioxidant Activities of Cichorium Intybus Root Extract Using Orthogonal Matrix Design. J. Food Sci. 2013, 78, M258–M263. [Google Scholar] [CrossRef] [PubMed]
- Jangra, S.S.; Madan, V.K. Proximate, Mineral and Chemical Composition of Different Parts of Chicory (Cichorium Intybus L.). J. Pharmacogn. Phytochem. 2018, 7, 3311–3315. [Google Scholar]
- Malik, B.; Pirzadah, T.B.; Tahir, I.; Abdin, M.Z.; Rehman, U.I.R. Phytochemical Studies on Cichorium Intybus L. (Chicory) from Kashmir Himalaya Using GC-MS. J. Pharm. Res. 2016, 1010, 715–726. [Google Scholar]
- WenYing, G.; Li, J.-G. Chicory Seeds: A Potential Source of Nutrition for Food and Feed. Available online: https://scholar.google.com/scholar_lookup?title=Chicory%20seeds:%20a%20potential%20source%20of%20nutrition%20for%20food%20and%20feed&author=G.%20W.%20Ying%20&author=L.%20J.%20Gui&publication_year=2012 (accessed on 11 February 2021).
- Epure, A.; Pârvu, A.E.; Vlase, L.; Benedec, D.; Hanganu, D.; Gheldiu, A.-M.; Toma, V.A.; Oniga, I. Phytochemical Profile, Antioxidant, Cardioprotective and Nephroprotective Activity of Romanian Chicory Extract. Plants 2021, 10, 64. [Google Scholar] [CrossRef]
- Haghi, G.; Arshi, R.; Ghazian, F.; Hosseini, H. Chemical Composition of Essential Oil of Aerial Parts of Cichorium Intybus L. from Iran. J. Essent. Oil Bear. Plants 2012, 15, 213–216. [Google Scholar] [CrossRef]
- Judzentiene, A.; Budiene, J. Volatile Constituents from Aerial Parts and Roots of Cichorium Intybus L. (Chicory) Grown in Lithuania. Chemija 2008, 19, 25–28. [Google Scholar]
- Mahdi, T.A.; Hossein, A.F. Changes in Kaempferol Content of Chicory (Cichorium Intybus L.) under Water Deficit Stresses and Planting Densities. J. Med. Plants Res. 2014, 8, 30–35. [Google Scholar] [CrossRef] [Green Version]
- Sharifi-Rad, J.; Sureda, A.; Tenore, G.C.; Daglia, M.; Sharifi-Rad, M.; Valussi, M.; Tundis, R.; Sharifi-Rad, M.; Loizzo, M.R.; Ademiluyi, A.O.; et al. Biological Activities of Essential Oils: From Plant Chemoecology to Traditional Healing Systems. Molecules 2017, 22, 70. [Google Scholar] [CrossRef]
- Ahmad, J.; Yusuf, U.; Muhammad, M. Investigation of Properties of Medicinal Plants Thyme and Cichorium intybus L. South Asian Res. J. Pharm. Sci. 2020, 2, 21–24. [Google Scholar] [CrossRef]
- Pushparaj, P.N.; Low, H.K.; Manikandan, J.; Tan, B.K.H.; Tan, C.H. Anti-Diabetic Effects of Cichorium Intybus in Streptozotocin-Induced Diabetic Rats. J. Ethnopharmacol. 2007, 111, 430–434. [Google Scholar] [CrossRef] [PubMed]
- Migliorini, A.A.; Piroski, C.S.; Daniel, T.G.; Cruz, T.M.; Escher, G.B.; do Carmo, M.A.V.; Azevedo, L.; Marques, M.B.; Granato, D.; Rosso, N.D. Red Chicory (Cichorium Intybus) Extract Rich in Anthocyanins: Chemical Stability, Antioxidant Activity, and Antiproliferative Activity In Vitro. J. Food Sci. 2019, 84, 990–1001. [Google Scholar] [CrossRef]
- Chandra, K.; Jain, V.; Jabin, A.; Dwivedi, S.; Joshi, S.; Ahmad, S.; Jain, S.K. Effect of Cichorium Intybus Seeds Supplementation on the Markers of Glycemic Control, Oxidative Stress, Inflammation, and Lipid Profile in Type 2 Diabetes Mellitus: A Randomized, Double-Blind Placebo Study. Phytother. Res. 2020, 34, 1609–1618. [Google Scholar] [CrossRef] [PubMed]
- Chandra, K.; Jain, S. Therapeutic potential of cichorium intybus in lifestyle disorders: A review. Asian J. Pharm. Clin. Res. 2016, 9, 20–25. [Google Scholar]
- Le Bastard, Q.; Chapelet, G.; Javaudin, F.; Lepelletier, D.; Batard, E.; Montassier, E. The Effects of Inulin on Gut Microbial Composition: A Systematic Review of Evidence from Human Studies. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 403–413. [Google Scholar] [CrossRef]
- Roberfroid, M.B. Inulin-Type Fructans: Functional Food Ingredients. J. Nutr. 2007, 137, 2493S–2502S. [Google Scholar] [CrossRef] [Green Version]
- Ziai, S.A.; Hamkar, R.; Monavari, H.R.; Norooz-Babaei, Z.; Adibi, L. Antiviral Effect Assay of Twenty Five Species of Various Medicinal Plants Families in Iran. J. Med. Plants 2007, 6, 1–9. [Google Scholar]
- Zhang, H.-L.; Dai, L.-H.; Wu, Y.-H.; Yu, X.-P.; Zhang, Y.-Y.; Guan, R.-F.; Liu, T.; Zhao, J. Evaluation of Hepatocyteprotective and Anti-Hepatitis B Virus Properties of Cichoric Acid from Cichorium Intybus Leaves in Cell Culture. Biol. Pharm. Bull. 2014, 37, 1214–1220. [Google Scholar] [CrossRef] [Green Version]
- Shawky, E.; Nada, A.A.; Ibrahim, S.R. Potential Role of Medicinal Plants and Their Constituents in the Mitigation of SARS-CoV-2: Identifying Related Therapeutic Targets Using Network Pharmacology and Molecular Docking Analyses. RSC Adv. 2020, 10, 27961–27983. [Google Scholar] [CrossRef]
- Bahramsoltani, R.; Rahimi, R. An Evaluation of Traditional Persian Medicine for the Management of SARS-CoV-2. Front. Pharmacol. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Thota, S.M.; Balan, V.; Sivaramakrishnan, V. Natural Products as Home-Based Prophylactic and Symptom Management Agents in the Setting of COVID-19. Phytother. Res. 2020, 34, 3148–3167. [Google Scholar] [CrossRef]
- Choudhary, M.; Rajput, P.; Sharma, R.A. Screening of Antioxidant, Antimicrobial and Phytochemicals Composition of Various Plant Parts of Cichorium Intybus. Available online: https://www.researchgate.net/publication/342080388_Screening_of_Antioxidant_Antimicrobial_and_Phytochemicals_Composition_of_Various_Plant_Parts_of_Cichorium_Intybus (accessed on 10 July 2020).
- Nandagopal, S.; Ranjitha Kumari, B. Phytochemical and Antibacterial Studies of Chicory (Cichorium Intybus L.)—A Multipurpose Medicinal Plant. Available online: https://www.researchgate.net/publication/239572326_Phytochemical_and_Antibacterial_Studies_of_Chicory_Cichorium_intybus_L_-_A_Multipurpose_Medicinal_Plant (accessed on 10 July 2020).
- Shaikh, T.; Rub, R.A.; Sasikumar, S. Antimicrobial Screening of Cichorium Intybus Seed Extracts. Arab. J. Chem. 2016, 9, S1569–S1573. [Google Scholar] [CrossRef] [Green Version]
- Woolsey, I.D.; Valente, A.H.; Williams, A.R.; Thamsborg, S.M.; Simonsen, H.T.; Enemark, H.L. Anti-Protozoal Activity of Extracts from Chicory (Cichorium Intybus) against Cryptosporidium Parvum in Cell Culture. Sci. Rep. 2019, 9, 20414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marley, C.L.; Cook, R.; Keatinge, R.; Barrett, J.; Lampkin, N.H. The Effect of Birdsfoot Trefoil (Lotus Corniculatus) and Chicory (Cichorium Intybus) on Parasite Intensities and Performance of Lambs Naturally Infected with Helminth Parasites. Vet. Parasitol. 2003, 112, 147–155. [Google Scholar] [CrossRef]
- Ahmed, B.; Khan, S.; Masood, M.H.; Siddique, A.H. Anti-Hepatotoxic Activity of Cichotyboside, a Sesquiterpene Glycoside from the Seeds of Cichorium Intybus. J. Asian Nat. Prod. Res. 2008, 10, 218–223. [Google Scholar] [CrossRef]
- Bukhari, S.; Ali, M.; Anwar, H.; Farooq, M.; Ercïşlï, S.; Dima, L.; Zia-Ul-Haq, M. Antioxidant potential of cichorium intybus and lentinus edodes ameloriates carbontetrachloride-induced liver toxicity. Oxidation Commun. 2015, 38, 2006–2015. [Google Scholar]
- Elgengaihi, S.; Mossa, A.-T.H.; Refaie, A.A.; Aboubaker, D. Hepatoprotective Efficacy of Cichorium Intybus L. Extract Against Carbon Tetrachloride-Induced Liver Damage in Rats. J. Diet. Suppl. 2016, 13, 570–584. [Google Scholar] [CrossRef]
- Mohammadifar, M.; Taghizadeh, M.; Abed, A.; Soltani, A.; Tamtaji, O.; Khamechian, T.; Hatami, A.; Talaei, S.A. Effect of Ziziphus Jujuba Mill., Cichorium Intybus L. and Silybum Marianum (L.) Gaertn. Combination Extract on Non-Alcoholic Fatty Liver Disease in Rats. J. Med. Plants 2020, 18, 133–142. [Google Scholar] [CrossRef]
- Rezagholizadeh, L.; Pourfarjam, Y.; Nowrouzi, A.; Nakhjavani, M.; Meysamie, A.; Ziamajidi, N.; Nowrouzi, P.S. Effect of Cichorium Intybus L. on the Expression of Hepatic NF-ΚB and IKKβ and Serum TNF-α in STZ− and STZ+ Niacinamide-Induced Diabetes in Rats. Diabetol. Metab. Syndr. 2016, 8, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asadi, M.; Mohammadi, M.; Mohammadian, B.; Shahriari, A.; Foruozandeh, H. The Protective Effect of Cichorium Intybus L. Hydroalcoholic Extract Against Methotrexate-Induced Oxidative Stress in Rats. Available online: https://sites.kowsarpub.com/jjnpp/articles/59556.html (accessed on 10 July 2020).
- Ghaffari, A.; Rafraf, M.; Navekar, R.; Sepehri, B.; Asghari-Jafarabadi, M.; Ghavami, S.-M. Turmeric and Chicory Seed Have Beneficial Effects on Obesity Markers and Lipid Profile in Non-Alcoholic Fatty Liver Disease (NAFLD). Int. J. Vitam. Nutr. Res. 2019, 89, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Afaque, A.; Dwivedi, S.; Jairajpuri, Z.S.; Shamsi, Y.; Khan, M.F.; Khan, M.I.; Ahmed, D. Cichorium Intybus Attenuates Streptozotocin Induced Diabetic Cardiomyopathy via Inhibition of Oxidative Stress and Inflammatory Response in Rats. Interdiscip. Toxicol. 2019, 12, 111–119. [Google Scholar] [CrossRef] [Green Version]
- Azay-Milhau, J.; Ferrare, K.; Leroy, J.; Aubaterre, J.; Tournier, M.; Lajoix, A.-D.; Tousch, D. Antihyperglycemic Effect of a Natural Chicoric Acid Extract of Chicory (Cichorium Intybus L.): A Comparative in Vitro Study with the Effects of Caffeic and Ferulic Acids. J. Ethnopharmacol. 2013, 150, 755–760. [Google Scholar] [CrossRef]
- Chandra, K.; Khan, W.; Jetley, S.; Ahmad, S.; Jain, S.K. Antidiabetic, Toxicological, and Metabolomic Profiling of Aqueous Extract of Cichorium Intybus Seeds. Pharmacogn. Mag. 2018, 14, 377. [Google Scholar] [CrossRef]
- Karimi, M.H.; Ebrahimnezhad, S.; Namayandeh, M.; Amirghofran, Z. The Effects of Cichorium Intybus Extract on the Maturation and Activity of Dendritic Cells. Daru 2014, 22, 28. [Google Scholar] [CrossRef] [Green Version]
- Imam, K.M.S.U.; Xie, Y.; Liu, Y.; Wang, F.; Xin, F. Cytotoxicity of Cichorium Intybus L. Metabolites (Review). Oncol. Rep. 2019, 42, 2196–2212. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.F.; Nasr, F.A.; Noman, O.M.; Alyhya, N.A.; Ali, I.; Saoud, M.; Rennert, R.; Dube, M.; Hussain, W.; Green, I.R.; et al. Cichorins D–F: Three New Compounds from Cichorium Intybus and Their Biological Effects. Molecules 2020, 25, 4160. [Google Scholar] [CrossRef]
- Sedighi, M.; Cheraghi, M.; Faghihi, M.; Rahimi-Madiseh, M.; Kiani, A.A.; Dehghani, M.; Rasoulian, B.; Nazari, A. Hypotensive Effect of Cichorium Intybus Extract in Rats. J. Herbmed Pharmacol. 2021. [Google Scholar] [CrossRef]
- Różanski, H. Cykoria Podróżnik—Cichorium Intybus L. w Praktycznej Fitoterapii «Medycyna Dawna i Współczesna. Available online: http://rozanski.li/258/cykoria-podrznik-cichorium-intybus-l-w-praktycznej-fitoterapii/ (accessed on 4 December 2020).
- Rizvi, W.; Fayazuddin, M.; Shariq, S.; Singh, O.; Moin, S.; Akhtar, K.; Kumar, A. Anti-Inflammatory Activity of Roots of Cichorium Intybus Due to Its Inhibitory Effect on Various Cytokines and Antioxidant Activity. Anc. Sci. Life 2014, 34, 44–49. [Google Scholar] [CrossRef]
- Olsen, N.J.; Branch, V.K.; Jonnala, G.; Seskar, M.; Cooper, M. Phase 1, Placebo-Controlled, Dose Escalation Trial of Chicory Root Extract in Patients with Osteoarthritis of the Hip or Knee. BMC Musculoskelet. Disord. 2010, 11, 156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasannejad, F.; Ansar, M.M.; Rostampour, M.; Mahdavi Fikijivar, E.; Khakpour Taleghani, B. Improvement of Pyridoxine-Induced Peripheral Neuropathy by Cichorium Intybus Hydroalcoholic Extract through GABAergic System. J. Physiol. Sci. 2019, 69, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Nallamilli, B.R.; Phani Kumar, C.S.; Veer Reddy, K.; Lakshmi Prasanna, M.; Maruthi, V.; Sucharita, P. Hepatoprotective Activity of Cichorium Intybus (Linn.) Root Extract against Carbon Tetrachloride Induced Hepatotoxicity in Albino Wistar Rats. Drug Invent. Today 2013, 5, 311–314. [Google Scholar] [CrossRef]
- Soliman, H.; Ma, E.-D.; Wg, H.; Rr, A.; Ak, K. Hepatoprotective Effects of Parsley, Basil, and Chicory Aqueous Extracts against Dexamethasone-Induced in Experimental Rats. J. Intercult. Ethnopharmacol. 2016, 5, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Saggu, S.; Sakeran, M.I.; Zidan, N.; Tousson, E.; Mohan, A.; Rehman, H. Ameliorating Effect of Chicory (Cichorium Intybus L.) Fruit Extract against 4-Tert-Octylphenol Induced Liver Injury and Oxidative Stress in Male Rats. Food Chem. Toxicol. 2014, 72, 138–146. [Google Scholar] [CrossRef]
- Atef, M.; El-Gendi, Y.I.A.-B.; Amer, M.A.; Abd Al Razzak, B.; Abo-EL-Sooud, K.; Ibrahim, I.S. Antioxidant, Hepatoprotective and In Vitro Cytotoxic Activities of Cichorium Intybus L. Extract. AAVS 2020, 9. [Google Scholar] [CrossRef]
- Kanj, D.; Raafat, K.; El-Lakany, A.; Baydoun, S.; Aboul-Ela, M. Phytochemical Compounds of Cichorium Intybus by Exploring Its Antioxidant and Antidiabetic Activities. Pharmacogn. J. 2019, 11, 248–257. [Google Scholar] [CrossRef] [Green Version]
- Reza, M.; Ali, A.M.; Ali, R.; Nasrin, D.N. Anti-Cancer Activity of Methanol Extracts of Cichorium Intybus on Human Breast Cancer SKBR3 Cell Line. Razavi Int. J. Med. 2016, 5. [Google Scholar] [CrossRef]
- Campos, P.M.B.G.M.; Mercurio, D.G.; Melo, M.O.; Closs-Gonthier, B. Cichorium Intybus Root Extract: A “Vitamin D-like” Active Ingredient to Improve Skin Barrier Function. J. Dermatol. Treat. 2017, 28, 78–81. [Google Scholar] [CrossRef]
- Lin, Z.; Zhang, B.; Liu, X.; Jin, R.; Zhu, W. Effects of Chicory Inulin on Serum Metabolites of Uric Acid, Lipids, Glucose, and Abdominal Fat Deposition in Quails Induced by Purine-Rich Diets. J. Med. Food 2014, 17, 1214–1221. [Google Scholar] [CrossRef]
- Minaiyan, M.; Ghannadi, A.-R.; Mahzouni, P.; Abed, A.-R. Preventive Effect of Cichorium Intybus L. Two Extracts on Cerulein-Induced Acute Pancreatitis in Mice. Int. J. Prev. Med. 2012, 3, 351–357. [Google Scholar]
- Cavin, C.; Delannoy, M.; Malnoe, A.; Debefve, E.; Touché, A.; Courtois, D.; Schilter, B. Inhibition of the Expression and Activity of Cyclooxygenase-2 by Chicory Extract. Biochem. Biophys. Res. Commun. 2005, 327, 742–749. [Google Scholar] [CrossRef]
- Ziamajidi, N.; Khaghani, S.; Hassanzadeh, G.; Vardasbi, S.; Ahmadian, S.; Nowrouzi, A.; Ghaffari, S.M.; Abdirad, A. Amelioration by Chicory Seed Extract of Diabetes- and Oleic Acid-Induced Non-Alcoholic Fatty Liver Disease (NAFLD)/Non-Alcoholic Steatohepatitis (NASH) via Modulation of PPARα and SREBP-1. Food Chem. Toxicol. 2013, 58, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Conforti, F.; Ioele, G.; Statti, G.A.; Marrelli, M.; Ragno, G.; Menichini, F. Antiproliferative Activity against Human Tumor Cell Lines and Toxicity Test on Mediterranean Dietary Plants. Food Chem. Toxicol. 2008, 46, 3325–3332. [Google Scholar] [CrossRef] [PubMed]
- Gürbüz, İ.; Üstün, O.; Yeşilada, E.; Sezik, E.; Akyürek, N. In Vivo Gastroprotective Effects of Five Turkish Folk Remedies against Ethanol-Induced Lesions. J. Ethnopharmacol. 2002, 83, 241–244. [Google Scholar] [CrossRef]
- Dorostghoal, M.; Seyyednejad, S.M.; Nejad, M.N.T. Beneficial Effects of Cichorium Intybus L. Extract on Oxidative Status and Reproductive Parameters in Male Wistar Rats: An Experimental Study. Int. J. Reprod. Biomed. 2019, 17, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Lentini, F.; Venza, F. Wild Food Plants of Popular Use in Sicily. J. Ethnobiol. Ethnomed. 2007, 3, 15. [Google Scholar] [CrossRef] [Green Version]
- Perović, J.; Tumbas Šaponjac, V.; Kojić, J.; Krulj, J.; Moreno, D.A.; García-Viguera, C.; Bodroža-Solarov, M.; Ilić, N. Chicory (Cichorium Intybus L.) as a Food Ingredient—Nutritional Composition, Bioactivity, Safety, and Health Claims: A Review. Food Chem. 2021, 336, 127676. [Google Scholar] [CrossRef]
- Kim, D.-H.; Jeong, D.-K.; Kim, H.; Chon, J.-W.; Lim, H.-W.; Chang, H.-S.; Park, J.-H.; Kim, Y.-J.; Kang, I.-B.; Song, K.-Y.; et al. Manufacture of Functional Koumiss Supplemented with Cichorium Intybus L. (Chicory) Extract—Preliminary Study. Available online: http://www.ejmsb.org/archive/view_article?pid=jmsb-35-1-1 (accessed on 11 December 2020).
- Socaci (ignat), M.V.; Mudura, E.; Coldea, T.E.; Salanta, L. Therapeutic properties of cichorium intybus l. roots in liver diseases, diabetes and hypercholesterolemia. Hop Med. Plants 2019, 27, 76–86. [Google Scholar]
- Denisow-Pietrzyk, M.; Pietrzyk, Ł.; Denisow, B. Asteraceae Species as Potential Environmental Factors of Allergy. Environ. Sci. Pollut. Res. Int. 2019, 26, 6290–6300. [Google Scholar] [CrossRef] [Green Version]
Part Plant | Chemical Compounds | References |
---|---|---|
Leaves | fatty acids: C14:0; C15:0; C16:0; C18:0; C18:1n-9c; C18:2n-6c; C18:3n-3; C20:0; C22:0; C24:0 | [18] |
pigments: lutein, violaxanthin antheraxanthin, neoxanthin, chlorophyll a, chlorophyll b, pheophytin a, pheophytin b, β-carotene | ||
polyphenols, flavonoids, chlorogenic acid, caffeic acid, chicoric acid, quercetin glucuronide, gallic acid | ||
tannins, saponins | [11,19] | |
minerals: Ca, Mg, Na, Cu, Zn, Mn, Se, N, P, K, S, B, Fe | ||
vitamins: A, E, K, C, B1, B2, B3, B5, B6, B9 | [20] | |
Roots | polyphenols, flavonoids, caffeoylquinic acid, | [21] |
minerals: Ca, Mg, Na, Cu, Zn, Mn, Fe, K, | [11,22] | |
phenolic compound: protocatechuic acid, chlorogenic acid, hydroxybenzoic acid, isovanillic acid, coumaric acid, protocatechuic acid, chlorogenic acid, caffeic acid, coumaric acid, p-coumaric acid | ||
fatty acids: C14H28O2, C16H30O2, C16H32O2C20H34O2, C20H40O2 | [23] | |
steroids, terpenoids, | ||
vitamin C | [22] | |
tannins | ||
Seeds | amino acids: arginine, histidine, isoleucine, leucine, lysine, methionine, cysteine, phenylalanine, tyrosine, threonine, valine, serine, glutamic acid, glycine, alanine, aspartic acid, proline | [22,24] |
fatty acids: C14:0, C16:0, C16:1, C18:0 t11-C18:1, C18:1n-9, C18:2n-6, C18:3n-3, C20:0, C20:1, C20:2, C22:0, C24:0 | ||
minerals: P, K, Ca, Mg, Na, Fe, Cu, Zn, Mn, Mo, Se, Cd, | ||
steroids, terpenoids, | [23] | |
vitamin C | [22] | |
tannins | ||
Flowers | fatty acids: fatty acids: C14H28O2, C15H30O2, C16H32O, C17H34O2, C18H32O2, C18H36O2, C19H38O2, C18H30O2, C20H40O2, C20H40 | [23] |
steroids, terpenoids, | ||
Aerial parts | phenolic compounds: caftaric acid, chlorogenic acid, cichoric acid, isoquercitrin, rutin, quercitrin, luteolin, apigenin | [25] |
minerals: Fe, Cu, Zn, Mn | [22] | |
vitamin C | ||
tannins |
Part Plant | Essential Oil | References |
---|---|---|
Aerial parts | carvacrol (50.1%); thymol (13.3%); cinnamic aldehyde (12.4%); camphor (4.4%); carvone (4.1%); linalool (3.9%); α-terpineol (2.1%); octane (8–25.6%); octen-3-ol-1 (0.3%); 2-pentylfuran (up to 2.6%); (2E,4E)-heptadienal (up to 2.6%); 1,8-cineole (up to 1.0%); phenylacetaldehyde (1–4.5%); n-nonanal (2.1–6.5%); camphor (1.4%); (2E,6Z)-nonadienal (0.6%); (2E)-nonen-1-al (0.9%); n-decanal (0.8–1.7%); (2E,4E)-nonadienal (up to 0.4%); n-decanol (up to 0.9%); (2E,4Z)-decadienal (0.5–1.3%); (2E,4E)-decadienal (1.5–1.9%); geranyl acetone (0.7–3.2%); β-ionone (1.9–3.0%); (2E)-tridecanol (6.3%); pentenyl salicilate (0.9%); n-hexadecane (0.9–5.9%); tetradecanal (1.0–2.8%); tetradecanol (0.8%); 2-pentadecanone (4.2–14.9%); (E)-2-hexylcinnamaldehyde (0.4%); octadecane (0.5%); n-nonadecane (5.1–46.9%); (5E,9E)-farnesyl acetone (0.6–2.3%); n-eicosane (0.9–2.9%); n-octadecanol (0.3–1.0%); n-heicosane (2.5–8.0%) | [26,27] |
Roots | Kaempferol; octane (34,3–69.8%), octen-3-ol-1; 2-pentylfuran; n-nonanal (up to 1.2%); n-tridecane (0.3–0.4%); (2E,4E)-decadienal (2.2–3.4%); (2E,4Z)-decadienal (0.8–0.9%); (2E,4E)-heptadienal (up to 1.0%); β-elemene (0.3–0.6%); (E)-caryophyllene (up to 0.4%); β-ylangene (0.3–0.7%); (E)-β-farnesene (0.4–2.2%); geranyl acetone (up to 0.6%); allo-aromadendrene (up to 3.9%); dehydro-aromadendrene (0.6%); β-ionone (0.5%); pentadecane (1.8%); trans-β-guaiene (0.5–0.7%); (2E)-undecenol acetate (1.3–1.9%); sesquicineole (up to 0.8%); (2E)-tridecanol (0.5–2.6%); pentenyl salicilate (4.8–22.7%); n-hexadecane (1.7–18.1%); tetradecanal (1.1–2.7%); 2-pentadecanone (0.4–1.3%); n-nonadecane (0.3–3.9%); n-eicosane (2.1–5.1%); n-heicosane (0.4–0.5%) | [27,28] |
Extract/Used Part of Plant | Therapeutic Action | Research Model | References | |
---|---|---|---|---|
1. | Water, ethanol/roots | Hepatoprotective | Albino Wistar rats | [65] |
2. | Hydroalcoholic | [52] | ||
3. | Water/leaves | [66] | ||
4. | Combined extract of jujube, chicory and silymarin | [50] | ||
5. | Methanol/leaves | [49] | ||
Methanol/roots | ||||
6. | Alcohol/seeds | [47] | ||
7. | Hydroalcoholic/fruits | Sprague Dawley rats | [67] | |
8. | Ethanol/aerial part | Hepatoprotective and antioxidant | Female Albino Wistar rats | [68] |
9. | Water/seeds | Antidiabetic, antioxidant | Wistar rats | [56] |
10. | Ethanol/whole plant | Antidiabetic | Sprague-Dawley rats | [31] |
11. | Hexane/whole plant | Antidiabetic, antioxidant | Diabetic mice | [69] |
12. | Water/seeds | Anti-inflammatory, antioxidant, antidiabetic | 150 patients | [33] |
13. | Methanol/roots | Anticancer | Breast Cancer (SKBR3) cell line | [70] |
14. | Ethanol/aerial part | Colon cancer (HCT 116), liver cancer (HEPG2) cell lines | [68] | |
15. | Water/seeds | Cardioprotective | Albino Wistar rats | [54] |
16. | Commercial roots extract | Improve skin barrier function | Fifty women | [71] |
17. | Chicory inulin—commercial product (Fibrulose F97; Cosucra). | Decreased serum uric acid, triglyceride, and abdominal fat deposition in a quail model of hyperuricemia by altering the acetyl-CoA carboxylase protein expression and fatty acid synthase and xanthine oxidase activities. | French quails | [72] |
18. | Hydroalcoholic/roots | Protective in pancreatitis | Mice | [73] |
19. | Ethyl acetate, hydroalcoholic, hexane/roots | Antiinflammatory, prebiotic | Human colon carcinoma (HT29) cell line | [74] |
20. | Water/seeds | Antiinflammatory, modulating expression of cytokines | Wistar albino rats | [51] |
21. | Root extract—commercial product | Antiinflammatory | 40 patients | [63] |
22. | Water/seeds | Hepatic steatosis caused by early and late stage diabetes | HepG2 cell line | [75] |
23. | Hydroalcoholic/roots | Antiproliferative | Renal adenocarcinoma (ACHN), amelanotic melanoma (C32), breast cancer (MCF-7), prostate cancer (LNCaP) cell lines | [76] |
Hydroalcoholic/leaves | ||||
24. | Water, methanol/roots | Gastroprotective | Spraque-Dawley rats | [77] |
25. | Seeds + turmeric | Decrease NAFLD risk factors | 92 patients | [53] |
26. | Hydroalcoholic/roots | Antineurotoxic, neuroprotective | Albino Wistar rats | [64] |
27. | Ethanol/leaves | Improve reproductive parameters | Adult male Wistar rats | [78] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janda, K.; Gutowska, I.; Geszke-Moritz, M.; Jakubczyk, K. The Common Cichory (Cichorium intybus L.) as a Source of Extracts with Health-Promoting Properties—A Review. Molecules 2021, 26, 1814. https://doi.org/10.3390/molecules26061814
Janda K, Gutowska I, Geszke-Moritz M, Jakubczyk K. The Common Cichory (Cichorium intybus L.) as a Source of Extracts with Health-Promoting Properties—A Review. Molecules. 2021; 26(6):1814. https://doi.org/10.3390/molecules26061814
Chicago/Turabian StyleJanda, Katarzyna, Izabela Gutowska, Małgorzata Geszke-Moritz, and Karolina Jakubczyk. 2021. "The Common Cichory (Cichorium intybus L.) as a Source of Extracts with Health-Promoting Properties—A Review" Molecules 26, no. 6: 1814. https://doi.org/10.3390/molecules26061814
APA StyleJanda, K., Gutowska, I., Geszke-Moritz, M., & Jakubczyk, K. (2021). The Common Cichory (Cichorium intybus L.) as a Source of Extracts with Health-Promoting Properties—A Review. Molecules, 26(6), 1814. https://doi.org/10.3390/molecules26061814