Chemical Composition, In Vitro Bioaccessibility and Antioxidant Activity of Polyphenolic Compounds from Nutraceutical Fennel Waste Extract
Abstract
:1. Introduction
2. Results
2.1. Not-Target Identification of Flavonoids and Phenolic Compounds in the Aqueous Extract of Fennel Waste through UHPLC-Q-Orbitrap HRMS
2.2. Quantification of Flavonoids and Phenolic Compounds in the Aqueous Extract of Fennel Waste
2.3. In Vitro Bioaccessibility of Aqueous Extract of Fennel Waste in NAR and AR Capsules
2.4. Antioxidant Capacity of the Aqueous Extract of Fennel Waste Contained on NAR and AR Capsules after Simulated Gastrointestinal Digestion
3. Discussion
4. Materials and Methods
4.1. Reagents and Materials
4.2. Polyphenols Extraction
4.3. Ultra-High-Performance Liquid Chromatography and Orbitrap HRMS Analysis
4.4. In Vitro Gastrointestinal Digestion
4.5. Determination of Antioxidant Capacity
4.5.1. ABTS Assay
4.5.2. DPPH Assay
4.5.3. FRAP Assay
4.6. Total Phenolic Content
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Cautela, D.; Vella, F.M.; Castaldo, D.; Laratta, B. Characterization of essential oil recovered from fennel horticultural wastes. Nat. Prod. Res. 2019, 33, 1964–1968. [Google Scholar] [CrossRef]
- Choi, E.-M.; Hwang, J.-K. Antiinflammatory, analgesic and antioxidant activities of the fruit of Foeniculum vulgare. Fitoterapia 2004, 75, 557–565. [Google Scholar] [CrossRef]
- ISTAT Istituto Nazionale di Statistica (ISTAT). Available online: http://dati.istat.it/Index.aspx?DataSetCode=DCSP_COLTIVAZIONI (accessed on 29 March 2021).
- Lin, C.S.K.; Pfaltzgraff, L.A.; Herrero-Davila, L.; Mubofu, E.B.; Abderrahim, S.; Clark, J.H.; Koutinas, A.A.; Kopsahelis, N.; Stamatelatou, K.; Dickson, F. Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy Environ. Sci. 2013, 6, 426–464. [Google Scholar] [CrossRef]
- Gowe, C. Review on potential use of fruit and vegetables by-products as a valuable source of natural food additives. Food Sci. Qual. Manag. 2015, 45, 47–61. [Google Scholar]
- Chemat, F.; Vian, M.A.; Ravi, H.K.; Khadhraoui, B.; Hilali, S.; Perino, S.; Tixier, A.-S.T. Review of alternative solvents for green extraction of food and natural products: Panorama, principles, applications and prospects. Molecules 2019, 24, 3007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagarajan, J.; Kay, H.P.; Arumugam, P.; Krishnamurthy, N.P.; Ramakrishnan, N.R.; Aldawoud, T.M.; Galanakis, C.M.; Wei, O.C. Valorisation of carrot peel waste by water-induced hydrocolloidal complexation for extraction of carotenoid and pectin. Chemosphere 2021, 272, 129919. [Google Scholar]
- Di Donato, P.; Taurisano, V.; Tommonaro, G.; Pasquale, V.; Jiménez, J.M.S.; de Pascual-Teresa, S.; Poli, A.; Nicolaus, B. Biological properties of polyphenols extracts from agro industry’s wastes. Waste Biomass Valorization 2018, 9, 1567–1578. [Google Scholar] [CrossRef]
- Crozier, A.; Jaganath, I.B.; Clifford, M.N. Phenols, polyphenols and tannins: An overview. In Plant Secondary Metabolites: Occurrence, Structure role in the Human Diet; Wiley-Blackwell: Hoboken, NJ, USA, 2006. [Google Scholar]
- Castaldo, L.; Narváez, A.; Izzo, L.; Graziani, G.; Gaspari, A.; Di Minno, G.; Ritieni, A. Red wine consumption and cardiovascular health. Molecules 2019, 24, 3626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arts, I.C.; Hollman, P.C. Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr. 2005, 81, 317S–325S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiboub, W.; Sassi, A.B.; Amina, C.M.; Souilem, F.; El Ayeb, A.; Djlassi, B.; Ascrizzi, R.; Flamini, G.; Harzallah-Skhiri, F. Valorization of the green waste from two varieties of fennel and carrot cultivated in tunisia by identification of the phytochemical profile and evaluation of the antimicrobial activities of their essentials oils. Chem. Biodivers. 2019, 16, e1800546. [Google Scholar] [CrossRef]
- Rasouli, H.; Farzaei, M.H.; Khodarahmi, R. Polyphenols and their benefits: A review. Int. J. Food Prop. 2017, 20, 1700–1741. [Google Scholar] [CrossRef] [Green Version]
- Adefegha, S.A. Functional foods and nutraceuticals as dietary intervention in chronic diseases; novel perspectives for health promotion and disease prevention. J. Diet. Suppl. 2018, 15, 977–1009. [Google Scholar] [CrossRef]
- Saura-Calixto, F.; Serrano, J.; Goñi, I. Intake and bioaccessibility of total polyphenols in a whole diet. Food Chem. 2007, 101, 492–501. [Google Scholar] [CrossRef] [Green Version]
- Williamson, G.; Clifford, M.N. Role of the small intestine, colon and microbiota in determining the metabolic fate of polyphenols. Biochem. Pharmacol. 2017, 139, 24–39. [Google Scholar] [CrossRef] [Green Version]
- Correa-Betanzo, J.; Allen-Vercoe, E.; McDonald, J.; Schroeter, K.; Corredig, M.; Paliyath, G. Stability and biological activity of wild blueberry (Vaccinium angustifolium) polyphenols during simulated in vitro gastrointestinal digestion. Food Chem. 2014, 165, 522–531. [Google Scholar] [CrossRef]
- Fang, Z.; Bhandari, B. Encapsulation of polyphenols—A review. Trends Food Sci. Technol. 2010, 21, 510–523. [Google Scholar] [CrossRef]
- López-Fernández, O.; Domínguez, R.; Pateiro, M.; Munekata, P.E.; Rocchetti, G.; Lorenzo, J.M. Determination of polyphenols using liquid chromatography—Tandem mass spectrometry technique (LC–MS/MS): A review. Antioxidants 2020, 9, 479. [Google Scholar] [CrossRef] [PubMed]
- Izzo, L.; Castaldo, L.; Narváez, A.; Graziani, G.; Gaspari, A.; Rodríguez-Carrasco, Y.; Ritieni, A. Analysis of phenolic compounds in commercial cannabis sativa L. inflorescences using UHPLC-Q-Orbitrap HRMS. Molecules 2020, 25, 631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Carrasco, Y.; Castaldo, L.; Gaspari, A.; Graziani, G.; Ritieni, A. Development of an UHPLC-Q-Orbitrap HRMS method for simultaneous determination of mycotoxins and isoflavones in soy-based burgers. LWT Food Sci. Technol. 2019, 99, 34–42. [Google Scholar] [CrossRef]
- El Gharras, H. Polyphenols: Food sources, properties and applications—A review. Int. J. Food Sci. Technol. 2009, 44, 2512–2518. [Google Scholar] [CrossRef]
- Mushtaq, M.; Wani, S. Polyphenols and human health—A review. Int. J. Pharma Bio Sci. 2013, 4, 338–360. [Google Scholar]
- Kumar, K.; Yadav, A.N.; Kumar, V.; Vyas, P.; Dhaliwal, H.S. Food waste: A potential bioresource for extraction of nutraceuticals and bioactive compounds. Bioresour. Bioprocess. 2017, 4, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Makris, D.P.; Şahin, S. Polyphenolic Antioxidants from Agri-Food Waste Biomass; Multidisciplinary Digital Publishing Institute: Basel, Switzerland, 2019. [Google Scholar]
- Parejo, I.; Viladomat, F.; Bastida, J.; Schmeda-Hirschmann, G.; Burillo, J.; Codina, C. Bioguided isolation and identification of the nonvolatile antioxidant compounds from fennel (Foeniculum vulgare Mill.) waste. J. Agric. Food Chem. 2004, 52, 1890–1897. [Google Scholar] [CrossRef] [PubMed]
- Pacifico, S.; Galasso, S.; Piccolella, S.; Kretschmer, N.; Pan, S.-P.; Nocera, P.; Lettieri, A.; Bauer, R.; Monaco, P. Winter wild fennel leaves as a source of anti-inflammatory and antioxidant polyphenols. Arab. J. Chem. 2018, 11, 513–524. [Google Scholar] [CrossRef] [Green Version]
- Scalbert, A.; Andres-Lacueva, C.; Arita, M.; Kroon, P.; Manach, C.; Urpi-Sarda, M.; Wishart, D. Databases on food phytochemicals and their health-promoting effects. J. Agric. Food Chem. 2011, 59, 4331–4348. [Google Scholar] [CrossRef] [PubMed]
- Wojtunik-Kulesza, K.; Oniszczuk, A.; Oniszczuk, T.; Combrzyński, M.; Nowakowska, D.; Matwijczuk, A. Influence of in vitro digestion on composition, bioaccessibility and antioxidant activity of food polyphenols—A non-systematic review. Nutrients 2020, 12, 1401. [Google Scholar] [CrossRef]
- Rocchetti, G.; Giuberti, G.; Lucini, L. Gluten-free cereal-based food products: The potential of metabolomics to investigate changes in phenolics profile and their in vitro bioaccessibility. Curr. Opin. Food Sci. 2018, 22, 1–8. [Google Scholar] [CrossRef]
- Annunziata, G.; Maisto, M.; Schisano, C.; Ciampaglia, R.; Daliu, P.; Narciso, V.; Tenore, G.C.; Novellino, E. Colon bioaccessibility and antioxidant activity of white, green and black tea polyphenols extract after in vitro simulated gastrointestinal digestion. Nutrients 2018, 10, 1711. [Google Scholar] [CrossRef] [Green Version]
- Tenore, G.C.; Campiglia, P.; Giannetti, D.; Novellino, E. Simulated gastrointestinal digestion, intestinal permeation and plasma protein interaction of white, green, and black tea polyphenols. Food Chem. 2015, 169, 320–326. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carriere, F.; Boutrou, R.; Corredig, M.; Dupont, D. A standardised static in vitro digestion method suitable for food—An international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castaldo, L.; Izzo, L.; Narváez, A.; Rodríguez-Carrasco, Y.; Grosso, M.; Ritieni, A. Colon bioaccessibility under in vitro gastrointestinal digestion of different coffee brews chemically profiled through UHPLC-Q-Orbitrap HRMS. Foods 2021, 10, 179. [Google Scholar] [CrossRef] [PubMed]
- Fogliano, V.; Corollaro, M.L.; Vitaglione, P.; Napolitano, A.; Ferracane, R.; Travaglia, F.; Arlorio, M.; Costabile, A.; Klinder, A.; Gibson, G. In vitro bioaccessibility and gut biotransformation of polyphenols present in the water-insoluble cocoa fraction. Mol. Nutr. Food Res. 2011, 55, S44–S55. [Google Scholar] [CrossRef]
- Gonçalves, J.; Ramos, R.; Luís, A.; Rocha, S.; Rosado, T.; Gallardo, E.; Duarte, A.P. Assessment of the bioaccessibility and bioavailability of the phenolic compounds of prunus avium l. by in vitro digestion and cell model. ACS Omega 2019, 4, 7605–7613. [Google Scholar] [CrossRef] [Green Version]
- Marzorati, M.; Possemiers, S.; Verhelst, A.; Cadé, D.; Madit, N.; Van de Wiele, T. A novel hypromellose capsule, with acid resistance properties, permits the targeted delivery of acid-sensitive products to the intestine. LWT Food Sci. Technol. 2015, 60, 544–551. [Google Scholar] [CrossRef]
- Izzo, L.; Rodríguez-Carrasco, Y.; Pacifico, S.; Castaldo, L.; Narváez, A.; Ritieni, A. Colon bioaccessibility under in vitro gastrointestinal digestion of a red cabbage extract chemically profiled through UHPLC-Q-Orbitrap HRMS. Antioxidants 2020, 9, 955. [Google Scholar] [CrossRef]
- Amrani-Allalou, H.; Boulekbache-Makhlouf, L.; Izzo, L.; Arkoub-Djermoune, L.; Freidja, M.L.; Mouhoubi, K.; Madani, K.; Tenore, G.C. Phenolic compounds from an Algerian medicinal plant (Pallenis spinosa): Simulated gastrointestinal digestion, characterization, and biological and enzymatic activities. Food Funct. 2021, 12, 1291–1304. [Google Scholar] [CrossRef]
- Narváez, A.; Rodríguez-Carrasco, Y.; Izzo, L.; Castaldo, L.; Ritieni, A. Target quantification and semi-target screening of undesirable substances in pear juices using ultra-high-performance liquid chromatography-quadrupole orbitrap mass spectrometry. Foods 2020, 9, 841. [Google Scholar] [CrossRef]
- Dini, I.; Graziani, G.; Fedele, F.L.; Sicari, A.; Vinale, F.; Castaldo, L.; Ritieni, A.J. An environmentally friendly practice used in olive cultivation capable of increasing commercial interest in waste products from oil processing. Antioxidants 2020, 9, 466. [Google Scholar] [CrossRef] [PubMed]
- Dini, I.; Graziani, G.; Fedele, F.L.; Sicari, A.; Vinale, F.; Castaldo, L.; Ritieni, A. Effects of Trichoderma biostimulation on the phenolic profile of extra-virgin olive oil and olive oil by-products. Antioxidants 2020, 9, 284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castaldo, L.; Narváez, A.; Izzo, L.; Graziani, G.; Ritieni, A. In Vitro bioaccessibility and antioxidant activity of coffee silverskin polyphenolic extract and characterization of bioactive compounds using UHPLC-Q-Orbitrap HRMS. Molecules 2020, 25, 2132. [Google Scholar] [CrossRef] [PubMed]
- Izzo, L.; Pacifico, S.; Piccolella, S.; Castaldo, L.; Narváez, A.; Grosso, M.; Ritieni, A. Chemical analysis of minor bioactive components and cannabidiolic acid in commercial hemp seed oil. Molecules 2020, 25, 3710. [Google Scholar] [CrossRef] [PubMed]
Compound | RT (min) | Adduct Ion | Chemical Formula | Theoretical Mass (m/z) | Measured Mass (m/z) | Product Ion | Accuracy (Δ ppm) | LOD (mg/kg) | LOQ (mg/kg) |
---|---|---|---|---|---|---|---|---|---|
Protocatechuic acid | 2.31 | [M-H]− | C7H6O4 | 153.01930 | 153.01857 | 109.0284 | −4.77 | 0.013 | 0.039 |
Epigallocatechin | 2.84 | [M-H]− | C15H14O7 | 305.06675 | 305.0665 | 219.06580; 159.10190; 121.02846; 109.02807 | −0.82 | 0.026 | 0.078 |
4-Caffeoylquinic acid | 3.00 | [M-H]− | C16H18O9 | 353.08780 | 353.08798 | 191.05594; 84.98998 | 0.51 | 0.013 | 0.039 |
Epicatechin | 3.17 | [M-H]− | C15H14O7 | 289.07176 | 289.07202 | 221.94647; 203.09201; 161.04478 | 0.90 | 0.013 | 0.039 |
Gallocatechin | 3.19 | [M-H]− | C15H14O8 | 305.06676 | 305.06681 | 219.06254; 159.10185; 109.02836; 121.02847 | 0.16 | 0.013 | 0.039 |
Caffeic acid | 3.23 | [M-H]− | C9H8O4 | 179.03498 | 179.03455 | 134.99960 | −2.40 | 0.013 | 0.039 |
Catechin | 3.34 | [M-H]− | C15H14O6 | 289.07175 | 289.07205 | 247.02241; 205.10712; 151.03923; 125.02335 | 1.04 | 0.026 | 0.078 |
Syringic acid | 3.36 | [M-H]− | C9H10O5 | 197.04555 | 197.04503 | 182.02153; 166.99791 | −2.64 | 0.026 | 0.078 |
p-cumaric acid | 3.46 | [M-H]− | C9H8O3 | 163.04001 | 163.03937 | 119.04917 | −3.92 | 0.013 | 0.039 |
Vitexin | 3.48 | [M-H]− | C21H20O10 | 431.09837 | 431.09711 | 341.10803; 311.05457; 269.13815 | −2.92 | 0.013 | 0.039 |
3,4-Dicaffeoylquinic acid | 3.51 | [M-H]− | C16H18O12 | 515.11950 | 515.11993 | 353.08667; 191.94507 | 0.83 | 0.026 | 0.078 |
Ferulic acid | 3.55 | [M-H]− | C10H10O4 | 193.05063 | 193.05016 | 178.02666; 149.06009; 134.99963 | −2.43 | 0.026 | 0.078 |
Naringin | 3.56 | [M-H]− | C27H32O14 | 579.17193 | 579.17212 | 459.09421; 339.03604; 271.04913 | 0.33 | 0.013 | 0.039 |
Rutin | 3.59 | [M-H]− | C27H30O16 | 609.14611 | 609.14673 | 300.99911; 271.05026; 255.12390 | 1.02 | 0.013 | 0.039 |
Isoquercetin | 3.61 | [M-H]− | C21H20O12 | 463.08820 | 463.08853 | 431.09848; 187.09698; 174.95542 | 0.71 | 0.026 | 0.078 |
Myricitrin | 3.62 | [M-H]− | C21H20O12 | 463.08820 | 463.08701 | 316.02126; 178.97646 | −2.57 | 0.013 | 0.039 |
Diosmin | 3.64 | [M-H]− | C28H31O15 | 607.16684 | 607.16534 | 300.99796; 284.03838 | −2.47 | 0.013 | 0.039 |
Ellagic acid | 3.65 | [M-H]− | C14H6O8 | 300.99899 | 300.99911 | 245.91669; 29.93712; 185.01208; 117.00336 | 0.40 | 0.013 | 0.039 |
Kaempferol 3 glucoside | 3.68 | [M-H]− | C21H20O11 | 447.09195 | 447.09329 | 284.03079; 255.02881; 227.07033 | 3.00 | 0.013 | 0.039 |
Myricetin | 3.73 | [M-H]− | C14H10O8 | 317.03029 | 317.02924 | 178.87917; 151.00217; 137.02290 | −3.31 | 0.013 | 0.039 |
Quercetin | 3.88 | [M-H]− | C15H10O7 | 301.03538 | 301.03508 | 273.04007; 174.95551 | −1.00 | 0.013 | 0.039 |
Naringenin | 3.91 | [M-H]− | C15H12O5 | 271.0612 | 271.0611 | 235.92595; 151.03917 | −0.37 | 0.013 | 0.039 |
Luteolin | 3.98 | [M-H]− | C15H10O6 | 285.04046 | 285.04086 | 174.95486; 89.02095 | 1.40 | 0.026 | 0.078 |
Genistein | 4.05 | [M-H]− | C15H10O5 | 269.04554 | 269.04562 | 241.14435; 213.14908; 151.03935 | 0.30 | 0.013 | 0.039 |
Compounds | Average (mg/g) | SD |
---|---|---|
PHENOLIC ACIDS | ||
Cinnamic acid | ||
Caffeic acid | 0.049 | 0.002 |
4-CQA | 1.949 | 0.142 |
3,4 diCQA | 0.490 | 0.035 |
Ferulic acid | 0.258 | 0.001 |
p-Coumaric acid | <LOQ | |
SUM | 2.745 | 0.067 |
Benzoic Acid | ||
Syringic acid | <LOQ | |
Protocatechuic acid | <LOQ | |
FLAVONOIDS | ||
Flavones | ||
Luteolin | 0.024 | 0.004 |
Vitexin | <LOQ | |
Diosmin | <LOQ | |
Kaempferol 3 glucoside | <LOQ | |
SUM | 0.024 | 0.004 |
Flavanols | ||
Catechin | 0.021 | 0.002 |
Epicatechin | 0.007 | 0.001 |
Epigallocatechin | <LOQ | |
Gallocatechin | <LOQ | |
SUM | 0.028 | 0.002 |
Flavanones | ||
Naringenin | 0.018 | 0.001 |
Naringin | <LOQ | |
SUM | 0.018 | 0.001 |
Flavonols | ||
Quercetin | 0.019 | 0.005 |
Isoquercetin | 0.009 | 0.002 |
Rutin | <LOQ | |
SUM | 0.028 | 0.004 |
Isoflavone | ||
Genistein | <LOQ | |
Myricetin | 0.021 | 0.001 |
Myricitrin | 0.039 | 0.001 |
SUM | 0.060 | 0.002 |
Hydrolyzable tannins | ||
Ellagic acid | 0.101 | 0.003 |
TOTAL POLYPHENOLS | 5.824 | 0.037 |
Samples | TPC mg GAE/g ± SD | |
---|---|---|
Not Digested | 8.22 ± 0.31 | - |
- | NAR | AR |
Digestion Stage | ||
Oral stage | n.d. | n.d. |
Gastric stage | 1.04 ± 0.12 | n.d. |
Duodenal stage | 1.72 ± 0.11 | 1.96 ± 0.05 |
Pronase E | 1.86 ± 0.16 | 3.26 ± 0.27 |
Viscozyme L | 1.64 ± 0.12 | 1.93 ± 0.06 |
Total colonic stage | 3.50 ± 0.14 | 5.19 ± 0.15 |
- | DPPH mmol/kg ± SD | ABTS mmol/kg ± SD | FRAP mmol/kg ± SD | |||
---|---|---|---|---|---|---|
Not Digested | 14.2 ± 0.9 | - | 17.7 ± 1.4 | - | 12.3 ± 1.1 | - |
- | AR | NAR | AR | NAR | AR | NAR |
Digestion stage | ||||||
Oral stage | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Gastric stage | n.d. | 1.36 ± 0.2 | n.d. | 1.7 ± 0.2 | n.d. | 0.7 ± 0.1 |
Duodenal stage | 2.2 ± 0.4 | 1.9 ± 0.4 | 3.6 ± 0.5 | 2.9 ± 0.3 | 1.4 ± 0.2 | 1.1 ± 0.1 |
Pronase E stage | 4.2 ± 0.1 | 2.1 ± 0.2 | 5.4 ± 0.3 | 4.0 ± 0.2 | 4.2 ± 0.4 | 3.2 ± 0.2 |
Viscozyme L stage | 1.8 ± 0.7 | 1.6 ± 0.1 | 3.0 ± 0.4 | 2.5 ± 0.1 | 3.5 ± 0.2 | 2.2 ± 0.1 |
Total colonic stage | 5.0 ± 0.4 | 3.7 ± 0.2 | 8.4 ± 0.4 | 6.5 ± 0.2 | 7.7 ± 0.3 | 5.4 ± 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castaldo, L.; Izzo, L.; De Pascale, S.; Narváez, A.; Rodriguez-Carrasco, Y.; Ritieni, A. Chemical Composition, In Vitro Bioaccessibility and Antioxidant Activity of Polyphenolic Compounds from Nutraceutical Fennel Waste Extract. Molecules 2021, 26, 1968. https://doi.org/10.3390/molecules26071968
Castaldo L, Izzo L, De Pascale S, Narváez A, Rodriguez-Carrasco Y, Ritieni A. Chemical Composition, In Vitro Bioaccessibility and Antioxidant Activity of Polyphenolic Compounds from Nutraceutical Fennel Waste Extract. Molecules. 2021; 26(7):1968. https://doi.org/10.3390/molecules26071968
Chicago/Turabian StyleCastaldo, Luigi, Luana Izzo, Stefania De Pascale, Alfonso Narváez, Yelko Rodriguez-Carrasco, and Alberto Ritieni. 2021. "Chemical Composition, In Vitro Bioaccessibility and Antioxidant Activity of Polyphenolic Compounds from Nutraceutical Fennel Waste Extract" Molecules 26, no. 7: 1968. https://doi.org/10.3390/molecules26071968
APA StyleCastaldo, L., Izzo, L., De Pascale, S., Narváez, A., Rodriguez-Carrasco, Y., & Ritieni, A. (2021). Chemical Composition, In Vitro Bioaccessibility and Antioxidant Activity of Polyphenolic Compounds from Nutraceutical Fennel Waste Extract. Molecules, 26(7), 1968. https://doi.org/10.3390/molecules26071968