Post-Harvest Use of Ultraviolet Light (UV) and Light Emitting Diode (LED) to Enhance Bioactive Compounds in Refrigerated Tomatoes
Abstract
:1. Introduction
2. Results
2.1. Carotenoids Contents
2.2. Total Phenolic Contents and Antioxidant Ccapacities
2.3. Colour, Ripening Index and Weight Loss
3. Discussion
4. Materials and Methods
4.1. Reagents and Chemicals
4.2. Samples and Experimental Design
4.3. Light Conditions
- CONTROL: Untreated control samples stored in darkness;
- UVA: Samples pre-treated with ultraviolet light-A and later stored in darkness;
- UVC: Samples pre-treated with ultraviolet light-C and later stored in darkness;
- UVA + LED: Samples pre-treated with ultraviolet light-A and later stored under continuous red-blue light;
- UVC + LED: Samples pre-treated with ultraviolet light-C and later stored under continuous red-blue light;
- LED: Samples stored under continuous red-blue light.
4.4. Analysis of Carotenoids by HPLC-DAD
4.5. Analysis of Total Phenolic Compounds
4.6. Analysis of Hydrophilic and Lypophilic Antioxidant Capacity
4.7. Colour Measurements, Ripening Index and Weight Loss
4.8. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- García-Alonso, F.J.; García-Valverde, V.; Navarro-González, I.; Martín-Pozuelo, G.; González-Barrio, R.; Periago, M.J. Tomato. In Nutritional Composition and Antioxidant Properties of Fruits and Vegetables; Academic Press Books—Elsevier: Cambridge, MA, USA, 2020; pp. 255–271. [Google Scholar]
- Chaudhary, P.; Sharma, A.; Singh, B.; Nagpal, A.K. Bioactivities of phytochemicals present in tomato. J. Food Sci. Technol. 2018, 55, 2833–2849. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Sharifi-Rad, R.; Sharopov, F.; Namiesnik, J.; Roointan, A.; Kamle, M.; Kumar, P.; Martins, N.; Sharifi-Rad, J. Beneficial effects and potential risks of tomato consumption for human health: An overview. Nutrition 2019, 62, 201–208. [Google Scholar] [CrossRef]
- Guiné, R.P.F.; Florença, S.G.; Barroca, M.J.; Anjos, O. The link between the consumer and the innovations in food product development. Foods 2020, 9, 1317. [Google Scholar] [CrossRef] [PubMed]
- Pobiega, K.; Przybył, J.L.; Żubernik, J.; Gniewosz, M. Prolonging the Shelf Life of Cherry Tomatoes by Pullulan Coating with Ethanol Extract of Propolis During Refrigerated Storage. Food Bioprocess Technol. 2020, 13, 1447–1461. [Google Scholar] [CrossRef]
- Yoo, H.J.; Kim, J.H.; Park, K.S.; Son, J.E.; Lee, J.M. Light-controlled fruit pigmentation and flavor volatiles in tomato and bell pepper. Antioxidants 2020, 9, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bravo, S.; García-Alonso, J.; Martín-Pozuelo, G.; Gómez, V.; Santaella, M.; Navarro-González, I.; Periago, M.J. The influence of post-harvest UV-C hormesis on lycopene, β-carotene, and phenolic content and antioxidant activity of breaker tomatoes. Food Res. Int. 2012, 49, 296–302. [Google Scholar] [CrossRef]
- Esua, O.J.; Chin, N.L.; Yusof, Y.A.; Sukor, R. Effects of simultaneous UV-C radiation and ultrasonic energy postharvest treatment on bioactive compounds and antioxidant activity of tomatoes during storage. Food Chem. 2019, 270, 113–122. [Google Scholar] [CrossRef]
- Nájera, C.; Guil-Guerrero, J.L.; Enríquez, L.J.; Álvaro, J.E.; Urrestarazu, M. LED-enhanced dietary and organoleptic qualities in postharvest tomato fruit. Postharvest Biol. Technol. 2018, 145, 151–156. [Google Scholar] [CrossRef]
- Panjai, L.; Noga, G.; Hunsche, M.; Fiebig, A. Optimal red light irradiation time to increase health-promoting compounds in tomato fruit postharvest. Sci. Hortic. 2019, 251, 189–196. [Google Scholar] [CrossRef]
- Panjai, L.; Noga, G.; Fiebig, A.; Hunsche, M. Effects of continuous red light and short daily UV exposure during postharvest on carotenoid concentration and antioxidant capacity in stored tomatoes. Sci. Hortic. 2017, 226, 97–103. [Google Scholar] [CrossRef]
- Toor, R.K.; Savage, G.P. Changes in major antioxidant components of tomatoes during post-harvest storage. Food Chem. 2006, 99, 724–727. [Google Scholar] [CrossRef]
- Liu, C.; Han, X.; Cai, L.; Lu, X.; Ying, T.; Jiang, Z. Postharvest UV-B irradiation maintains sensory qualities and enhances antioxidant capacity in tomato fruit during storage. Postharvest Biol. Technol. 2011, 59, 232–237. [Google Scholar] [CrossRef]
- Gupta, S.D. Light Emitting Diodes for Agriculture: Smart Lighting; Springer Nature Singapore Pte, Ltd.: Singapore, 2017; pp. 1–334. [Google Scholar]
- Hasan, M.M.; Bashir, T.; Ghosh, R.; Lee, S.K.; Bae, H. An overview of LEDs’ effects on the production of bioactive compounds and crop quality. Molecules 2017, 22, 1420. [Google Scholar] [CrossRef] [Green Version]
- Maul, F.; Sargent, S.A.; Sims, C.A.; Baldwin, E.A.; Balaban, M.O.; Huber, D.J. Tomato flavor and aroma quality as affected by storage temperature. J. Food Sci. 2000, 65, 1228–1237. [Google Scholar] [CrossRef]
- Sualeh, A.; Daba, A.; Kiflu, S.; Mohammed, A. Effect of Storage Conditions and Packing Materials on Shelf life of Tomato. Food Sci. Qual. Manag. 2016, 56, 60–67. [Google Scholar]
- Mditshwa, A.; Magwaza, L.S.; Tesfay, S.Z.; Mbili, N.C. Effect of ultraviolet irradiation on postharvest quality and composition of tomatoes: A review. J. Food Sci. Technol. 2017, 54, 3025–3035. [Google Scholar] [CrossRef]
- Liu, C.-H.; Cai, L.-Y.; Lu, X.-Y.; Han, X.-X.; Tie-Jin, Y. Effect of Postharvest UV-C Irradiation on Phenolic Compound Content and Antioxidant Activity of Tomato Fruit During Storage. J. Integr. Agric. 2012, 2012, 159–165. [Google Scholar] [CrossRef]
- Kokalj, D.; Hribar, J.; Cigić, B.; Zlatić, E.; Demšar, L.; Sinkovič, L.; Šircelj, H.; Bizjak, G.; Vidrih, R. Influence of yellow light-emitting diodes at 590 nm on storage of apple, tomato and bell pepper fruit. Food Technol. Biotechnol. 2016, 54, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Galani, J.H.Y.; Patel, J.S.; Patel, N.J.; Talati, J.G. Storage of fruits and vegetables in refrigerator increases their phenolic acids but decreases the total phenolics, anthocyanins and vitamin C with subsequent loss of their antioxidant capacity. Antioxidants 2017, 6, 59. [Google Scholar] [CrossRef] [Green Version]
- Imahori, Y.; Bai, J.; Baldwin, E. Antioxidative responses of ripe tomato fruit to postharvest chilling and heating treatments. Sci. Hortic. 2016, 198, 398–406. [Google Scholar] [CrossRef]
- Müller, L.; Theile, K.; Böhm, V. In vitro antioxidant activity of tocopherols and tocotrienols and comparison of vitamin E concentration and lipophilic antioxidant capacity in human plasma. Mol. Nutr. Food Res. 2010, 54, 731–742. [Google Scholar] [CrossRef] [PubMed]
- Arnao, M.B.; Cano, A.; Acosta, M. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 2001, 73, 239–244. [Google Scholar] [CrossRef]
- Cano, A.; Acosta, M.; Arnao, M.B. Hydrophilic and lipophilic antioxidant activity changes during on-vine ripening of tomatoes (Lycopersicon esculentum Mill.). Postharvest Biol. Technol. 2003, 28, 59–65. [Google Scholar] [CrossRef]
- Watanabe, J.; Oki, T.; Takebayashi, J.; Yada, H.; Wagaki, M.; Takano-Ishikawa, Y.; Yasui, A. Improvement and interlaboratory validation of the lipophilic oxygen radical absorbance capacity: Determination of antioxidant capacities of lipophilic antioxidant solutions and food extracts. Anal. Sci. 2016, 32, 171–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Javanmardi, J.; Kubota, C. Variation of lycopene, antioxidant activity, total soluble solids and weight loss of tomato during postharvest storage. Postharvest Biol. Technol. 2006, 41, 151–155. [Google Scholar] [CrossRef]
- Ntagkas, N.; Woltering, E.; Bouras, S.; De Vos, R.C.; Dieleman, J.A.; Nicole, C.C.; Labrie, C.; Marcelis, L.F. Light-induced vitamin c accumulation in tomato fruits is independent of carbohydrate availability. Plants 2019, 8, 86. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, S.; Srivastava, A.K. Lycopene; chemistry, biosynthesis, metabolism and degradation under various abiotic parameters. J. Food Sci. Technol. 2015, 52, 41–53. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S.; Daramy, M.A. Nutrients, minerals, antioxidant pigments and phytochemicals, and antioxidant capacity of the leaves of stem amaranth. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leiva-Brondo, M.; Valcarcel, M.; Martí, R.; Roselló, S.; Cebolla-Cornejo, J. New opportunities for developing tomato varieties with enhanced carotenoid content. Sci. Agric. 2016, 73, 512–519. [Google Scholar] [CrossRef] [Green Version]
- Carrillo-López, A.; Yahia, E.M. Changes in color-related compounds in tomato fruit exocarp and mesocarp during ripening using HPLC-APcI+-mass Spectrometry. J. Food Sci. Technol. 2014, 51, 2720–2726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camelo, A.F.L.; Gómez, P.A. Comparison of color indexes for tomato ripening. Hortic. Bras. 2004, 22, 534–537. [Google Scholar] [CrossRef]
- Magwaza, L.S.; Opara, U.L. Analytical methods for determination of sugars and sweetness of horticultural products—A review. Sci. Hortic. 2015, 184, 179–192. [Google Scholar] [CrossRef]
- U.S. Department of Energy. Energy Saver Program. Office of Energy Efficiency and Renewable Energy. Available online: https://www.energy.gov/energysaver/about-us (accessed on 15 March 2021).
- USDA. United States Department of Agriculture Agricultural Marketing Service Fruit and Vegetable Programs Fresh Products Branch Tomatoes Shipping Point and Market Inspection Instructions; U.S. Department of Agriculture: Washington, DC, USA, 2005.
- Böhm, V. Use of column temperature to optimize carotenoid isomer separation by C30 high performance liquid chromatography. J. Sep. Sci. 2001, 24, 955–959. [Google Scholar] [CrossRef]
- Fröhlich, K.; Conrad, J.; Schmid, A.; Breithaupt, D.E.; Böhm, V. Isolation and structural elucidation of different geometrical isomers of lycopene. Int. J. Vitam. Nutr. Res. 2007, 77, 369–375. [Google Scholar] [CrossRef]
- Seybold, C.; Fröhlich, K.; Bitsch, R.; Otto, K.; Böhm, V. Changes in contents of carotenoids and vitamin E during tomato processing. J. Agric. Food Chem. 2004, 52, 7005–7010. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, J.; Wang, X.; Li, D.; Liu, C. Degradation kinetics of carotenoids and visual colour in pumpkin (Cucurbita maxima L.) slices during microwave-vacuum drying. Int. J. Food Prop. 2017, 20, S632–S643. [Google Scholar] [CrossRef] [Green Version]
- Majidi, H.; Minaei, S.; Almasi, M.; Mostofi, Y. Total Soluble Solids, Titratable Acidity and Repining Index of Tomato In Various Storage Conditions. Aust. J. Basic Appl. Sci. 2011, 5, 1723–1726. [Google Scholar]
- AOAC Official Method 942.15 Acidity (titratable) of Fruit Products. In AOAC Official Methods of Analysis, Fruits and Fruit Products; AOAC International: Rockville, MD, USA, 2000.
Light Source | β- Carotene | E- Lycopene | 15-Z- Lycopene | 13-Z- Lycopene | 9-Z- Lycopene | Total Z- Lycopene | Total Lycopene | Total Carotenoids |
---|---|---|---|---|---|---|---|---|
Day 0 | 3.23 ± 0.30 d | 0.57 ± 0.06 b | 0.15 ± 0.01 b | 0.15 ± 0.01 b | 0.14 ± 0.01 c | 0.44 ± 0.0 b | 1.00 ± 0.07 b | 4.23 ± 0.33 b |
Day 7 | ||||||||
Control | 3.95 ± 0.78 c,d | 2.25 ± 0.78 b | 0.34 ± 0.10 b | 0.19 ± 0.04 b | 0.21 ± 0.05 b,c | 0.73 ± 0.16 b | 2.98 ± 0.93 b | 6.93 ±1.65 b |
UVA | 4.91 ± 1.55 b,c,d | 2.59 ± 0.19 b | 0.32 ± 0.01 b | 0.18 ± 0.02 b | 0.20 ± 0.07 b,c | 0.70 ± 0.08 b | 3.28 ± 0.27 b | 8.19 ±1.82 b |
UVC | 3.43 ± 1.28 d | 1.64 ± 0.68 b | 0.26 ± 0.06 b | 0.17 ± 0.01 b | 0.17 ± 0.01 b,c | 0.60 ± 0.06 b | 2.24 ± 0.74 b | 5.68 ±2.02 b |
UVA + LED | 5.81 ± 0.19 a,b,c | 8.90 ± 1.13 a | 1.11 ± 0.11 a | 0.35 ± 0.08 a | 0.40 ± 0.1 a | 1.85 ± 0.38 a | 10.75 ± 1.51 a | 16.57 ± 1.70 a |
UVC + LED | 7.42 ± 1.31 a | 11.27 ± 2.85 a | 1.42 ± 0.34 a | 0.34 ± 0.02 a | 0.32 ± 0.02 a,b | 2.08 ± 0.39 a | 13.35 ± 3.24 a | 20.77 ± 4.55 a |
LED | 6.58 ± 1.09 a,b | 12.41 ± 6.05 a | 1.19 ± 0.61 a,b | 0.58 ± 0.32 a | 0.27 ± 0.07 a,b,c | 2.03 ± 1.00 a | 14.44 ± 7.05 a | 21.02 ± 8.14 a |
Light Source | TPCs (mg GAEs 1 kg−1) | FRAP-H (µmol TEs 2 kg−1) | FRAP-L (µmol TEs kg−1) |
---|---|---|---|
Day 0 | 193 ± 16 | 1602 ± 114 c | 128 ± 16 b |
Day 7 | |||
Control | 202 ± 78 | 1766 ± 183 b,c | 153 ± 2.3 b |
UVA | 156 ± 58 | 1846 ± 87 b | 139 ± 21 b |
UVC | 172 ± 13 | 1692 ± 114 b,c | 142 ± 9.3 b |
UVA + LED | 206 ± 33 | 2529 ± 40 a | 198 ± 37 a |
UVC + LED | 200 ± 65 | 2402 ± 120 a | 222 ± 11 a |
LED | 223 ± 22 | 2446 ± 25 a | 214 ± 7.9 a |
Light Source | L* | a* | b* | a*/b* | Chroma | Hue | ΔE |
---|---|---|---|---|---|---|---|
Day 0 | 55.41 ± 4.08 a | −7.02 ± 1.66 c | 23.07 ± 4.58 a | −0.32 ± 0.14 c | 24.19 ± 4.03 | 107.71 ± 6.78 a | |
Day 7 | |||||||
Control | 49.77 ± 1.88 b | 2.21 ± 1.64 b | 21.22 ± 3.42 a,b | 0.11 ± 0.08 b | 21.39 ± 3.34 | 84.10 ± 4.86 b | 11.37± 2.34 b |
UVA | 48.88 ± 2.59 b | 4.23 ± 3.86 b | 20.28 ± 3.43 a,b | 0.19 ± 0.16 b | 20.95 ± 4.10 | 79.98 ± 8.79 b | 14.07 ± 1.33 b |
UVC | 48.63 ± 1.18 b,c | 2.48 ± 3.12 b | 19.66 ± 3.28 a,b | 0.11 ± 0.14 b | 20.00 ± 3.61 | 84.26 ± 7.97 b | 12.73 ± 0.92 b |
UVA + LED | 46.35 ± 0.95 b,c | 14.12 ± 2.09 a | 15.66 ± 4.51 b | 0.93 ± 0.14 a | 21.14 ± 4.74 | 47.01 ± 4.20 c | 24.53 ± 0.31 a |
UVC + LED | 44.68 ± 0.93 c | 12.36 ± 0.74 a | 15.83 ± 2.94 b | 0.79 ± 0.10 a | 20.12 ± 2.77 | 51.55 ± 3.55 c | 23.43 ± 0.15 a |
LED | 44.86 ± 2.90 c | 12.92 ± 0.89 a | 15.97 ± 4.34 b | 0.85 ± 0.21 a | 20.63 ± 3.84 | 50.19 ± 6.61 c | 23.97 ± 2.08 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baenas, N.; Iniesta, C.; González-Barrio, R.; Nuñez-Gómez, V.; Periago, M.J.; García-Alonso, F.J. Post-Harvest Use of Ultraviolet Light (UV) and Light Emitting Diode (LED) to Enhance Bioactive Compounds in Refrigerated Tomatoes. Molecules 2021, 26, 1847. https://doi.org/10.3390/molecules26071847
Baenas N, Iniesta C, González-Barrio R, Nuñez-Gómez V, Periago MJ, García-Alonso FJ. Post-Harvest Use of Ultraviolet Light (UV) and Light Emitting Diode (LED) to Enhance Bioactive Compounds in Refrigerated Tomatoes. Molecules. 2021; 26(7):1847. https://doi.org/10.3390/molecules26071847
Chicago/Turabian StyleBaenas, Nieves, Celia Iniesta, Rocío González-Barrio, Vanesa Nuñez-Gómez, María Jesús Periago, and Francisco Javier García-Alonso. 2021. "Post-Harvest Use of Ultraviolet Light (UV) and Light Emitting Diode (LED) to Enhance Bioactive Compounds in Refrigerated Tomatoes" Molecules 26, no. 7: 1847. https://doi.org/10.3390/molecules26071847
APA StyleBaenas, N., Iniesta, C., González-Barrio, R., Nuñez-Gómez, V., Periago, M. J., & García-Alonso, F. J. (2021). Post-Harvest Use of Ultraviolet Light (UV) and Light Emitting Diode (LED) to Enhance Bioactive Compounds in Refrigerated Tomatoes. Molecules, 26(7), 1847. https://doi.org/10.3390/molecules26071847