Essential Oils of New Lippia alba Genotypes Analyzed by Flow-Modulated Comprehensive Two-Dimensional Gas Chromatography (GC×GC) and Chemometric Analysis
Abstract
:1. Introduction
2. Results and Discussion
Extraction Yield and Chemical Composition of the Essential Oils
3. Materials and Methods
3.1. Plant Material Collection
3.2. Essential Oils Extraction
3.3. Essential Oil Chemical Characterization
3.4. Statistical Analyses
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Do Nascimento Soares, C.H.; de Mello Campos, I.; dos Santos Amorim, G.T.; do Carmo, M.G.F.; de Almeida Chaves, D.S.; de Souza, M.A.A. Selection of genotypes (citral chemotype) of Lippia alba (Mill.) N. E. Brown regarding seasonal stability of the essential oils chemical profile. Ind. Crops Prod. 2019, 139, 111497. [Google Scholar] [CrossRef]
- Rufino, E.R.; Siqueira, W.J.; Marques, M.O.M.; Colombo, C.A.; Azevedo Filho, J.A.; Martins, A.L.M. Selection of new clones of linalool chemotype from genetic recombination in Lippia alba. Bragantia 2012, 71, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Vale, T.G.; Matos, F.J.A.; De Lima, T.C.M.; Viana, G.S.B. Behavioral effects of essential oils from Lippia alba (Mill.) N.E. Brown chemotypes. J. Ethnopharmacol. 1999, 67, 127–133. [Google Scholar] [CrossRef]
- Herbia Cosmético Orgânico Lippia alba, Verbena Brasileira. Available online: http://herbia.com.br/produtos/lippia-alba/ (accessed on 15 January 2021).
- Yamamoto, P.Y.; Colombo, C.A.; Azevedo Filho, J.A.; Lourenção, A.L.; Marques, M.O.M.; Morais, G.D.D.S.; Chiorato, A.F.; Martins, A.L.M.; Siqueira, W.J. Performance of ginger grass (Lippia alba) for traits related to the production of essential oil. Sci. Agric. 2008, 65, 481–489. [Google Scholar] [CrossRef] [Green Version]
- Montanari, R.M.; Barbosa, L.C.A.; Demuner, A.J.; Silva, C.J.; Carvalho, L.S.; Andrade, N.J. Chemical composition and antibacterial activity of essential oils from Verbenaceae species: Alternative sources of (E)-Caryophyllene and Germacrene D. Quim. Nova 2011, 34, 1550–1555. [Google Scholar] [CrossRef] [Green Version]
- Rukhsar, A.D.; Mushtaq, A.; Sanjay, K.; Monica, R. Agriculture germplasm resources: A tool of conserving diversity. Sci. Res. Essays 2015, 10, 326–338. [Google Scholar] [CrossRef] [Green Version]
- Machado, L.C.; Oliveira, V.C.; Paraventi, M.D.; Cardoso, R.N.R.; Martins, D.S.; Ambrósio, C.E. Maintenance of Brazilian Biodiversity by germplasm bank. Pesqui. Vet. Bras. 2016, 36, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Nass, L.L.; Sigrist, M.S.; Ribeiro, C.S.d.C.; Reifschneider, F.J.B. Genetic resources: The basis for sustainable and competitive plant breeding. Crop Breed. Appl. Biotechnol. 2012, 12, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Datta, A. Genetic engineering for improving quality and productivity of crops. Agric. Food Secur. 2013, 2, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Ming, L.C.; Erhlet, P.; Siqueira, W.J.; Marques, M.O.M. Produtos Naturais Bioativos, Chapter 2: Botânica, Fitoquímica, Cultivo e Melhoramento Genético de Lippia alba (Mill.) N.E.Br. (Verbenaceae); Cultura Acadêmica: São Paulo, Brazil, 2016; pp. 35–101. ISBN 978-85-7983-791-3. [Google Scholar]
- Schocken, N.R.L. Obtenção de quimiotipos híbridos de Lippia alba (Mill.) N. E. Brown. In Master Diss. (Master Trop. Subtrop. Agric. Conc. Area Plant Breeding); Agron. Inst. Campinas: Campinas, Brazil, 2007. [Google Scholar]
- Ortega-Cuadros, M.; de Guevara, E.E.A.; Castillo, A.D.M.; Castañeda, C.G.; Amarís, G.C.; Tofiño-Rivera, A.P. Essential oils biological activity of the shrub Lippia alba (Verbenaceae). Rev. Biol. Trop. 2020, 68, 344–359. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, D.; Paz, D.; Davies, P.; Vila, R.; Caigueral, S.; Dellacassa, E. Composition of a new essential oil type of Lippia alba (Mill.) N.E. Brown from Uruguay. Flavour Fragr. J. 2001, 16, 356–359. [Google Scholar] [CrossRef]
- Welke, J.E.; Zini, C.A. Comprehensive two-dimensional gas chromatography for analysis of volatile compounds in foods and beverages. J. Braz. Chem. Soc. 2011, 22, 609–622. [Google Scholar] [CrossRef]
- Baschieri, A.; Ajvazi, M.D.; Tonfack, J.L.F.; Valgimigli, L.; Amorati, R. Explaining the antioxidant activity of some common non-phenolic components of essential oils. Food Chem. 2017, 232, 656–663. [Google Scholar] [CrossRef] [PubMed]
- Facanali, R.; Marques, M.O.M.; Hantao, L.W. Metabolic profiling of Varronia curassavica Jacq. Terpenoids by flow modulated two-dimensional gas chromatography coupled to mass spectrometry. Separations 2020, 7, 18. [Google Scholar] [CrossRef] [Green Version]
- Paiva, A.C.; Oliveira, D.S.; Hantao, L.W. A bottom-up approach for data mining in bioaromatization of beers using flow-modulated comprehensive two-dimensional gas chromatography/mass spectrometry. Separations 2019, 6, 46. [Google Scholar] [CrossRef] [Green Version]
- Paiva, A.C.; Hantao, L.W. Exploring a public database to evaluate consumer preference and aroma profile of lager beers by comprehensive two-dimensional gas chromatography and partial least squares regression discriminant analysis. J. Chromatogr. A 2020, 1630, 461529. [Google Scholar] [CrossRef]
- Hantao, L.W.; Aleme, H.G.; Passador, M.M.; Furtado, E.L.; de Ribeiro, F.A.L.; Poppi, R.J.; Augusto, F. Determination of disease biomarkers in Eucalyptus by comprehensive two-dimensional gas chromatography and multivariate data analysis. J. Chromatogr. A 2013, 1279, 86–91. [Google Scholar] [CrossRef]
- Hantao, L.W.; Toledo, B.R.; De Lima Ribeiro, F.A.; Pizetta, M.; Pierozzi, C.G.; Furtado, E.L.; Augusto, F. Comprehensive two-dimensional gas chromatography combined to multivariate data analysis for detection of disease-resistant clones of Eucalyptus. Talanta 2013, 116, 1079–1084. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Li, J.; Yang, X.; Wang, H.; He, J.; Liu, E.; Gao, X.; Chang, Y.X. A Metabolomics Coupled With Chemometrics Strategy to Filter Combinatorial Discriminatory Quality Markers of Crude and Salt-Fired Eucommiae Cortex. Front. Pharmacol. 2020, 11, 1–16. [Google Scholar] [CrossRef]
- Boccard, J.; Rudaz, S. Analysis of Metabolomics Data—A Chemometrics Perspective, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2020; ISBN 9780124095472. [Google Scholar] [CrossRef]
- Lim Ah Tock, M.J.; Kamatou, G.P.P.; Combrinck, S.; Sandasi, M.; Viljoen, A.M. A chemometric assessment of essential oil variation of three Salvia species indigenous to South Africa. Phytochemistry 2020, 172, 112249. [Google Scholar] [CrossRef]
- Allenspach, M.; Valder, C.; Flamm, D.; Grisoni, F.; Steuer, C. Verification of chromatographic profile of primary essential oil of Pinus sylvestris L. Combined with chemometric analysis. Molecules 2020, 25, 2973. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy, 4th ed.; Allured Publ. Corp: Carol Stream, IL, USA, 2017; ISBN 9781932633214. [Google Scholar]
- Van den Dool, H.; Kratz, P.D. A generalization of the retention index system including liner temperature programmed gas-liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–467. [Google Scholar] [CrossRef]
- Blank, A.F.; Camêlo, L.C.A.; Arrigoni-Blank, M.F.; Pinheiro, J.B.; Andrade, T.M.; Niculau, E.S.; Alves, P.B. Chemical diversity in Lippia alba (Mill.) N. E. Brown Germplasm. Sci. World J. 2015, 2015, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Silva, A.C.C.; Barbosa, F.G.; Mafezoli, J.; Oliveira, M.C.F.; Oliveira, T.F. HS-SPME as an efficient tool for discriminating chemotypes of Lippia alba (Mill.) N. E. Brown. Quim. Nov. 2017, 40, 42–46. [Google Scholar] [CrossRef]
- Hennebelle, T.; Sahpaz, S.; Dermont, C.; Joseph, H.; Bailleul, F. The essential oil of Lippia alba: Analysis of samples from french overseas departments and review of preview works. Chem. Biodivers. 2006, 3, 1116–1125. [Google Scholar] [CrossRef] [PubMed]
- Ricciardi, G.; Ciccio, J.F.; Ocampo, R.; Lorenzo, D.; Ricciardi, A.; Bandoni, A.; Dellacassa, E. Chemical Variability of Essential Oils of Lippia alba (Miller) N. E. Brown growing in Costa Rica and Argentina. Nat. Prod. Commun. 2009, 4, 853–858. [Google Scholar] [CrossRef] [Green Version]
- Dos Marques, C.T.S.; Gama, E.V.S.; da Silva, F.; Teles, S.; Caiafa, A.N.; Lucchese, A.M. Improvement of biomass and essential oil production of Lippia alba (Mill) N.E. Brown with green manures in succession. Ind. Crops Prod. 2018, 112, 113–118. [Google Scholar] [CrossRef]
- Oliveira, D.R.; Leitão, G.G.; Santos, S.S.; Bizzo, H.R.; Lopes, D.; Alviano, C.S.; Alviano, D.S.; Leitão, S.G. Ethnopharmacological study of two Lippia species from Oriximiná, Brazil. J. Ethnopharmacol. 2006, 108, 103–108. [Google Scholar] [CrossRef]
- Jannuzzi, H.; Mattos, J.K.A.; Vieira, R.F.; Silva, D.B.; Bizzo, H.R.; Gracindo, L.A.M. Avaliação agronômica e identificação de quimiotipos de erva cidreira no Distrito Federal. Hortic. Bras. 2010, 28, 412–417. [Google Scholar] [CrossRef] [Green Version]
- Pistelli, L.; Ferri, B.; Cioni, P.L.; Koziara, M.; Agacka, M.; Skomra, U. Aroma profile and bitter acid characterization of hop cones (Humulus lupulus L.) of five healthy and infected Polish cultivars. Ind. Crops Prod. 2018, 124, 653–662. [Google Scholar] [CrossRef]
- Behr, A.; Johnen, L. Myrcene as a natural base chemical in sustainable chemistry: A critical review. ChemSusChem 2009, 2, 1072–1095. [Google Scholar] [CrossRef]
- Evergetis, E.; Koulocheri, S.D.; Haroutounian, S.A. Exploitation of Apiaceae Family plants as valuable renewable source of essential oils containing crops for the production of fine chemicals: Part II. Ind. Crops Prod. 2015, 64, 59–67. [Google Scholar] [CrossRef]
- Salanţă, L.; Tofană, M.; Socaci, S.; Mudura, E.; Pop, C.; Pop, A.; Fărcaş, A. Evaluation and comparison of aroma volatile compounds in hop varieties grown in Romania. Rom. Biotechnol. Lett. 2015, 20, 11049–11056. [Google Scholar]
- Yang, X.; Li, S.; Xia, J.; Song, J.; Huang, K.; Li, M. Novel renewable resource-based UV-curable copolymers derived from myrcene and tung oil: Preparation, characterization and properties. Ind. Crops Prod. 2015, 63, 17–25. [Google Scholar] [CrossRef]
- Rufino, A.T.; Ribeiro, M.; Sousa, C.; Judas, F.; Salgueiro, L.; Cavaleiro, C.; Mendes, A.F. Evaluation of the anti-inflammatory, anti-catabolic and pro-anabolic effects of E-caryophyllene, myrcene and limonene in a cell model of osteoarthritis. Eur. J. Pharmacol. 2015, 750, 141–150. [Google Scholar] [CrossRef]
- Jansen, C.; Shimoda, L.M.N.; Kawakami, J.K.; Ang, L.; Bacani, A.J.; Baker, J.D.; Badowski, C.; Speck, M.; Stokes, A.J.; Small-Howard, A.L.; et al. Myrcene and terpene regulation of TRPV1. Channels 2019, 13, 344–366. [Google Scholar] [CrossRef] [Green Version]
- Tavares, E.S.; Julião, L.S.; Lopes, D.; Bizzo, H.R.; Lage, C.L.S.; Leitão, S.G. Análise do óleo essencial de folhas de três quimiotipos de Lippia alba (Mill.) N. E. Br. (Verbenaceae) cultivados em condições semelhantes. Braz. J. Pharmacogn. 2005, 15, 1–5. [Google Scholar] [CrossRef]
- Salehi, B.; Upadhyay, S.; Orhan, I.E.; Jugran, A.K.; Jayaweera, S.L.D.; Dias, D.A.; Sharopov, F.; Taheri, Y.; Martins, N.; Baghalpour, N.; et al. Therapeutic potential of α-and β-pinene: A miracle gift of nature. Biomolecules 2019, 9, 738. [Google Scholar] [CrossRef] [Green Version]
- Ueno, H.; Shimada, A.; Suemitsu, S.; Murakami, S.; Kitamura, N.; Wani, K.; Matsumoto, Y.; Okamoto, M.; Ishihara, T. Attenuation Effects of Alpha-Pinene Inhalation on Mice with Dizocilpine-Induced Psychiatric-Like Behaviour. Evid. Based Complement. Altern. Med. 2019, 2019, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, A.C.R.; Lopes, P.M.; de Azevedo, M.M.B.; Costa, D.C.M.; Alviano, C.S.; Alviano, D.S. Biological Activities of α-Pinene and β-Pinene Enantiomers. Molecules 2012, 17, 6290–6304. [Google Scholar] [CrossRef] [Green Version]
- Matsuo, A.L.; Figueiredo, C.R.; Arruda, D.C.; Pereira, F.V.; Scutti, J.A.B.; Massaoka, M.H.; Travassos, L.R.; Sartorelli, P.; Lago, J.H.G. α-pinene isolated from Schinus terebinthifolius Raddi (Anacardiaceae) induces apoptosis and confers antimestastatic protection in a melanoma model. Biochem. Biophys. Res. Commun. 2011, 411, 449–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rufino, A.T.; Ribeiro, M.; Judas, F.; Salgueiro, L.; Lopes, M.C.; Cavaleiro, C.; Mendes, A.F. Anti-inflammatory and chondroprotective activity of (+)-α-pinene: Structural and enantiomeric selectivity. J. Nat. Prod. 2014, 77, 264–269. [Google Scholar] [CrossRef]
- Pinheiro, M.D.A.; Magalhães, R.M.; Torres, D.M.; Cavalcante, R.C.; Mota, F.S.X.; Coelho, E.M.A.O.; Moreira, H.P.; Lima, G.C.; Araújo, P.C.D.C.; Cardoso, J.H.L.; et al. Gastroprotective effect of alpha-pinene and its correlation with antiulcerogenic activity of essential oils obtained from Hyptis species. Pharmacogn. Mag. 2015, 11, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Peixoto, M.G.; Bacci, L.; Fitzgerald Blank, A.; Araújo, A.P.A.; Alves, P.B.; Silva, J.H.S.; Santos, A.A.; Oliveira, A.P.; da Costa, A.S.; Arrigoni-Blank, M.d.F. Toxicity and repellency of essential oils of Lippia alba chemotypes and their major monoterpenes against stored grain insects. Ind. Crops Prod. 2015, 71, 31–36. [Google Scholar] [CrossRef]
- Bouzenna, H.; Hfaiedh, N.; Giroux-Metges, M.A.; Elfeki, A.; Talarmin, H. Biological properties of citral and its potential protective effects against cytotoxicity caused by aspirin in the IEC-6 cells. Biomed. Pharmacother. 2017, 87, 653–660. [Google Scholar] [CrossRef]
- Shi, C.; Song, K.; Zhang, X.; Sun, Y.; Sui, Y.; Chen, Y.; Jia, Z.; Sun, H.; Sun, Z.; Xia, X.X. Antimicrobial activity and possible mechanism of action of citral against Cronobacter sakazakii. PLoS ONE 2016, 11, e0159006. [Google Scholar] [CrossRef] [Green Version]
- Cai, R.; Hu, M.; Zhang, Y.; Niu, C.; Yue, T.; Yuan, Y.; Wang, Z. Antifungal activity and mechanism of citral, limonene and eugenol against Zygosaccharomyces rouxii. LWT 2019, 106, 50–56. [Google Scholar] [CrossRef]
- De Oliveira, E.R.; Alves, D.S.; Carvalho, G.A.; de Oliveira, B.M.R.G.; Aazza, S.; Bertolucci, S.K.V. Toxicity of Cymbopogon flexuosus essential oil and citral for Spodoptera frugiperda. Cienc. Agrotecnol. 2018, 42, 408–419. [Google Scholar] [CrossRef]
- Chaouki, W.; Leger, D.Y.; Liagre, B.; Beneytout, J.L.; Hmamouchi, M. Citral inhibits cell proliferation and induces apoptosis and cell cycle arrest in MCF-7 cells. Fundam. Clin. Pharmacol. 2009, 23, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Sun, Z.; Guo, X. Citral inhibits lipopolysaccharide-induced acute lung injury by activating PPAR-γ. Eur. J. Pharmacol. 2015, 747, 45–51. [Google Scholar] [CrossRef]
- Nishijima, C.M.; Ganev, E.G.; Mazzardo-Martins, L.; Martins, D.F.; Rocha, L.R.M.; Santos, A.R.S.; Hiruma-Lima, C.A. Citral: A monoterpene with prophylactic and therapeutic anti-nociceptive effects in experimental models of acute and chronic pain. Eur. J. Pharmacol. 2014, 736, 16–25. [Google Scholar] [CrossRef]
- De Barros, F.M.C.; De Zambarda, E.O.; Heinzmann, B.M.; Mailmann, C.A. Seasonal variability and terpenoid biosynthesis of the essential oil of Lippia alba (Mill.) N. E. Brown (Verbenaceae). Quim. Nova 2009, 32, 861–867. [Google Scholar] [CrossRef]
- Batista, P.A.; De Paula Werner, M.F.; Oliveira, E.C.; Burgos, L.; Pereira, P.; Da Silva Brum, L.F.; Story, G.M.; Santos, A.R.S. The antinociceptive effect of (-)-linalool in models of chronic inflammatory and neuropathic hypersensitivity in mice. J. Pain 2010, 11, 1222–1229. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Liu, S.; Deng, W. Dual responsive linalool capsules with high loading ratio for excellent antioxidant and antibacterial efficiency. Colloids Surfaces B Biointerfaces 2020, 190, 110978. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Xu, H.; Wu, J.; Qu, C.; Sun, F.; Xu, S. Linalool inhibits cigarette smoke-induced lung inflammation by inhibiting NF-κB activation. Int. Immunopharmacol. 2015, 29, 708–713. [Google Scholar] [CrossRef]
- Peana, A.T.; D’Aquila, P.S.; Panin, F.; Serra, G.; Pippia, P.; Moretti, M.D.L. Anti-inflammatory activity of linalool and linalyl acetate constituents of essential oils. Phytomedicine 2002, 9, 721–726. [Google Scholar] [CrossRef]
- Rodenak-Kladniew, B.; Castro, A.; Stärkel, P.; De Saeger, C.; García de Bravo, M.; Crespo, R. Linalool induces cell cycle arrest and apoptosis in HepG2 cells through oxidative stress generation and modulation of Ras/MAPK and Akt/mTOR pathways. Life Sci. 2018, 199, 48–59. [Google Scholar] [CrossRef] [Green Version]
- Pereira, I.; Severino, P.; Santos, A.C.; Silva, A.M.; Souto, E.B. Linalool bioactive properties and potential applicability in drug delivery systems. Colloids Surfaces B Biointerfaces 2018, 171, 566–578. [Google Scholar] [CrossRef]
- Juergens, U.R. Anti-inflammatory Properties of the Monoterpene 1.8-cineole: Current Evidence for Co-medication in Inflammatory Airway Diseases. Drug Res. 2014, 64, 638–646. [Google Scholar] [CrossRef]
- Amorati, R.; Foti, M.C.; Valgimigli, L. Antioxidant activity of essential oils. J. Agric. Food Chem. 2013, 61, 10835–10847. [Google Scholar] [CrossRef]
X(2) | X2M1 | X6M6 | X6MIA | X6M9 | X6M13 | X6M15 | X10M37 | |
---|---|---|---|---|---|---|---|---|
Extraction Yield (%) | 0.42 | 0.38 | 0.29 | 1.03 | 0.30 | 0.54 | 0.47 | 0.57 |
Compound a | LTPRI b | Relative Content (%) f | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lit.c | Exp.d | Similarity (%) e | X(2) | X2M1 | X6M6 | X6MIA | X6M9 | X6M13 | X6M15 | X10M37 | ||
1 | α-thujene | 924 | 920 | 92 | - | - | - | - | - | - | - | 0.24 |
2 | α-pinene | 932 | 926 | 97 | 6.91 | 0.27 | - | 0.16 | 4.32 | 19.69 | 4.36 | 1.02 |
3 | camphene | 946 | 941 | 90 | 0.16 | - | - | - | - | 0.24 | - | - |
4 | thuja-2,4(10)-diene | 953 | 947 | 87 | - | - | - | - | - | 0.12 | - | - |
5 | sabinene | 969 | 965 | 94 | 1.35 | 1.17 | 0.11 | 1.37 | 0.33 | 2.62 | 3.43 | 7.10 |
6 | β-pinene | 974 | 968 | 94 | 0.60 | - | - | - | 0.24 | 0.75 | - | - |
7 | myrcene | 988 | 981 | 95 | 19.17 | 51.11 | 34.5 | - | 19.79 | 31.59 | 14.87 | 6.57 |
8 | p-cymene | 1020 | 1015 | 92 | - | - | 0.05 | - | - | 0.27 | - | 0.21 |
9 | limonene | 1024 | 1018 | 95 | 1.79 | 0.31 | - | - | 0.71 | 3.55 | 1.71 | 1.07 |
10 | 1,8-cineole | 1026 | 1021 | 95 | 3.60 | 2.15 | - | 15.05 | - | 5.95 | 29.36 | 3.58 |
11 | (E)-β-ocimene | 1044 | 1040 | 92 | - | - | 0.10 | - | - | 0.11 | - | - |
12 | (Z)-sabinene hydrate | 1065 | 1055 | 86 | 0.87 | 0.57 | - | 0.17 | 0.12 | 0.81 | 0.53 | 0.10 |
13 | (Z)-linalool oxide (furanoid) | 1067 | 1061 | 92 | 0.15 | - | - | 1.13 | - | - | - | - |
14 | (E)-linalool oxide (furanoid) | 1084 | 1077 | 87 | 0.10 | - | - | 0.79 | - | - | - | - |
15 | 6,7-epoxymyrcene | 1090 | 1080 | 84 | - | 0.10 | 0.21 | 0.42 | 0.14 | - | - | |
16 | linalool | 1095 | 1086 | 93 | 19.83 | 5.59 | 0.28 | 68.15 | 3.39 | 2.83 | 2.02 | 4.28 |
17 | (E)-sabinene hydrate | 1098 | 1092 | 80 | - | - | - | - | - | - | - | 0.37 |
18 | perillene | 1102 | 1095 | * | - | - | 0.06 | - | - | 0.40 | - | - |
19 | 1,3,8-p-menthatriene | 1108 | 1100 | 80 | - | - | - | - | - | 0.85 | - | - |
20 | α-campholenal | 1122 | 1114 | 88 | 0.50 | 0.11 | - | - | 0.30 | 0.50 | - | - |
21 | trans-pinocarveol | 1135 | 1129 | 89 | 0.77 | 0.09 | - | - | 0.18 | 0.83 | - | - |
22 | exo-isocitral | 1140 | 1132 | 80 | - | - | 0.11 | - | - | - | - | - |
23 | trans-verbenol | 1140 | 1134 | 93 | 10.71 | 0.42 | - | 0.20 | 0.68 | 9.55 | 2.88 | 0.17 |
24 | (Z)-isocitral | 1160 | 1150 | 83 | - | - | - | - | 0.13 | - | - | - |
25 | pinocarvone | 1160 | 1152 | 87 | 0.40 | 0.48 | - | - | 0.27 | 0.48 | - | |
26 | δ-terpineol | 1162 | 1155 | 81 | - | - | - | 0.18 | - | - | - | - |
27 | rosefuran epoxide | 1173 | 1161 | 80 | - | - | - | - | 0.10 | - | - | 0.14 |
28 | terpinen-4-ol | 1174 | 1166 | 85 | 0.20 | - | - | 0.17 | 0.09 | 0.12 | 0.11 | |
29 | (E)-isocitral | 1177 | 1168 | 85 | - | - | 0.08 | - | 0.25 | - | - | - |
30 | α-terpineol | 1188 | 1179 | 91 | - | - | - | 0.44 | 0.13 | - | 1.20 | 1.06 |
31 | myrtenal | 1194 | 1184 | 94 | 1.84 | 0.28 | - | - | 0.46 | 1.47 | 1.91 | 0.10 |
32 | myrtenol | 1195 | 1184 | 94 | 4.23 | 0.20 | - | 0.16 | - | 1.15 | 1.52 | - |
33 | verbenone | 1204 | 1197 | 89 | 0.64 | - | - | - | - | 0.44 | - | - |
34 | trans-carveol | 1215 | 1205 | 82 | 0.32 | - | - | - | - | 0.20 | - | - |
35 | (Z)-p-mentha-1(7),8-dien-2-ol | 1227 | 1220 | 80 | - | - | - | - | - | 0.10 | - | - |
36 | 2,3-epoxy-geranial | 1234 | 1224 | 80 | - | - | 0.06 | - | - | - | - | - |
37 | neral | 1235 | 1225 | 93 | - | - | 21.04 | - | 17.53 | - | - | 13.34 |
38 | carvone | 1239 | 1232 | 80 | - | - | - | - | - | 0.10 | - | - |
39 | geranial | 1264 | 1254 | 93 | - | - | 27.89 | - | 22.24 | - | - | 10.81 |
40 | isobornyl acetate | 1283 | 1271 | 80 | 0.13 | - | - | - | - | 0.15 | - | - |
41 | myrtenyl acetate | 1324 | 1309 | 86 | 0.34 | - | - | - | - | 0.10 | - | - |
42 | α-copaene | 1374 | 1367 | 91 | 0.08 | 0.05 | - | 0.28 | 0.46 | 0.04 | 0.05 | 0.61 |
43 | geranyl acetate | 1379 | 1370 | 80 | - | - | 0.21 | - | - | - | - | 0.18 |
44 | β-bourbonene | 1387 | 1376 | 87 | 0.13 | 0.09 | 0.05 | 0.04 | 0.05 | 0.14 | 0.32 | 0.56 |
45 | β-elemene | 1389 | 1380 | 92 | 0.59 | 1.28 | 0.39 | 0.38 | 0.56 | 0.28 | 0.33 | 1.99 |
46 | (E)-caryophyllene | 1417 | 1411 | 94 | 3.20 | 5.12 | 1.67 | 1.22 | 1.03 | 1.29 | 10.8 | 5.11 |
47 | β-copaene | 1430 | 1421 | 83 | - | 0.08 | - | 0.09 | 0.19 | - | - | - |
48 | α-guaiene | 1437 | 1429 | 93 | 0.14 | 5.42 | 4.22 | - | - | - | 8.26 | 0.80 |
49 | α-humulene | 1452 | 1446 | 92 | 0.18 | 2.33 | 0.53 | 0.18 | 0.21 | - | 1.51 | 1.45 |
50 | (E)-β-farnesene | 1454 | 1438 | 87 | - | 0.38 | 0.11 | - | 0.18 | - | 0.37 | 0.46 |
51 | allo-aromadendrene | 1458 | 1454 | 88 | 0.08 | - | - | 0.11 | 0.16 | 0.10 | - | 1.27 |
52 | 9-epi-(E)-caryophyllene | 1464 | 1460 | 90 | - | - | - | - | - | - | 0.09 | 0.40 |
53 | γ-muurolene | 1478 | 1465 | 88 | - | 0.10 | 0.09 | 0.05 | 0.05 | - | ||
54 | germacrene D | 1480 | 1473 | 93 | 1.19 | 4.70 | 0.12 | 0.48 | - | 0.83 | 1.84 | 1.89 |
55 | γ-amorphene | 1495 | 1494 | 86 | 0.07 | - | - | 0.10 | 0.37 | 0.10 | - | 0.83 |
56 | α-muurolene | 1500 | 1495 | 85 | - | 0.49 | - | 0.11 | 0.11 | - | - | - |
57 | (E)-β-guaiene | 1502 | 1497 | 80 | - | - | 0.57 | - | - | 0.24 | 0.54 | 2.46 |
58 | β-bisabolene | 1505 | 1500 | 80 | - | - | - | - | - | - | - | 0.47 |
59 | α-bulnesene | 1509 | 1502 | 91 | 0.12 | 4.80 | 1.23 | - | - | - | 6.22 | 0.28 |
60 | δ-amorphene | 1511 | 1504 | 83 | 0.53 | 1.26 | - | 0.36 | 1.61 | - | - | - |
61 | δ-cadinene | 1522 | 1510 | 84 | - | 0.10 | - | 0.12 | - | - | - | - |
62 | germacrene B | 1559 | 1549 | 90 | - | 0.19 | - | 0.32 | 0.08 | - | 0.11 | 3.94 |
63 | (E)-nerolidol | 1561 | 1551 | 88 | 0.32 | 0.50 | 0.05 | 0.14 | 0.15 | 0.06 | 0.07 | 0.52 |
64 | germacrene D-4-ol | 1574 | 1563 | 80 | 0.23 | 1.35 | - | - | - | - | - | - |
65 | spathulenol | 1577 | 1570 | 85 | - | - | 1.1 | - | - | 0.20 | 0.33 | 0.25 |
66 | caryophyllene oxide | 1582 | 1575 | 88 | 13.42 | 3.88 | 2.76 | 4.48 | 15.28 | 10.50 | 3.23 | 15.96 |
67 | humulene epoxide II | 1608 | 1600 | 88 | 1.11 | 1.05 | - | 0.48 | 1.76 | 0.38 | 0.42 | 1.74 |
68 | 1.10-di-epi-cubenol | 1618 | 1604 | 86 | - | 1.04 | - | - | 0.15 | - | 0.18 | 0.46 |
69 | allo-epoxide aromadendrene | 1639 | 1630 | 80 | - | - | 0.05 | - | - | - | - | 0.18 |
70 | khusilal | 1647 | 1639 | 80 | 0.41 | 0.54 | - | - | 0.11 | - | - | 0.38 |
71 | pogostol | 1651 | 1643 | 80 | - | 0.54 | - | - | - | - | - | - |
72 | (E)-14-hydroxy-9-epi-caryophyllene | 1668 | 1660 | 80 | - | - | - | 0.16 | 0.50 | - | - | - |
73 | cis-thujopsenal | 1708 | 1698 | * | - | 0.15 | - | - | - | - | - | - |
Monoterpene Hydrocarbons | 29.98 | 52.86 | 34.66 | 1.53 | 25.39 | 59.79 | 24.37 | 16.21 | ||||
Oxygenated Monoterpenes | 44.63 | 9.99 | 49.94 | 86.44 | 45.93 | 25.08 | 40.02 | 34.24 | ||||
Sesquiterpene Hydrocarbons | 6.31 | 26.29 | 8.89 | 3.89 | 5.10 | 3.07 | 30.49 | 22.52 | ||||
Oxygenated Sesquiterpenes | 15.49 | 9.05 | 3.96 | 5.26 | 17.95 | 11.14 | 4.23 | 19.49 | ||||
Total Identified | 96.41 | 98.19 | 97.45 | 97.12 | 94.37 | 99.08 | 99.11 | 92.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gimenes, L.; Silva, J.C.R.L.; Facanali, R.; Hantao, L.W.; Siqueira, W.J.; Marques, M.O.M. Essential Oils of New Lippia alba Genotypes Analyzed by Flow-Modulated Comprehensive Two-Dimensional Gas Chromatography (GC×GC) and Chemometric Analysis. Molecules 2021, 26, 2332. https://doi.org/10.3390/molecules26082332
Gimenes L, Silva JCRL, Facanali R, Hantao LW, Siqueira WJ, Marques MOM. Essential Oils of New Lippia alba Genotypes Analyzed by Flow-Modulated Comprehensive Two-Dimensional Gas Chromatography (GC×GC) and Chemometric Analysis. Molecules. 2021; 26(8):2332. https://doi.org/10.3390/molecules26082332
Chicago/Turabian StyleGimenes, Leila, Júlio César R. Lopes Silva, Roselaine Facanali, Leandro Wang Hantao, Walter José Siqueira, and Marcia Ortiz Mayo Marques. 2021. "Essential Oils of New Lippia alba Genotypes Analyzed by Flow-Modulated Comprehensive Two-Dimensional Gas Chromatography (GC×GC) and Chemometric Analysis" Molecules 26, no. 8: 2332. https://doi.org/10.3390/molecules26082332
APA StyleGimenes, L., Silva, J. C. R. L., Facanali, R., Hantao, L. W., Siqueira, W. J., & Marques, M. O. M. (2021). Essential Oils of New Lippia alba Genotypes Analyzed by Flow-Modulated Comprehensive Two-Dimensional Gas Chromatography (GC×GC) and Chemometric Analysis. Molecules, 26(8), 2332. https://doi.org/10.3390/molecules26082332