Bioactive Compounds Obtained from Polish “Marynka” Hop Variety Using Efficient Two-Step Supercritical Fluid Extraction and Comparison of Their Antibacterial, Cytotoxic, and Anti-Proliferative Activities In Vitro
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Hop Cones Extraction
2.2. The Chemical Composition of Hop Cones Fractions
2.3. Biological Properties
2.3.1. Determination of Growth Inhibition Zones
2.3.2. Determination of MIC and MBC/MIC Ratio
2.3.3. Determination of Synergistic Effect with Antibiotics
2.3.4. Determination of Cytotoxicity
2.3.5. Determination of Anti-Proliferative Activity
3. Materials and Methods
3.1. Materials
3.2. Hop Raw Material
3.3. Supercritical Fluid Extraction (SFE)
3.4. Centrifugal Partition Chromatography (CPC)
3.5. Gas Chromatography Equipped with Mass Spectrometer (GC-MS)
3.6. Ultra High Performance Liquid Chromatography (U-HPLC)
3.7. Total Phenolic Content
3.8. Antibacterial Activity
3.8.1. Bacterial Strains
3.8.2. Agar Disc Diffusion Assay
3.8.3. MIC and MBC Tests
3.8.4. Synergy Test
3.9. Cell Culture Experiments
3.9.1. Cell Lines
3.9.2. Cytotoxicity
3.9.3. Anti-Proliferative Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Rój, E.; Tadić, V.M.; Mišić, D.; Žižović, I.; Arsić, I.; Dobrzyńska-Inger, A.; Kostrzewa, D. Supercritical carbon dioxide hops extracts with antimicrobial properties. Open Chem. 2015, 13, 1157–1171. [Google Scholar] [CrossRef]
- Stevens, J.F.; Page, J.E. Xanthohumol and related prenylflavonoids from hops and beer: To your good health! Phytochemistry 2004, 65, 1317–1330. [Google Scholar] [CrossRef]
- Steenackers, B.; De Cooman, L.; De Vos, D. Chemical transformations of characteristic hop secondary metabolites in relation to beer properties and the brewing process: A review. Food Chem. 2015, 172, 742–756. [Google Scholar] [CrossRef]
- Roehrer, S.; Behr, J.; Stork, V.; Ramires, M.; Médard, G.; Frank, O.; Kleigrewe, K.; Hofmann, T.; Minceva, M. Xanthohumol C, a minor bioactive hop compound: Production, purification strategies and antimicrobial test. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1095, 39–49. [Google Scholar] [CrossRef]
- Chen, Q.; Fu, M.; Chen, M.; Liu, J.; Liu, X.; He, G.; Pu, S. Preparative isolation and purification of xanthohumol from hops (Humulus lupulus L.) by high-speed counter-current chromatography. Food Chem. 2012, 132, 619–623. [Google Scholar] [CrossRef]
- Nikolić, D.; van Breemen, R.B. Analytical methods for quantitation of prenylated flavonoids from hops. Curr Anal Chem 2013, 9, 71–85. [Google Scholar] [CrossRef]
- Yamaguchi, N.; Satoh-Yamaguchi, K.; Ono, M. In vitro evaluation of antibacterial, anticollagenase, and antioxidant activities of hop components (Humulus lupulus) addressing acne vulgaris. Phytomedicine 2009, 16, 369–376. [Google Scholar] [CrossRef]
- Weiskirchen, R.; Mahli, A.; Weiskirchen, S.; Hellerbrand, C. The hop constituent xanthohumol exhibits hepatoprotective effects and inhibits the activation of hepatic stellate cells at different levels. Front. Physiol. 2015, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Luzak, B.; Kassassir, H.; Rój, E.; Stanczyk, L.; Watala, C.; Golanski, J. Xanthohumol from hop cones (Humulus lupulus L.) prevents ADP-induced platelet reactivity. Arch. Physiol. Biochem. 2017, 123, 54–60. [Google Scholar] [CrossRef]
- Sławińska-Brych, A.; Zdzisińska, B.; Czerwonka, A.; Mizerska-Kowalska, M.; Dmoszyńska-Graniczka, M.; Stepulak, A.; Gagoś, M. Xanthohumol exhibits anti-myeloma activity in vitro through inhibition of cell proliferation, induction of apoptosis via the ERK and JNK-dependent mechanism, and suppression of sIL-6R and VEGF production. Biochim. Biophys. Acta Gen. Subj. 2019, 1863. [Google Scholar] [CrossRef]
- Bartmańska, A.; Tronina, T.; Popłoński, J.; Milczarek, M.; Filip-Psurska, B.; Wietrzyk, J. Highly cancer selective antiproliferative activity of natural prenylated flavonoids. Molecules 2018, 23, 2922. [Google Scholar] [CrossRef] [Green Version]
- Natarajan, P.; Katta, S.; Andrei, I.; Babu Rao Ambati, V.; Leonida, M.; Haas, G.J. Positive antibacterial co-action between hop (Humulus lupulus) constituents and selected antibiotics. Phytomedicine 2008, 15, 194–201. [Google Scholar] [CrossRef]
- Stompor, M.; Dancewicz, K.; Gabryś, B.; Anioł, M. Insect Antifeedant Potential of Xanthohumol, Isoxanthohumol, and Their Derivatives. J. Agric. Food Chem. 2015, 63, 6749–6756. [Google Scholar] [CrossRef]
- Rozalski, M.; Micota, B.; Sadowska, B.; Stochmal, A.; Jedrejek, D.; Wieckowska-Szakiel, M.; Rozalska, B. Antiadherent and antibiofilm activity of humulus lupulus L. derived products: New pharmacological properties. Biomed Res. Int. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Gerhäuser, C. Broad spectrum antiinfective potential of xanthohumol from hop (Humulus lupulus L.) in comparison with activities of other hop constituents and xanthohumol metabolites. Mol. Nutr. Food Res. 2005, 49, 827–831. [Google Scholar] [CrossRef]
- Schulz, C.; Chiheb, C.; Pischetsrieder, M. Quantification of co-, n-, and ad-lupulone in hop-based dietary supplements and phytopharmaceuticals and modulation of their contents by the extraction method. J. Pharm. Biomed. Anal. 2019, 168, 124–132. [Google Scholar] [CrossRef]
- Benkherouf, A.Y.; Eerola, K.; Soini, S.L.; Uusi-Oukari, M. Humulone Modulation of GABAA Receptors and Its Role in Hops Sleep-Promoting Activity. Front. Neurosci. 2020, 14, 1–13. [Google Scholar] [CrossRef]
- Cermak, P.; Olsovska, J.; Mikyska, A.; Dusek, M.; Kadleckova, Z.; Vanicek, J.; Nyc, O.; Sigler, K.; Bostikova, V.; Bostik, P. Strong antimicrobial activity of xanthohumol and other derivatives from hops (Humulus lupulus L.) on gut anaerobic bacteria. Apmis 2017, 125, 1033–1038. [Google Scholar] [CrossRef]
- Bartmańska, A.; Wałecka-Zacharska, E.; Tronina, T.; Popłoński, J.; Sordon, S.; Brzezowska, E.; Bania, J.; Huszcza, E. Antimicrobial properties of spent hops extracts, flavonoids isolated therefrom, and their derivatives. Molecules 2018, 23, 2059. [Google Scholar] [CrossRef] [Green Version]
- Agacka, M.; Skomra, U. Chmiel jako źródło bioaktywnych metabolitów wtórnych dla przemysłu piwowarskiego i farmaceutycznego. Stud. i Rap. IUNG-PIB 2012, 31, 39–50. [Google Scholar]
- Tyśkiewicz, K.; Gieysztor, R.; Konkol, M.; Szałas, J.; Rój, E. Essential oils from Humulus lupulus scCO2 extract by hydrodistillation and microwave-assisted hydrodistillation. Molecules 2018, 23, 2866. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, E.S.; Passos, G.F.; Medeiros, R.; da Cunha, F.M.; Ferreira, J.; Campos, M.M.; Pianowski, L.F.; Calixto, J.B. Anti-inflammatory effects of compounds alpha-humulene and (-)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea. Eur. J. Pharmacol. 2007, 569, 228–236. [Google Scholar] [CrossRef]
- Rogerio, A.P.; Andrade, E.L.; Leite, D.F.P.; Figueiredo, C.P.; Calixto, J.B. Preventive and therapeutic anti-inflammatory properties of the sesquiterpene α-humulene in experimental airways allergic inflammation. Br. J. Pharmacol. 2009, 158, 1074–1087. [Google Scholar] [CrossRef] [Green Version]
- Gertsch, J.; Leonti, M.; Raduner, S.; Racz, I.; Chen, J.Z.; Xie, X.Q.; Altmann, K.H.; Karsak, M.; Zimmer, A. Beta-caryophyllene is a dietary cannabinoid. Proc. Natl. Acad. Sci. USA 2008, 105, 9099–9104. [Google Scholar] [CrossRef] [Green Version]
- Brito, L.F.; Oliveira, H.B.M.; das Neves Selis, N.; e Souza, C.L.S.; Júnior, M.N.S.; de Souza, E.P.; da Silva, L.S.C.; de Souza Nascimento, F.; Amorim, A.T.; Campos, G.B.; et al. Anti-inflammatory activity of β-caryophyllene combined with docosahexaenoic acid in a model of sepsis induced by Staphylococcus aureus in mice. J. Sci. Food Agric. 2019, 99, 5870–5880. [Google Scholar] [CrossRef]
- Iglesias, A.; Mitton, G.; Szawarski, N.; Cooley, H.; Ramos, F.; Meroi Arcerito, F.; Brasesco, C.; Ramirez, C.; Gende, L.; Eguaras, M.; et al. Essential oils from Humulus lupulus as novel control agents against Varroa destructor. Ind. Crops Prod. 2020, 158, 113043. [Google Scholar] [CrossRef]
- Langezaal, C.R.; Chandra, A.; Scheffer, J.J.C. Antimicrobial screening of essential oils and extracts of some Humulus lupulus L. cultivars. Pharm. Weekbl. Sci. Ed. 1992, 14, 353–356. [Google Scholar] [CrossRef]
- Weber, N.; Biehler, K.; Schwabe, K.; Haarhaus, B.; Quirin, K.W.; Frank, U.; Schempp, C.M.; Wölfle, U. Hop extract acts as an antioxidant with antimicrobial effects against Propionibacterium acnes and Staphylococcus aureus. Molecules 2019, 24, 223. [Google Scholar] [CrossRef] [Green Version]
- Karabín, M.; Hudcová, T.; Jelínek, L.; Dostálek, P. Biologically Active Compounds from Hops and Prospects for Their Use. Compr. Rev. Food Sci. Food Saf. 2016, 15, 542–567. [Google Scholar] [CrossRef] [Green Version]
- Gallego, R.; Bueno, M.; Herrero, M. Sub- and supercritical fluid extraction of bioactive compounds from plants, food-by-products, seaweeds and microalgae—An update. TrAC Trends Anal. Chem. 2019, 116, 198–213. [Google Scholar] [CrossRef]
- Yousefi, M.; Rahimi-Nasrabadi, M.; Pourmortazavi, S.M.; Wysokowski, M.; Jesionowski, T.; Ehrlich, H.; Mirsadeghi, S. Supercritical fluid extraction of essential oils. TrAC Trends Anal. Chem. 2019, 118, 182–193. [Google Scholar] [CrossRef]
- Rawson, A.; Tiwari, B.K.; Brunton, N.; Brennan, C.; Cullen, P.J.; O’Donnell, C.P. Application of Supercritical Carbon Dioxide to Fruit and Vegetables: Extraction, Processing, and Preservation. Food Rev. Int. 2012, 28, 253–276. [Google Scholar] [CrossRef]
- Hrnčič, M.K.; Španinger, E.; Košir, I.J.; Knez, Ž.; Bren, U. Hop compounds: Extraction techniques, chemical analyses, antioxidative, antimicrobial, and anticarcinogenic effects. Nutrients 2019, 11, 257. [Google Scholar]
- Marriott, R.J. Greener chemistry preparation of traditional flavour extracts and molecules. Agro Food Ind. Hi. Tech. 2010, 21, 46–48. [Google Scholar]
- Osorio-Tobón, J.F. Recent advances and comparisons of conventional and alternative extraction techniques of phenolic compounds. J. Food Sci. Technol. 2020, 57, 4299–4315. [Google Scholar] [CrossRef] [PubMed]
- Vitzthum, O.; Hubert, P.; Sirtl, W. Production of Hop Extracts. U.S. Patent US4104409A, 1 August 1978. [Google Scholar]
- Hubert, B.P.; Vitzthum, O.G. Fluid Extraction of Hops, Spices, and Tabacco with Supercritical Gases. A J. Ger. Chem. Soc. 1978, 17, 710–715. [Google Scholar]
- Reverchon, E. Supercritical fluid extraction and fractionation of essential oils and related products. J. Supercrit. Fluids 1997, 10, 1–37. [Google Scholar] [CrossRef]
- Laws, D.R.J.; Bath, N.A.; Pickett, J.A. Preparation of Hop extracts without using organic solvents. J. Inst. Brew. 1977, 83, 39–40. [Google Scholar] [CrossRef]
- Gardner, D.S. Commercial scale extraction of alpha-acids and hop oils with compressed CO2. In Extraction of Natural Products Using Near-Critical Solvents; King, M.B., Bott, T.R., Eds.; Springer: Dordrecht, The Netherlands, 1993; pp. 84–100. ISBN 978-94-011-2138-5. [Google Scholar]
- Forester, A.; Gehrig, M. Process for the Extraction of Hop Substances. US4640841A, 3 February 1987. [Google Scholar]
- Zeković, Z.; Pfaf-Šovljanski, I.; Grujić, O. Supercritical fluid extraction of hops. J. Serbian Chem. Soc. 2007, 72, 81–87. [Google Scholar] [CrossRef]
- He, G.Q.; Xiong, H.P.; H, C.Q.; Ruan, H.; Wang, Z.Y.; Traore, L. Optimization of conditions for supercritical fluid extraction of flavonoids from hops (Humulus lupulus L.). J. Zhejiang Univ. Sci. 2005, 6B, 999–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutkowska, J.; Stolyhwo, A. Application of carbon dioxide in subcritical state (LCO2) for extraction/fractionation of carotenoids from red paprika. Food Chem. 2009, 115, 745–752. [Google Scholar] [CrossRef]
- Jackowski, J.; Hurej, M.; Rój, E.; Popłoński, J.; Kosny, L.; Huszcza, E. Antifeedant activity of xanthohumol and supercritical carbon dioxide extract of spent hops against stored product pests. Bull. Entomol. Res. 2015, 105, 456–461. [Google Scholar] [CrossRef]
- Kostrzewa, D.; Dobrzyńska-Inger, A.; Rój, E. Experimental data on xanthohumol solubility in supercritical carbon dioxide. Fluid Phase Equilib. 2013, 360, 445–450. [Google Scholar] [CrossRef]
- Grudniewska, A.; Popłoński, J. Simple and green method for the extraction of xanthohumol from spent hops using deep eutectic solvents. Sep. Purif. Technol. 2020, 250, 117196. [Google Scholar] [CrossRef]
- Roehrer, S.; Stork, V.; Ludwig, C.; Minceva, M.; Behr, J. Analyzing bioactive effects of the minor hop compound xanthohumol C on human breast cancer cells using quantitative proteomics. PLoS ONE 2019, 14, e0213469. [Google Scholar] [CrossRef]
- Renault, J.H.; Voutquenne, L.; Caron, C.; Zeches-Hanrot, M.; Berwanger, S.; Becker, H. Purification of xanthohumol from Humulus lupulus by centrifugal partition chromatography using an original acetone based solvent scale. J. Liq. Chromatogr. Relat. Technol. 2006, 29, 761–771. [Google Scholar] [CrossRef]
- Ross, J.I.; Snelling, A.M.; Carnegie, E.; Coates, P.; Cunliffe, W.J.; Bettoli, V.; Tosti, G.; Katsambas, A.; Perez del Pulgar, J.I.G.; Rollman, O.; et al. Clinical and Laboratory Investigations Antibiotic-resistant acne: Lessons from Europe. Br. J. Dermatol. 2003, 148, 467–478. [Google Scholar] [CrossRef] [PubMed]
- Pitucha, M.; Woś, M.; Miazga-Karska, M.; Klimek, K.; Mirosław, B.; Pachuta-Stec, A.; Gładysz, A.; Ginalska, G. Synthesis, antibacterial and antiproliferative potential of some new 1-pyridinecarbonyl-4-substituted thiosemicarbazide derivatives. Med. Chem. Res. 2016, 25. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Summerhurst, D.K.; Koval, S.F.; Ficker, C.; Smith, M.L.; Bernards, M.A. Isolation of an antimicrobial compound from Impatiens balsamina L. using bioassay-guided fractionation. Phyther. Res. 2001, 15, 676–680. [Google Scholar] [CrossRef] [PubMed]
- Sedighinia, F.; Safipour Afshar, A.; Soleimanpour, S.; Zarif, R.; Asili, J.; Ghazvini, K. Antibacterial activity of Glycyrrhiza glabra against oral pathogens: An in vitro study. Avicenna J. Phytomed. 2012, 2, 118–124. [Google Scholar] [PubMed]
- Pei, R.S.; Zhou, F.; Ji, B.P.; Xu, J. Evaluation of combined antibacterial effects of eugenol, cinnamaldehyde, thymol, and carvacrol against E. coli with an improved method. J. Food Sci. 2009, 74, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Sastre-Serra, J.; Ahmiane, Y.; Roca, P.; Oliver, J.; Pons, D.G. Xanthohumol, a hop-derived prenylflavonoid present in beer, impairs mitochondrial functionality of SW620 colon cancer cells. Int. J. Food Sci. Nutr. 2019, 70, 396–404. [Google Scholar] [CrossRef]
- Popłoński, J.; Turlej, E.; Sordon, S.; Tronina, T.; Bartma’ nska, A.; Wietrzyk, J.; Huszcza, E. Synthesis and antiproliferative activity of minor hops prenylflavonoids and new insights on prenyl group cyclization. Molecules 2018, 23, 776. [Google Scholar] [CrossRef] [Green Version]
- Ambrož, M.; Lněničková, K.; Matoušková, P.; Skálová, L.; Boušová, I. Antiproliferative effects of hop-derived prenylflavonoids and their influence on the efficacy of oxaliplatine, 5-fluorouracil and irinotecan in human colorectalC cells. Nutrients 2019, 11, 879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leonardi, M.; Skomra, U.; Agacka, M.; Stochmal, A.; Ambryszewska, K.E.; Oleszek, W.; Flamini, G.; Pistelli, L. Characterisation of four popular Polish hop cultivars. Int. J. Food Sci. Technol. 2013, 48, 1770–1774. [Google Scholar] [CrossRef]
- Brudzynski, A.; Baranowski, K. Laboratory and Industrial Scale Brewing Trials with Lubelski, Oktawia and Other Polish Hop Varietes. J. Inst. Brew. 2003, 109, 154–156. [Google Scholar] [CrossRef]
- Waterhouse, A.L. Determination of Total Phenolics. Curr. Protoc. Food Anal. Chem. 2002, 6, I1.1.1–I1.1.8. [Google Scholar]
- Makanjuola, S.A. Influence of particle size and extraction solvent on antioxidant properties of extracts of tea, ginger, and tea–ginger blend. Food Sci. Nutr. 2017, 5, 1179–1185. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing. Eighteenth International Supplement. Clinical Laboratory Standards Institute. In CLSI Document M7-MIC; CLSI: Wayne, UK, 2008. [Google Scholar]
- Afeltra, J.; Dannaoui, E.; Meis, J.F.G.M.; Rodriguez-Tudela, J.L.; Verweij, P.E.; Roilides, E.; Maglaveras, N.; Abrahamsen, T.; Gaustad, P.; Denning, D.W.; et al. In vitro synergistic interaction between amphotericin B and pentamidine against Scedosporium prolificans. Antimicrob. Agents Chemother. 2002, 46, 3323–3326. [Google Scholar] [CrossRef] [Green Version]
Compound | Retention Time, min | Peak Area Percentage, % |
---|---|---|
citronelol | 11.87 | 0.58 ± 0.04 |
myrcene | 12.33 | 20.51 ± 0.27 |
linalool | 16.01 | 0.39 ± 0.03 |
copaene | 22.09 | 0.21 ± 0.02 |
α-Bergamotene | 23.32 | 0.35 ± 0.11 |
β-caryophyllene | 23.72 | 4.88 ± 0.66 |
β-farnesene | 23.77 | 4.69 ± 0.09 |
humulene | 24.74 | 18.3 ± 0.38 |
α-cedrene | 24.87 | 0.45 ± 0.09 |
β-guajen | 24.98 | 0.23 ± 0.21 |
valencen | 25.58 | 0.29 ± 0.08 |
δ-cadinene | 26.52 | 0.98 ± 0.08 |
humulen epoxy | 29.45 | 0.45 ± 0.05 |
Parameter | 1 Step Extraction (Crude Extract E1) | 2 Step Extraction (Extract E2, CO2 b or CO2/EtOHc) | CPC Fractionation |
---|---|---|---|
α-acids, % m/m | 42.48 ± 0.68 | n.a. a | n.a. a |
β-acids, % m/m | 19.07 ± 0.30 | n.a. a | n.a. a |
xanthohumol, wt%, | n.a. a | 4.80 ± 0.58 c | 81.70 ± 0.66 |
n.a. a | 6.50 ± 0.43 b [1] | n.a a | |
TPC, mgGAE/g | n.a. a | 52.19 ± 1.11 c | n.a. a |
n.a. a | 48.71 ± 0.76 b | n.a. a | |
extraction yield, wt% | 11.40 | 4.64 b | n.a. a |
10.76 c | n.a. a |
Bacteria | Zones of Bacterial Growth Inhibition [mm] | ||||||
---|---|---|---|---|---|---|---|
Crude Extract (E1) | XN | Gentamicin | Ceftriaxone | Cefepime | Sparfloxacin | Ciprofloxacin | |
S. aureus ATCC 25923 | 27 | 13 | 36 | 30 | 37 | 39 | 34 |
S. epidermidis ATCC 12228 | 35 | 17 | 38 | 44 | 46 | 47 | 47 |
E. coli ATCC 25992 | 6 | 0 | 30 | 37 | 38 | 36 | 35 |
P. aeruginosa ATCC 27853 | 0 | 0 | 41 | 28 | 10 | 38 | 40 |
S. mutans PCM 2502 | 29 | 13 | 36 | 30 | 29 | 30 | 43 |
S. sanguinis PCM 2335 | 28 | 21 | 30 | 44 | 42 | 44 | 44 |
P. acnes PCM 2400 | 26 | 13 | 36 | 36 | 37 | 34 | 40 |
P. acnes PCM 2334 | 29 | 15 | 38 | 36 | 39 | 30 | 37 |
Bacteria | Minimum Inhibitory Concentration (MIC) [μg/mL] | ||||||
---|---|---|---|---|---|---|---|
Crude Extract (E1) | XN | Gentamicin | Ceftriaxone | Cefepime | Sparfloxacin | Ciprofloxacin | |
S. aureus ATCC 25923 | 0.195 | 0.195 | 0.098 | 0.195 | 0.781 | 0.049 | 0.049 |
S. epidermidis ATCC 12228 | 0.098 | 0.098 | 0.098 | 0.195 | 0.195 | 0.098 | 0.049 |
E. coli ATCC 25992 | NTa | NT a | 1.563 | 15.63 | 15.63 | 15.63 | 15.63 |
P. aeruginosa ATCC 27853 | NTa | NT a | 0.049 | 12.5 | 1.563 | 1.563 | 1.563 |
S. mutans PCM 2502 | 0.391 | 0.391 | 0.098 | 6.25 | 0.195 | 0.049 | 1.96 |
S. sanguinis PCM 2335 | 0.781 | 15.625 | 0.049 | 6.25 | 0.195 | 0.098 | 0.781 |
P. acnes PCM 2400 | 15.625 | 62.5 | 0.049 | 3.12 | 1.563 | 0.098 | 0.049 |
P. acnes PCM 2334 | 15.625 | 31.25 | 0.049 | 3.12 | 0.195 | 1.96 | 0.781 |
FICI a Index of Different Combination of Antibiotics and Hop Compounds | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Crude Extract (E1) | Xanthohumol (XN) | |||||||||
Bacteria | gentamicin | cefepime | ceftriaxone | ciprofloxacin | sparfloxacin | gentamicin | cefepime | ceftriaxone | ciprofloxacin | sparfloxacin |
S. aureus ATCC 25923 | 1.5 | 0.5 | 0.562 | 0.5 | 0.562 | 1.06 | 2 | 1.06 | 1.5 | 1.5 |
S. epidermidis ATCC 12228 | 1.5 | 0.5 | 0.562 | 0.562 | 0.5 | 1.5 | 1.06 | 1.06 | 1.5 | 1.06 |
S. mutans PCM 2502 | 1.5 | 0.562 | 0.375 | 0.5 | 0.375 | 1.06 | 0.5 | 0.5 | 0.562 | 1.06 |
S. sanguinis PCM 2335 | 1.06 | 0.5 | 0.375 | 0.375 | 0.562 | 1.5 | 0.5 | 0.375 | 0.562 | 1.06 |
P. acnes PCM 2400 | 2 | 0.562 | 0.562 | 0.562 | 0.562 | 1.5 | 0.562 | 0.562 | 1.06 | 1.06 |
P. acnes PCM 2334 | 1.5 | 0.5 | 0.375 | 0.5 | 0.5 | 1.5 | 0.5 | 0.562 | 1.06 | 1.06 |
Bacteria | Crude Extract (E1) CC50 a = 155.70 ± 4.23 μg/mL | Xanthohumol (XN) CC50 a = 26.56 ± 2.62 μg/mL |
---|---|---|
TI b (CC50/MIC) | ||
S. aureus ATCC 25923 | 789 | 136 |
S. epidermidis ATCC 12228 | 1589 | 271 |
S. mutans PCM 2502 | 398 | 67.90 |
S. sanguinis PCM 2335 | 199 | 1.69 |
P. acnes PCM 2400 | 9.96 | 0.42 |
P. acnes PCM 2334 | 9.96 | 0.84 |
Cell Line | Crude Extract (E1) | Xanthohumol (XN) | ||
---|---|---|---|---|
IC50 a [μg/mL] | SI b | IC50 a [μg/mL] | SI b | |
A549 | 45.17 ± 3.58 | 2.30 | 7.39 ± 2.99 | 2.33 |
HepG2 | 26.27 ± 1.56 | 3.97 | 36.36 ± 3.48 | 0.47 |
MCF-7 | 66.48 ± 2.97 | 1.56 | 12.18 ± 2.89 | 1.42 |
BJ | 104.30 ± 4.16 | - | 17.25 ± 1.35 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klimek, K.; Tyśkiewicz, K.; Miazga-Karska, M.; Dębczak, A.; Rój, E.; Ginalska, G. Bioactive Compounds Obtained from Polish “Marynka” Hop Variety Using Efficient Two-Step Supercritical Fluid Extraction and Comparison of Their Antibacterial, Cytotoxic, and Anti-Proliferative Activities In Vitro. Molecules 2021, 26, 2366. https://doi.org/10.3390/molecules26082366
Klimek K, Tyśkiewicz K, Miazga-Karska M, Dębczak A, Rój E, Ginalska G. Bioactive Compounds Obtained from Polish “Marynka” Hop Variety Using Efficient Two-Step Supercritical Fluid Extraction and Comparison of Their Antibacterial, Cytotoxic, and Anti-Proliferative Activities In Vitro. Molecules. 2021; 26(8):2366. https://doi.org/10.3390/molecules26082366
Chicago/Turabian StyleKlimek, Katarzyna, Katarzyna Tyśkiewicz, Malgorzata Miazga-Karska, Agnieszka Dębczak, Edward Rój, and Grazyna Ginalska. 2021. "Bioactive Compounds Obtained from Polish “Marynka” Hop Variety Using Efficient Two-Step Supercritical Fluid Extraction and Comparison of Their Antibacterial, Cytotoxic, and Anti-Proliferative Activities In Vitro" Molecules 26, no. 8: 2366. https://doi.org/10.3390/molecules26082366
APA StyleKlimek, K., Tyśkiewicz, K., Miazga-Karska, M., Dębczak, A., Rój, E., & Ginalska, G. (2021). Bioactive Compounds Obtained from Polish “Marynka” Hop Variety Using Efficient Two-Step Supercritical Fluid Extraction and Comparison of Their Antibacterial, Cytotoxic, and Anti-Proliferative Activities In Vitro. Molecules, 26(8), 2366. https://doi.org/10.3390/molecules26082366