Preparation and Characterization of Carbon Fibers from Lyocell Precursors Grafted with Polyacrylamide via Electron-Beam Irradiation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Flourier-Transform Infrared (FT-IR) Spectroscopy
2.2. Thermal Properties of Lyocell Fabrics Grafted with PAM via EBI of before and after Thermal Stabilization
2.3. X-ray Diffraction and Raman Studies of Carbon Fibers Obtained from Lyocell Grafted with PAM via EBI
2.4. Morphology of Lyocell Grafted with PAM via EBI and Subjected to Stabilization and Carbonization
2.5. Mechanical Properties of Carbon Fibers Obtained from Lyocells Grafted with PAM via EBI
3. Methods and Materials
3.1. Materials
3.2. Grafting of Lyocell Fabrics with PAM via EBI and Their Thermal Stabilization and Carbonization
3.3. Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Tang, S.; Hu, C. Design, preparation and properties of carbon fiber reinforced ultra-high temperature ceramic composites for aerospace applications: A review. J. Mater. Sci. Technol. 2017, 33, 117–130. [Google Scholar] [CrossRef]
- Liu, X.; Shao, X.; Li, Q.; Sun, G. Failure mechanisms in carbon fiber reinforced plastics (CFRP)/aluminum (Al) adhesive bonds subjected to low-velocity trans-verse pre-impact following by axial post-tension. Compos. Part B Eng. 2019, 172, 339–351. [Google Scholar] [CrossRef]
- Shin, H.K.; Park, M.; Lim, H.Y.; Park, S.J. An overview of new oxidation methods for polyacrylonitrile-based carbon fibers. Carbon Lett. 2015, 16, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Serkov, A.T.; Budnitskii, G.A.; Radishevskii, M.B.; Medvedev, V.A.; Zlatoustova, L.A. Improving carbon fibre production technology. Fibre Chem. 2003, 35, 117–121. [Google Scholar] [CrossRef]
- Shin, H.K.; Park, M.; Lim, H.Y.; Park, S.J. Influence of orientation on ordered microstructure of PAN-based fibers during electron beam irradiation stabilization. J. Ind. Eng. Chem. 2015, 32, 120–122. [Google Scholar] [CrossRef]
- Lee, D.G.; Lee, C.S.; Lee, H.G.; Hwang, H.Y.; Kim, J.W. Novel applications of composite structures to robots, machine tools and automobiles. Compos. Struct. 2004, 66, 17–39. [Google Scholar] [CrossRef]
- Frank, E.; Steudle, L.M.; Ingildeev, D.; Spörl, J.M.; Buchmeiser, M.R. Carbon fibers: Precursor systems, processing, structure, and properties. Angew. Chem. Int. Ed. 2014, 53, 2–39. [Google Scholar] [CrossRef]
- Khayyam, H.; Jazar, R.N.; Nunna, S.; Golkarnarenji, G.; Badii, K.; Fakhrhoseini, S.M.; Kumar, S.; Naebe, M. PAN precursor fabrication, applications and thermal stabilization process in carbon fiber production: Experimental and mathematical modeling. Prog. Mater. Sci. 2020, 107, 100575. [Google Scholar] [CrossRef]
- Akonda, M.H.; Lawrence, C.A.; Weager, B.M. Recycled carbon fibre-reinforced polypropylene thermoplastic composites. Compos. Part A 2012, 43, 79–86. [Google Scholar] [CrossRef]
- Jiang, G.; Pickering, S.J.; Walker, G.S.; Wong, K.H.; Rudd, C.D. Surface characterization of carbon fibre recycled using fluidized bed. Appl. Surf. Sci. 2008, 254, 2588–2593. [Google Scholar] [CrossRef]
- Meyer, L.O.; Schulte, K.; Grove-Nielsen, E. CFRP-recycling following a pyrolysis route: Process optimization and potentials. J. Compos. Mater. 2009, 43, 1121–1132. [Google Scholar] [CrossRef] [Green Version]
- Nie, W.; Liu, J.; Liu, W.; Wang, J.; Tang, T. Decomposition of waste carbon fiber reinforced epoxy resin composites in molten potassium hydroxide. Polym. Degrad. Stab. 2015, 111, 247–256. [Google Scholar] [CrossRef]
- Mainka, H.; Täger, O.; Körner, E.; Hilfert, L.; Busse, S.; Edelmann, F.T.; Herrmann, A.S. Lignin-an alternative precursor for sustainable and cost-effective automotive carbon fiber. J. Mater. Res. Technol. 2015, 4, 283–296. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Kumar, S. Recent progress in fabrication, structure, and properties of carbon fibers. Polym. Rev. 2012, 52, 234–258. [Google Scholar] [CrossRef]
- Liu, H.C.; Chien, A.T.; Newcomb, B.A.; Davijani, A.A.B.; Kumar, S. Stabilization kinetics of gel spun polyacrylonitrile/lignin blend fiber. Carbon 2016, 101, 382–389. [Google Scholar] [CrossRef]
- Baker, D.A.; Gallego, N.C.; Baker, F.S. On the characterization and spinning of an organic-purified lignin toward the manufacture of low-cost carbon fiber. J. Appl. Polym. Sci. 2012, 124, 227–234. [Google Scholar] [CrossRef]
- Kubo, S.; Kadla, J. Lignin-based carbon fibers: Effect of synthetic polymer blending on fiber properties. J. Polym. Environ. 2005, 13, 97–105. [Google Scholar] [CrossRef]
- Spörl, J.M.; Beyer, R.; Abels, F.; Cwik, T.; Müller, A.; Hermanutz, F.; Buchmeiser, M.R. Cellulose-derived carbon fibers with improved carbon yield and mechanical properties. Macromol. Mater. Eng. 2017, 302, 1700195. [Google Scholar] [CrossRef]
- Lewandowska, A.E.; Soutis, C.; Savage, L.; Eichhorn, S.J. Carbon fibres with ordered graphitic-like aggregate structures from a regenerated cellulose fibre precursor. Compos. Sci. Tech. 2015, 116, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Statheropoulos, M.; Kyriakou, S.A. Quantitative thermogravimetric-mass spectrometric analysis for monitoring the effects of fire retardants on cellulose pyrolysis. Anal. Chim. Acta 2000, 409, 203–214. [Google Scholar] [CrossRef]
- Wu, Q.; Pan, D. A new cellulose based carbon fiber from a lyocell precursor. Text. Res. J. 2002, 72, 405–410. [Google Scholar]
- Carrillo, F.; Colom, X.; Suñol, J.J.; Saurina, J. Structural FTIR analysis and thermal characterization of lyocell and viscose-type fibres. Eur. Polym. J. 2004, 40, 2229–2234. [Google Scholar] [CrossRef]
- Rosenau, T.; Pottast, A.; Sixta, H.; Kosma, P. The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (Lyocell process). Prog. Polym. Sci. 2001, 26, 1763–1837. [Google Scholar] [CrossRef]
- Nechwatal, A.; Nicolai, M.; Mieck, K.P.; Heublein, B.; Kuhne, G.; Klemm, D. Studies on the wet fibrillation of lyocell fibers. Angew. Markromol. Chem. 1999, 271, 84–92. [Google Scholar] [CrossRef]
- Burrow, T. Recent results with lyocell fibers in textiles. Lenz. Ber. 1998, 78, 37–40. [Google Scholar]
- Khanin, V.A.; Bandura, A.V.; Novoselov, N.P. Barries to rotation of bridging bonds of cellulose molecule in its interaction with N-methylmorpholine N-oxide. Russ. J. Gen. Chem. 1998, 68, 305–308. [Google Scholar]
- Park, G.Y.; Kim, W.S.; Lee, S.O.; Hwang, T.K.; Kim, Y.C.; Seo, S.K.; Chung, Y.S. Study of the crystal structures of a lyocell precursor for carbon fibers. J. Korean Soc. Propuls. Eng. 2019, 23, 36–42. [Google Scholar] [CrossRef]
- Lee, S.O.; Park, G.Y.; Kim, W.S.; Hwang, T.K.; Kim, Y.C.; Seo, S.K.; Chung, Y.S. Effect of cross-linking treatment of lyocell fabric on carbon fabric properties. J. Korean Soc. Propuls. Eng. 2019, 5, 421–427. [Google Scholar]
- Mironova, M.; Mokarov, I.; Golova, L.; Vinogradov, M.; Shandryuk, G.; Levin, I. Improvement in carbonization efficiency of cellulosic fibres using silylated acetylene and alkoxysilanes. Fibers 2019, 7, 84. [Google Scholar] [CrossRef] [Green Version]
- Byrne, N.; Chen, J.; Fox, B. Enhancing the carbon yield of cellulose based carbon fibres with ionic liquid impregnates. J. Mater. Chem. A 2014, 2, 15758–25762. [Google Scholar] [CrossRef]
- Wang, J.; Peng, C.; Chen, H.; Zhao, W.; Zhao, C. Fabrication of hemocompatible polyethersulfone derivatives by one-step radiation-induced homogeneous polymerization. Mater. Today Commun. 2020, 25, 101548. [Google Scholar] [CrossRef]
- Raghu, S.; Kilarkaje, S.; Sanjeev, G.; Nagaraja, G.K.; Devendrappa, H. Effect of electron beam irradiation on polymer electrolytes: Change in morphology, crystallinity, dielectric constant and AC conductivity with dose. Radiat. Phys. Chem. 2014, 98, 124–131. [Google Scholar] [CrossRef]
- Pasu, M.; Vasile, C.; Gheorghiu, M. Modification of polymer blend properties by argon plasma/electron beam treatment: Surface properties. Mater. Chem. Phys. 2003, 80, 548–554. [Google Scholar] [CrossRef]
- Khamplod, T.; Loykulnant, S.; Kongkaew, C.; Sureeyatanapas, P.; Prapainainar, P. Electron beam radiation grafting of styrene on natural rubber using Taguchi’s design. Polymer 2015, 79, 135–145. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, W.; Wang, H.; Qi, W.; Yue, L.; Ye, Q. Synthesis and characterization of starch grafted superabsorbent via 10 MeV electron-beam irradiation. Carbohydr. Polym. 2014, 101, 798–803. [Google Scholar] [CrossRef]
- Kim, H.G.; Kim, Y.S.; Kwac, L.K.; Chae, S.H.; Shin, H.K. Synthesis of carbon foam from waste artificial marble powder and carboxymethyl cellulose via electrton beam irradiation and its characterization. Materials 2018, 11, 1–8. [Google Scholar]
- Kim, H.G.; Kwac, L.K.; Kim, Y.S.; Shin, H.K.; Rhee, K.Y. Synthesis and characterization of eco-friendly carboxymethyl cellulose based carbon foam using electron beam irradiation. Compos. Part B 2018, 151, 154–160. [Google Scholar] [CrossRef]
- Shin, H.K.; Jeun, J.P.; Kim, H.B.; Kang, P.H. Isolation of cellulose fibers from kenaf using electron beam. Radiat. Phys. Chem. 2012, 81, 936–940. [Google Scholar] [CrossRef]
- Kim, H.G.; Lee, U.S.; Kwac, L.K.; Lee, S.O.; Kim, Y.S.; Shin, H.K. Electron beam irradiation isolates cellulose nanofiber from Korea “Tall Goldenrod” invasive alien plant pulp. Nanomaterials 2019, 9, 1358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, H.K.; Jeun, J.P.; Kang, P.H. The characterization of polyacrylonitrile fibers stabilized by electron beam irradiation. Fiber Polym. 2012, 13, 724–728. [Google Scholar] [CrossRef]
- Shin, H.K.; Park, M.; Kang, P.H.; Choi, H.S.; Park, S.J. Preparation and characterization of polyacrylonitrile-based carbon fibers produced by electron beam irradiation pretreatment. J. Ind. Eng. Chem. 2014, 20, 3789–3792. [Google Scholar] [CrossRef]
- Rani, P.; Sen, G.; Mishra, S.; Jha, U. Microwave assisted synthesis of polyacrylamide grafted gum ghatti and its application as flocculant. Carbohydr. Polym. 2012, 89, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Nakason, C.; Wohmang, T.; Kaesaman, A.; Kiatkamjornwong, S. Preparation of cassava starch-graft-polyacrylamide superabsorbents and associated composites by reactive blending. Carbohydr. Polym. 2010, 81, 348–357. [Google Scholar] [CrossRef]
- Al-Karawi, A.J.M.; Al-Daraji, A.H.R. Preparation and using of acrylamide grafted starch as polymer drug carrier. Carbohydr. Polym. 2010, 79, 769–774. [Google Scholar] [CrossRef]
- Silva, M.E.S.R.; Dutra, E.R.; Mano, V.; Machado, J.C. Preparation and thermal study of polymers derived from acrylamide. Polym. Degrad. Stab. 2000, 67, 491–495. [Google Scholar] [CrossRef]
Sample (Carbon Fibers) | Peak Center (°) | FWHM (°) | Planar Spacing (Å) | Peak Intensity (cps) |
---|---|---|---|---|
L-0.05-100 | 22.51 | 10.24 | 3.95 | 6159.21 |
43.72 | 6.54 | 2.07 | 3220.66 | |
L-0.1-100 | 22.21 | 10.20 | 4.00 | 7275.14 |
43.46 | 6.67 | 2.08 | 3447.17 | |
L-0.5-100 | 22.67 | 9.94 | 3.92 | 10,099.81 |
43.33 | 7.05 | 2.08 | 3612.49 | |
L-1-100 | 22.92 | 9.71 | 3.88 | 9581.71 |
43.30 | 6.62 | 2.09 | 2734.76 | |
L-2-100 | 22.80 | 9.50 | 3.90 | 9151.48 |
43.45 | 6.97 | 2.08 | 2958.06 | |
L-4-100 | 22.87 | 9.50 | 3.89 | 1130.32 |
43.85 | 7.08 | 2.06 | 3800.02 |
L-0.05-100 | L-0.1-100 | L-0.5-100 | L-1-100 | L-2-100 | L-4-100 | |
---|---|---|---|---|---|---|
Amount of PAM grafting on lyocell fabrics (g cm−2) | 0.0034 ± 0.00012 | 0.0038 ± 0.00023 | 0.0087 ± 0.00035 | 0.0112 ± 0.00050 | 0.0123 ± 0.00061 | 0.0159 ± 0.00045 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.G.; Kim, Y.-S.; Kuk, Y.-S.; Kwac, L.K.; Choi, S.-H.; Park, J.; Shin, H.K. Preparation and Characterization of Carbon Fibers from Lyocell Precursors Grafted with Polyacrylamide via Electron-Beam Irradiation. Molecules 2021, 26, 2459. https://doi.org/10.3390/molecules26092459
Kim HG, Kim Y-S, Kuk Y-S, Kwac LK, Choi S-H, Park J, Shin HK. Preparation and Characterization of Carbon Fibers from Lyocell Precursors Grafted with Polyacrylamide via Electron-Beam Irradiation. Molecules. 2021; 26(9):2459. https://doi.org/10.3390/molecules26092459
Chicago/Turabian StyleKim, Hong Gun, Yong-Sun Kim, Yun-Su Kuk, Lee Ku Kwac, Sun-Ho Choi, Jihyun Park, and Hye Kyoung Shin. 2021. "Preparation and Characterization of Carbon Fibers from Lyocell Precursors Grafted with Polyacrylamide via Electron-Beam Irradiation" Molecules 26, no. 9: 2459. https://doi.org/10.3390/molecules26092459
APA StyleKim, H. G., Kim, Y. -S., Kuk, Y. -S., Kwac, L. K., Choi, S. -H., Park, J., & Shin, H. K. (2021). Preparation and Characterization of Carbon Fibers from Lyocell Precursors Grafted with Polyacrylamide via Electron-Beam Irradiation. Molecules, 26(9), 2459. https://doi.org/10.3390/molecules26092459