Bioactivity-Guided Isolation of Phytochemicals from Vaccinium dunalianum Wight and Their Antioxidant and Enzyme Inhibitory Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Bioguided Isolation and Structural Characterization of Isolated Compounds
2.2. Quantification of the Isolated Compounds in the Extracts and Fractions
2.3. Total Phenolic Contents (TPC) and Total Flavonoid Contents (TFC)
2.4. The α-Glucosidase and Pancreatic Lipase Inhibitory Activities
2.5. Antioxidant Activities
2.6. Multivariate Analysis (PCA)
3. Materials and Methods
3.1. General
3.2. Plant Material
3.3. Extraction and Fractionation
3.4. Bio-Guided Isolation of Active Constituents
3.5. Structural Characterization of Compounds
3.6. Enzyme Inhibitory Activity
3.6.1. The Inhibitory Activity on α-Glucosidase
3.6.2. The Inhibitory Activity on Pancreatic Lipase
3.7. Total Phenolics Content and Total Flavonoid Content
3.7.1. Determination of Total Phenolics Content
3.7.2. Determination of the Total Flavonoid Content
3.8. Antioxidant Activity Assays
3.8.1. DPPH Free-Radical Scavenging Assay
3.8.2. ABTS Radical Scavenging Assay
3.8.3. Ferric Reducing/Antioxidant Power (FRAP) Assay
3.9. Characterization and Quantification of Isolated Compounds in the Extracts and the Fractions
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Sanchez-Marzo, N.; Lozano-Sanchez, J.; Cadiz-Gurrea, M.d.l.L.; Herranz-Lopez, M.; Micol, V.; Segura-Carretero, A. Relationships between chemical structure and antioxidant activity of isolated phytocompounds from Lemon verbena. Antioxidants 2019, 8, 324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, J.; Zhang, M.; Apea-Bah, F.B.; Beta, T. Hydroxycinnamic acid amide (HCAA) derivatives, flavonoid C-glycosides, phenolic acids and antioxidant properties of Foxtail millet. Food Chem. 2019, 295, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Lopez, P.; Lozano-Sanchez, J.; Borras-Linares, I.; Emanuelli, T.; Menendez, J.A.; Segura-Carretero, A. Structure-biological activity relationships of extra-virgin olive oil phenolic compounds: Health properties and bioavailability. Antioxidants 2020, 9, 685. [Google Scholar] [CrossRef] [PubMed]
- Butsat, S.; Siriamornpun, S. Effect of solvent types and extraction times on phenolic and flavonoid contents and antioxidant activity in leaf extracts of Amomum chinense C. Int. Food Res. J. 2016, 23, 180–187. [Google Scholar]
- Jiang, Y.; Fang, Z.; Leonard, W.; Zhang, P. Phenolic compounds in Lycium berry: Composition, health benefits and industrial applications. J. Funct. Food. 2021, 77, 104340. [Google Scholar] [CrossRef]
- Yokozawa, T.; Kim, H.Y.; Cho, E.J.; Choi, J.S.; Chung, H.Y. Antioxidant effects of isorhamnetin 3,7-di-O-β-d-glucopyranoside isolated from mustard leaf (Brassica juncea) in rats with streptozotocin-induced diabetes. J. Agric. Food Chem. 2002, 50, 5490–5495. [Google Scholar] [CrossRef]
- Man Son, S.; Whalin, M.K.; Harrison, D.G.; Taylor, W.R.; Griendling, K.K. Oxidative stress and diabetic vascular complications. Curr. Diabetes Rep. 2004, 4, 247–252. [Google Scholar] [CrossRef]
- Hirsh, A.J.; Yao, S.Y.; Young, J.D.; Cheeseman, C.I. Inhibition of glucose absorption in the rat jejunum: A novel action of alpha-D-glucosidase inhibitors. Gastroenterology 1997, 113, 205–211. [Google Scholar] [CrossRef]
- Yen, F.S.; Wei, J.C.C.; Lin, M.C.; Hsu, C.C.; Hwu, C.M. Long-term outcomes of adding alpha-glucosidase inhibitors in insulin-treated patients with type 2 diabetes. BMC Endocr. Disord. 2021, 21, 25. [Google Scholar] [CrossRef]
- Zeng, M. Yunnan Traditional Chinese Medicine Resource Directory [M]; Science Press: Beijing, China, 1993; p. 388. [Google Scholar]
- Zhao, P.; Tanaka, T.; Hirabayashi, K.; Zhang, Y.J.; Yang, C.R.; Kouno, I. Caffeoyl arbutin and related compounds from the buds of Vaccinium dunalianum. Phytochemistry 2008, 69, 3087–3094. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Tian, L.; Wang, Y.; Zhao, T.; Khan, A.; Wang, Y.; Cao, J.; Cheng, G. Protective effect of Que Zui tea hot-water and aqueous ethanol extract against acetaminophen-induced liver injury in mice via inhibition of oxidative stress, inflammation, and apoptosis. Food Funct. 2021, 12, 2468–2480. [Google Scholar] [CrossRef]
- Luo, X.L.; Li, N.; Xu, M.; Zhu, H.T.; He, P.; Ding, Y.; Zhao, P.; Zhang, Y.J. HPLC simultaneous determination of arbutin, chlorogenic acid and 6’-O-caffeoylarbutin in different parts of Vaccinium dunalianum Wight. Nat. Prod. Res. 2015, 29, 1963–1965. [Google Scholar] [CrossRef]
- Li, N.; Zeng, W.L.; Luo, X.L.; Yang, C.R.; Zhang, Y.J.; Ding, Y.; Zhao, P. A new arbutin derivative from the leaves of Vaccinium dunalianum Wight. Nat. Prod. Res. 2018, 32, 65–70. [Google Scholar] [CrossRef]
- Liu, F.F.; Liu, H.-L.; Cao, J.X. Effect of Vaccinium dunalianum glycoside on platelet aggregation in animals. Adv. Mater. Res. 2013, 1229, 634–638. [Google Scholar] [CrossRef]
- Taruscio, T.G.; Barney, D.L.; Exon, J. Content and profile of flavanoid and phenolic acid compounds in conjunction with the antioxidant capacity for a variety of northwest Vaccinium berries. J. Agric. Food Chem. 2004, 52, 3169–3176. [Google Scholar] [CrossRef]
- Tenuta, M.C.; Malfa, G.A.; Bonesi, M.; Acquaviva, R.; Loizzo, M.R.; Dugay, A.; Bouzidi, C.; Tomasello, B.; Tundis, R.; Deguin, B. LC-ESI-QTOF-MS profiling, protective effects on oxidative damage, and inhibitory activity of enzymes linked to type 2 diabetes and nitric oxide production of Vaccinium corymbosum L. (Ericaceae) extracts. J. Berry Res. 2020, 10, 603–622. [Google Scholar] [CrossRef]
- Wu, B.X.; Zhang, X.; Zhu, G.L.; Yang, X.Q.; Liu, Y.; Zhang, Y.J.; Zhao, P. Phenolic compounds and triterpenes from the roots of Vaccinium dunalianum Wight and their chemotaxonomic significance. Biochem. Syst. Ecol. 2021, 95, 104228. [Google Scholar] [CrossRef]
- Yang, M.; Ma, Y.; Wang, Z.; Khan, A.; Zhou, W.; Zhao, T.; Cao, J.; Cheng, G.; Cai, S. Phenolic constituents, antioxidant and cytoprotective activities of crude extract and fractions from cultivated artichoke inflorescence. Ind. Crops Prod. 2020, 143, 111433. [Google Scholar] [CrossRef]
- Wu, J.; Gong, J.N. Purification of Total Flavonoids from Flos Lonicerae by the Macroporous Resins and Its Inhibitory Activity on α-glucosidase. J. Agric. Sci. Technol. 2019, 21, 89–97. [Google Scholar]
- Peyrat Maillard, M.N.; Cuvelier, M.E.; Berset, C. Antioxidant activity of phenolic compounds in 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH)-induced oxidation: Synergistic and antagonistic effects. J. Am. Oil Chem. Soc. 2003, 80, 1007. [Google Scholar] [CrossRef]
- Eid, H.M.; Thong, F.; Nachar, A.; Haddad, P.S. Caffeic acid methyl and ethyl esters exert potential antidiabetic effects on glucose and lipid metabolism in cultured murine insulin-sensitive cells through mechanisms implicating activation of AMPK. Pharm. Biol. 2017, 55, 2026–2034. [Google Scholar] [CrossRef] [Green Version]
- Shimabukuro, M.; Higa, M.; Yamakawa, K. Miglitol, α-glycosidase inhibitor, reduces visceral fat accumulation and cardiovascular risk factors in subjects with the metabolic syndrome: A randomized comparable study. Int. J. Cardiol. 2013, 167, 2108–2113. [Google Scholar] [CrossRef]
- Su, M.S.; Chien, P.J. Antioxidant activity, anthocyanins, and phenolics of rabbiteye blueberry (Vaccinium ashei) fluid products as affected by fermentation. Food Chem. 2007, 104, 182–187. [Google Scholar] [CrossRef]
- Wojdylo, A.; Oszmianski, J.; Czemerys, R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 2007, 105, 940–949. [Google Scholar] [CrossRef]
- Deetae, P.; Parichanon, P.; Trakunleewatthana, P.; Chanseetis, C.; Lertsiri, S. Antioxidant and anti-glycation properties of Thai herbal teas in comparison with conventional teas. Food Chem. 2012, 133, 953–959. [Google Scholar] [CrossRef]
- Silva, A.M.; Pinto, D.; Fernandes, I.; Goncalves Albuquerque, T.; Costa, H.S.; Freitas, V.; Rodrigues, F.; Oliveira, M.B.P.P. Infusions and decoctions of dehydrated fruits of Actinidia arguta and Actinidia deliciosa: Bioactivity, radical scavenging activity and effects on cells viability. Food Chem. 2019, 289, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Mucaji, P.; Nagy, M.; Sersen, F.; Svajdlenka, E.; Drozd, J.; Stujber, M.; Liptaj, T. Phenolic metabolites from leaves of Karwinskia humboldtiana. Chem. Listy. 2012, 106, 1143–1146. [Google Scholar]
- Mojarrab, M.; Delazar, A.; Moghadam, S.B.; Nazemiyeh, H.; Nahar, L.; Kumarasamy, Y.; Asnaashari, S.; Hadjiakhoondi, A.; Sarker, S.D. Armenin and Isoarmenin—Two Prenylated Coumarins from the Aerial Parts of Artemisia armeniaca. Chem. Biodivers. 2011, 8, 2097–2103. [Google Scholar] [CrossRef] [PubMed]
- Eshwarappa, R.S.B.; Lakshmikantha, R.Y.; Subaramaihha, S.R.; Subbaiah, S.G.P.; Surendranath, A.R.; Dhananjaya, B.L. Antioxidant activity of insect gall extracts of Pistacia integerrima. Acta Sci. Pol. Technol. Aliment. 2015, 14, 367–374. [Google Scholar] [CrossRef] [Green Version]
- Dommisse, R.A.; Van Hoof, L.; Vlietinck, A.J. Structural analysis of phenolic glucosides from Salicaceae by NMR spectroscopy. Phytochemistry 1986, 25, 1201–1204. [Google Scholar] [CrossRef]
- Shimomura, H.; Sashida, Y.; Adachi, T. Phenolic glucosides from Prunus grayana. Phytochemistry 1986, 26, 249–251. [Google Scholar] [CrossRef]
- Lu, Y.; Foo, L.Y. Identification and quantification of major polyphenols in apple pomace. Food Chem. 1997, 59, 187–194. [Google Scholar] [CrossRef]
- Bai, J.P.; Hu, X.L.; Jiang, X.W.; Tian, X.; Zhao, Q.-C. Caffeic acids from roots of Arctium lappa and their neuroprotective activity. Chin. Tradit. Herbal Drugs. 2015, 46, 163–168. [Google Scholar]
- Zhang, W.; Han, W.; Li, Y.; Zhang, S.; Zhao, D. Chemical constituents from Xanthium mongolicum. Chin. J. Chin. Mater. Med. 2009, 34, 1687–1689. [Google Scholar]
- Machida, K.; Nakano, Y.; Kikuchi, M. Phenolic glycosides from Viburnum dilatatum. Phytochemistry 1991, 30, 2013–2014. [Google Scholar] [CrossRef]
- Machida, K.; Kikuchi, M. Studies on the constituents of Viburnum species on phenolic glycosides from the leaves of Viburnum wrightii Miq. Chem. Pharm. Bull. 1993, 41, 248–251. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Gu, D.; Ji, Z.; Fang, C.; Xu, F.; Yang, Y. Comprehensive separation of major compositions from Sophora japonica var. violacea by counter-current chromatography using a liquid-liquid extraction strategy. Ind. Crops Prod. 2018, 124, 363–368. [Google Scholar] [CrossRef]
- Gu, C.; Yang, M.; Zhou, Z.; Khan, A.; Cao, J.; Cheng, G. Purification and characterization of four benzophenone derivatives from Mangifera indica L. leaves and their antioxidant, immunosuppressive and α-glucosidase inhibitory activities. J. Funct. Food. 2019, 52, 709–714. [Google Scholar] [CrossRef]
- Zhang, C.; Ma, Y.; Gao, F.; Zhao, Y.; Cai, S.; Pang, M. The free, esterified, and insoluble-bound phenolic profiles of Rhus chinensis Mill. fruits and their pancreatic lipase inhibitory activities with molecular docking analysis. J. Funct. Food. 2018, 40, 729–735. [Google Scholar] [CrossRef]
- Fan, Z.; Wang, Y.; Yang, M.; Cao, J.; Khan, A.; Cheng, G. UHPLC-ESI-HRMS/MS analysis on phenolic compositions of different E Se tea extracts and their antioxidant and cytoprotective activities. Food Chem. 2020, 318, 126512. [Google Scholar] [CrossRef]
- Cai, S.; Wang, O.; Wu, W.; Zhu, S.; Zhou, F.; Ji, B.; Gao, F.; Zhang, D.; Liu, J.; Cheng, Q. Comparative study of the effects of solid-state fermentation with three filamentous fungi on the total phenolics content (TPC), flavonoids, and antioxidant activities of subfractions from oats (Avena sativa L.). J. Agric. Food Chem. 2012, 60, 507–513. [Google Scholar] [CrossRef]
- Kedare, S.B.; Singh, R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erel, O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 2004, 37, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wang, Y.; He, S.; Khan, A.; Xue, Q.; Cui, Q.; Liu, L.; Liu, Y.; Cheng, G. Targeted isolation of terpenoid indole alkaloids from Melodinus cochinchinensis (Lour.) Merr. using molecular networking and their biological activities. Ind. Crops Prod. 2020, 157, 112922. [Google Scholar] [CrossRef]
Compounds | Retention Time (min) | [M−H]− (m/z) | Error (ppm) | Molecular Formula | MS/MS Fragment Ions |
---|---|---|---|---|---|
1 | 1.49 | 271.0821 | 2.044 | C12H16O7 | 86.0621, 100.0832 |
2 | 3.18 | 341.0877 | 3.024 | C15H18O9 | 135.0421, 161.0263, 179.0374, 221.0415 |
3 | 5.08 | 179.0341 | 1.144 | C9H8O4 | 89.0441, 134.0428, 135.0407 |
4 | 5.65 | 193.0491 | 1.452 | C10H10O4 | 91.0261, 109.0306, 137.0206 |
5 | 6.58 | 433.0847 | 2.868 | C20H18O11 | 300.9901, 257.0263 |
6 | 7.37 | 207.0611 | 1.343 | C11H12O4 | 192.0414, 17.0274, 149.0214 |
7 | 8.43 | 433.1137 | 1.886 | C21H22O10 | 161.0286, 179.0353 |
8 | 10.20 | 417.1224 | 2.712 | C21H22O9 | 145.0352, 163.0403 |
9 | 11.25 | 447.0996 | 2.453 | C21H20O11 | 145.0331, 160.0262, 175.0441, 193.0508 |
10 | 11.69 | 137.0233 | 0.296 | C7H6O3 | 52.0342, 65.0442, 93.0317, 94.0426 |
Compounds | CE | PM | Fr. A | Fr. B | Fr. C | Fr. D | Fr. E |
---|---|---|---|---|---|---|---|
1 | 33,415.57 ± 536.23b | 34,435.62 ± 398.11 b | 48,580.19 ± 336.91 c | 14,333.86 ± 252.76 a | - | - | - |
2 | 324.31 ± 19.66 a | 1576.45 ± 56.39 b | 13,836.34 ± 314.39 d | 9842.77 ± 172.89 c | - | - | - |
3 | 9.21 ± 1.02 a | 90.14 ± 5.84 b | 7609.17 ± 239.03 c | 65,943.33 ± 802.34 d | - | - | - |
4 | 621.85 ± 89.11 a | 3065.83 ± 153.03 b | 3964.94 ± 148.17 c | 37,311.81 ± 302.41 d | - | - | - |
5 | 203.63 ± 12.96 a | 1361.53 ± 63.18 b | 402.12 ± 73.96 b | 36,193.44 ± 428.09 c | - | - | - |
6 | 160.22 ± 9.19 a | 1022.45 ± 43.80 b | 1330.61 ± 44.71 c | 21,689.76 ± 401.55 e | 737.82 ± 38.09d | - | - |
7 | 313,974.28 ± 4479.73 d | 764,476.99 ± 6844.89 e | 65,757.63 ± 512.92 b | 406,201.66 ± 5895.22 c | 983,345.41 ± 8992.17 f | 415,741.09 ± 3988.21 c | 43,426.759 ± 593.76 a |
8 | 20,732.55 ± 419.74 a | 62,537.46 ± 848.04 b | - | - | - | 298,710.50 ± 3023.29 c | - |
9 | 1012.62 ± 59.87 a | 1876.33 ± 166.09 c | - | - | - | 17,644.37 ± 227.61 d | 1669.69 ± 55.69 b |
10 | 6959.61 ± 237.93 a | 78,904.11 ± 1037.96 c | - | - | - | 64,451.18 ± 556.14 d | 20427.45 ± 559.21b |
Sample | Amount 1 | TPC 2 | TFC 3 | Enzyme Inhibition IC50 (µg/mL) | Antioxidant Activity | |||
---|---|---|---|---|---|---|---|---|
ɑ-glucosidase | Pancreatic Lipase | DPPH 4 | FRAP 5 | ABTS 6 | ||||
CE | 186.75 | 12.22 ± 0.25 c | 5.14 ± 0.32 c | 198.56 ± 9.34 i | 214.32 ± 17.53 d | 0.26 ± 0.01 b | 0.71 ± 0.04 c | 8.25 ± 0.12 f |
PM | 132.75 | 36.16 ± 0.19 e | 14.39 ± 0.19 f | 109.75 ± 1.34 h | 165.43 ± 10.35 c | 0.40 ± 0.02 e | 0.91 ± 0.04 g | 12.87 ± 0.13 h |
Fr. A | 17.5 | 10.15 ± 0.22 b | 4.12 ± 0.2 b | 202.36 ± 4.02 i | 235.21 ± 5.86 e | 0.32 ± 0.02 c | 0.37 ± 0.01 a | 5.52 ± 0.25 d |
Fr. B | 14.0 | 30.93 ± 0.23 d | 9.42 ± 0.19 d | 95.21 ± 2.21 g | 142.53 ± 11.45 bc | 0.48 ± 0.03 ef | 0.87 ± 0.02 f | 14.42 ± 0.41 i |
Fr. C | 16.25 | 36.11 ± 0.12 e | 5.64 ± 0.29 e | 101.76 ± 6.61 g,h | 155.52 ± 11.86 c | 0.42 ± 0.02 e | 0.69 ± 0.01 c | 11.45 ± 0.33 g |
Fr. D | 6.0 | 56.15 ± 0.39 f | 20.31 ± 0.18 g | 74.55 ± 3.85 f | 128.76 ± 13.85 b | 0.62 ± 0.01 g | 1.58 ± 0.02 h | 19.25 ± 0.23 k |
Fr. E | 25.25 | 8.46 ± 0.24 a | 5.74 ±0.04 a | 303.03 ± 7.27 j | 589.65 ± 10.98 j | 0.12 ± 0.01 a | 0.36 ± 0.01 a | 1.32 ± 0.14 a |
1 | - | - | 61.36 ± 1.85 e | 352.31 ± 18.92 i | 0.45 ± 0.02 e | 0.76 ± 0.01 d | 8.38 ± 3.74 efg | |
2 | - | - | 42.43 ± 2.87 b | 103.86 ± 3.01 a | 1.05 ± 0.11 h | 0.84 ± 0.01 e,f | 15.93 ± 1.65 ij | |
3 | - | - | 70.68 ± 0.73 f | 235.22 ± 14.04 e | 0.39 ± 0.05 de | 0.85 ± 0.01 ef | 3.86 ± 0.48 b | |
4 | - | - | 49.61 ± 2.20 c | 267.34 ± 23.65 f | 0.37 ± 0.01d | 0.82 ± 0.01 e | 3.10 ± 1.07 b | |
5 | - | - | 55.25 ± 1.36 d | 329.56 ± 4.56 h | 0.81 ± 0.17 h | - | - | |
6 | - | - | 53.31 ± 1.15 d | 257.55 ± 15.27 ef | 0.42 ± 0.03 e | 0.76 ± 0.01 d | 4.16 ± 0.25 b | |
7 | - | - | 38.38 ± 1.84 a | 97.56 ± 7.53 a | 1.21 ± 0.43 c | 0.87 ± 0.01 f | 16.96 ± 0.95 j | |
8 | - | - | 50.27 ± 2.43 c | 310.02 ± 12.82 g | 0.41 ± 0.06 e | 0.49 ± 0.01 b | 4.71 ± 0.23 c | |
9 | - | - | 50.41 ± 1.01 c | 348.65 ± 18.95 i | 0.35 ± 0.01 cd | - | 6.38 ± 0.34 e | |
10 | - | - | 63.34 ± 2.30 e | 306.21 ± 21.26 g | 1.12 ± 0.23 h | 0.87 ± 0.01 f | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, T.; Sun, M.; Kong, L.; Xue, Q.; Wang, Y.; Wang, Y.; Khan, A.; Cao, J.; Cheng, G. Bioactivity-Guided Isolation of Phytochemicals from Vaccinium dunalianum Wight and Their Antioxidant and Enzyme Inhibitory Activities. Molecules 2021, 26, 2075. https://doi.org/10.3390/molecules26072075
Zhao T, Sun M, Kong L, Xue Q, Wang Y, Wang Y, Khan A, Cao J, Cheng G. Bioactivity-Guided Isolation of Phytochemicals from Vaccinium dunalianum Wight and Their Antioxidant and Enzyme Inhibitory Activities. Molecules. 2021; 26(7):2075. https://doi.org/10.3390/molecules26072075
Chicago/Turabian StyleZhao, Tianrui, Mengxue Sun, Lingpeng Kong, Qingwang Xue, Yudan Wang, Yifen Wang, Afsar Khan, Jianxin Cao, and Guiguang Cheng. 2021. "Bioactivity-Guided Isolation of Phytochemicals from Vaccinium dunalianum Wight and Their Antioxidant and Enzyme Inhibitory Activities" Molecules 26, no. 7: 2075. https://doi.org/10.3390/molecules26072075