Extraction and Natural Bioactive Molecules Characterization in Spinach, Kale and Purslane: A Comparative Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fatty Acids Content
2.2. Phytochemicals Identification
2.3. Total Carotenoids Content
2.4. Minerals Content
2.5. Amino Acids Content
2.6. Vitamins Content
2.7. Organic Acids Content
3. Materials and Methods
3.1. Raw Materials and Chemicals
3.2. Fatty Acids Analysis
3.3. Phytochemicals Analysis
3.4. Total Carotenoid Analysis
3.5. Minerals Analysis
3.6. Total Amino Acids Analysis
3.7. Vitamins Analysis
3.8. Organic Acid Analysis
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Randhawa, M.A.; Khan, A.A.; Javed, M.S.; Sajid, M.W. Green leafy vegetables: A healthy promoting sources. In Handbook of Fertility: Nutrition, Diet, Lifestyle and Reproductive Health; Watson, R.R., Ed.; Academic Press: New York, NY, USA, 2015; pp. 205–220. [Google Scholar]
- Agricultural Marketing Resource Center (AgMRC). Iowa State University: Ames, Iowa, 2020. Available online: https://www.agmrc.org/commodities-products/vegetables/spinach (accessed on 28 March 2020).
- Food and Agriculture Organization of the United Nations (FAO), FAOSTAT, 2019. Available online: http://fao.org/faostat/en/#data/QC (accessed on 31 March 2020).
- Šamec, D.; Urlić, B.; Salopek-Sondi, B. Kale (Brassica oleracea var. acephala) as a superfood: Review of the scientific evidence behind the statement. Crit. Rev. Food Sci. Nutr. 2018, 59, 2411–2422. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Agriculture, National Agricultural Statistics Service (USDA-NASS). Census of Agriculture: United States Summary and State Data, 2012, 1 (Part 51), 1–95. Available online: http://www.nass.usda.gov/publications/AgCensus/2012 (accessed on 12 March 2020).
- U.S. Department of Agriculture, Economic Research Service (USDA-ERS). 2019. Available online: http://www.ers.usda.gov (accessed on 14 April 2020).
- Nemzer, B.; Vargas, L.; Xia, X.; Sintara, M.; Feng, H. Phytochemical and physical properties of blueberries, tart cherries, strawberries, and cranberries as affected by different drying methods. Food Chem. 2018, 262, 242–250. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS). FoodData Central. 2019. Available online: http:/www.fdc.nal.usda.gov (accessed on 12 March 2020).
- Walsh, R.P.; Bartlett, H.; Eperjesi, F. Variation in Carotenoid Content of Kale and Other Vegetables: A Review of Pre- and Post-harvest Effects. J. Agric. Food Chem. 2015, 63, 9677–9682. [Google Scholar] [CrossRef] [PubMed]
- Nemzer, B.; Al-Taher, F.; Abshiru, N. Phytochemical composition and nutritional value of different plant parts in two cul-tivated and wild purslane (Portulaca oleracea L.) genotypes. Food Chem. 2020, 320, 126621–126630. [Google Scholar] [CrossRef]
- Ayaz, F.A.; Glew, R.H.; Millson, M.; Huang, H.; Chuang, L.; Sanz, C.; Hayırlıoglu-Ayaz, S. Nutrient contents of kale (Brassica oleraceae L. var. acephala DC.). Food Chem. 2006, 96, 572–579. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The Importance of the Omega-6/Omega-3 Fatty Acid Ratio in Cardiovascular Disease and Other Chronic Diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, K.; Neyazaki, M.; Shindo, K.; Ogawa, T.; Momose, M. Quantitative profiling of glucosinolates by LC–MS analysis reveals several cultivars of cabbage and kale as promising sources of sulforaphane. J. Chromatogr. B 2012, 903, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.; Zietz, M.; Schreiner, M.; Rohn, S.; Kroh, L.W.; Krumbein, A. Identification of complex, naturally occurring flavonoid glycosides in kale (Brassica oleracea var. sabellica) by high-performance liquid chromatography diode-array detec-tion/electrospray ionization multi-stage mass spectrometry. Rapid Commun. Mass Spec. 2010, 24, 2009–2022. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, R.; Srivastava, V.; Singh, A. Multipurpose Benefits of an Underexplored Species Purslane (Portulaca oleracea L.): A Critical Review. Environ. Manag. 2021, 108, 1–12. [Google Scholar] [CrossRef]
- Lisiewska, Z.; Kmiecik, W.; Korus, A. The amino acid composition of kale (Brassica oleracea L. var. acephela), fresh and after culinary and technological processing. Food Chem. 2008, 108, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Lisiewska, Z.; Kmiecik, W.; Gębczyński, P.; Sobcyńska, L. Amino acid profile of raw and as eaten products of spinach (Spinacia oleracea L.). Food Chem. 2011, 126, 460–465. [Google Scholar] [CrossRef]
- Joshi, Y.B.; Praticò, D. Vitamin E in aging, dementia, and Alzheimer’s disease. BioFactors 2012, 38, 90–97. [Google Scholar] [CrossRef]
- Sikora, E.; Bodziarczyk, I. Composition and antioxidant activity of kale (Brassica oleracea L. var. acephala) raw and cooked. ACTA Sci. Pol. Technol. Aliment. 2012, 11, 239–248. [Google Scholar]
- Koh, E.; Charoenprasert, S.; Mitchell, A.E. Effect of Organic and Conventional Cropping Systems on Ascorbic Acid, Vitamin C, Flavonoids, Nitrate, and Oxalate in 27 Varieties of Spinach (Spinacia oleracea L.). J. Agric. Food Chem. 2012, 60, 3144–3150. [Google Scholar] [CrossRef]
- Gonnella, M.; Charfeddine, M.; Conversa, G. Santamaria. Purslane: A review of its potential for health and agricultural aspects. EJPSB, 4(Special issue). Mol. Biol. Rep. 2010, 131–136. [Google Scholar]
- Veeneman, R. Improving the analysis of fatty acid methyl esters using automated sample preparation techniques. Agilent Technologies. In Proceedings of the Pittcon 2011, Atlanta, GA, USA, 16 March 2011; pp. 5–1370. [Google Scholar]
- AOAC International. Official Methods of Analysis of AOAC International, 21st ed.; AOAC International: Rockville, MD, USA, 2019. [Google Scholar]
- American Association of Cereal Chemists. AACC International Approved Methods of Analysis, 11th edition- AACCI Method 14–50.01. Total Carotenoid Content of Cereal Grains and Flours. 2011. Available online: http://methods.aaccnet.org/toc.aspx (accessed on 9 March 2020).
- Henderson, J.W.; Brooks, A. Improved Amino Acid Methods Using Agilent Zorbax eclipse plus C18 Columns for a Variety of Agilent LC instrumentation and Separation Goals. Agilent Application Note 5990–4547. 2010. Available online: http://www.agilent.com/cs/library/applications/5990-4547EN.pdf (accessed on 30 March 2020).
- Aristoy, M.C.; Toldrá, F. Amino Acids in Dairy Foods. In Handbook of Dairy Foods Analysis; Apple Academic Press: Palm Bay, FL, USA, 2021; pp. 9–31. [Google Scholar]
- Bartella, L.; Di Donna, L.; Napoli, A.; Sindona, G.; Mazzotti, F. High-throughput determination of vitamin E in extra virgin olive oil by paper spray tandem mass spectrometry. Anal. Bioanal. Chem. 2019, 411, 2885–2890. [Google Scholar] [CrossRef] [PubMed]
- Nollett, L. Fat soluble vitamins. In Food Analysis by HPLC; Nollett, L., Toldrá, F., Eds.; CRC Press: Boca Raton, FL, USA, 2013; pp. 272–318. [Google Scholar]
- Mcmurray, C.H.; Blanchflower, W.J.; Rice, D.A. Influence of Extraction Techniques on Determination of α-Tocopherol in Animal Feedstuffs. J. Assoc. Off. Anal. Chem. 1980, 63, 1258–1261. [Google Scholar] [CrossRef]
Fatty Acids | Spinach | Kale | Purslane [10] |
---|---|---|---|
C16:0 (saturated, palmitic acid) | 2.99 ± 0.25 a | 4.40 ± 0.18 b | 34.05 ± 1.91 c |
C16:1 (palmitoleic acid, Omega-7) | ND | ND | ND |
C18:0 (saturated, stearic acid) | ND | ND | 6.46 ± 0.48 |
C18:1 cis (elaidic acid, Omega-9) | 1.34 ± 0.18 a | ND | 15.19 ± 1.55 b |
C18:2 cis (linoleic acid, Omega-6) | 3.48 ± 0.43 a | 3.54 ± 0.61 b | 37.78 ± 1.97 c |
C18:3n-3 cis (linolenic acid, Omega-3) | 10.84 ± 0.86 a | 16.69 ± 2.44 b | 98.35 ± 6.78 c |
Total SFA | 2.99 | 4.4 | 40.51 |
Total MUFA | 1.34 | ND | 15.19 |
Total PUFA | 14.32 | 19.21 | 136.13 |
Total Fatty Acids | 18.67 | 23.61 | 191.83 |
Spinach | Kale | Purslane | |
---|---|---|---|
Calcium (mg/100 g) | 803.33 ± 10.12 b | 1700.00 ± 20.0 c | 914.33 ± 17.95 a |
Copper (mg/100 g) | 0.82 ± 0.00 b | 0.60 ± 0.01 c | 1.18 ± 0.02 a |
Iron (mg/100 g) | 7.16 ± 0.03 b | 9.75 ± 0.07 c | 41.73 ± 0.67 a |
Magnesium (mg/100 g) | 286.33 ± 8.96 b | 362.67 ± 2.08 c | 1266.67 ± 20.82 a |
Manganese (mg/100 g) | 2.19 ± 0.01 b | 5.74 ± 0.04 c | 6.77 ± 0.12 a |
Phosphorus (mg/100 g) | 290.67 ± 1.15 b | 549.00 ± 3.00 c | 281.67 ± 3.21 a |
Potassium (mg/100 g) | 1503.33 ± 46.19 b | 4223.33 ± 75.06 c | 6400 ± 141.07 a |
Sodium (mg/100 g) | 866.33 ± 6.51 b | 45.80 ± 0.92 c | 35.07 ± 1.72 a |
Zinc (mg/100 g) | 5.17 ± 0.04 b | 3.35 ± 0.01 c | 6.62 ± 0.18 a |
Selenium (µg/100 g) | <2.5 ± 0.00 b | 3.78 ± 0.05 c | 6.63 ± 0.20 a |
Amino acids | Spinach | Kale | Purslane |
---|---|---|---|
Aspartic acid | 1987 ± 20.82 b | 3017 ± 47.26 c | 1640 ± 0 a |
* Threonine | 952 ± 10.02 b | 1417 ± 11.55 c | 759 ± 5.51 a |
Serine | 858 ± 3.51 b | 1247 ± 11.55 c | 756 ± 5.29 a |
Glutamic acid | 2630 ± 20.00 b | 3747 ± 45.09 c | 2187 ± 11.55 a |
Proline | 943 ± 13.20 b | 1360 ± 26.46 c | 824 ± 2.08 a |
Glycine | 1153 ± 5.77 b | 1573 ± 11.55 c | 918 ± 7.55 a |
Alanine | 1187 ± 5.77 a | 1730 ± 20.00 b | 1213 ± 15.28 a |
* Valine | 1153 ± 11.55 b | 1727 ± 15.28 c | 976 ± 9.85 a |
* Isoleucine | 902 ± 12.58 b | 1320 ± 10.00 c | 801 ± 9.17 a |
* Leucine | 1770 ± 17.32 b | 2593 ± 23.09 c | 1463 ± 5.77 a |
Tyrosine | 905 ± 11.36 a | 1197 ± 11.55 b | 677 ± 1.73 a |
* Phenylalanine | 1113 ± 5.77 b | 1663 ± 20.82 c | 853 ± 7.51 a |
* Lysine | 928 ± 15.00 b | 1813 ± 25.17 c | 978 ± 13.50 a |
* Histidine | 481 ± 3.21 b | 650 ± 1.73 c | 346 ± 3.21 a |
Arginine | 1313 ± 101.6 b | 1770 ± 10.00 c | 957 ± 2.00 a |
Cystine | 266 ± 8.08 b | 295 ± 2.52 c | 290 ± 13.75 a |
* Methionine | 379 ± 25.11 b | 462 ± 26.23 c | 316 ± 27.68 a |
Total non-essential amino acids | 11,242 | 15,935 | 9461 |
Total essential amino acids | 7679 | 11,645 | 6492 |
Total amino acids | 18,921 | 27,581 | 15,953 |
Vitamins | Spinach | Kale | Purslane |
---|---|---|---|
Vitamin A (Retinol) (IU/100 g) | <100 ± 0 a | <100 ± 0 a | <100 ± 0 a |
Vitamin C (Ascorbic acid) (mg/100 g) | 51.9 ± 1.5 a | 135.0 ± 2.6 b | 152 ± 9.3 c |
Vitamin E (α-tocopherol) (µg/100 g) | 13.5 ± 0.7 a | 14.2 ± 0.2 a | 11967 ± 57.7 b |
Organic Acids | Spinach | Kale | Purslane [10] |
---|---|---|---|
Malic acid (mg/100 g) | ND | 6138 ± 19.25 a | 1155.38 ± 10.72 b |
Citric acid (mg/100 g) | 1031.94 ± 29.42 a | 4826.44 ± 22.55 b | 510.08 ± 2.17 c |
Oxalic acid (mg/100 g) | 8387.47 ± 14.87 a | ND | 6757.63 ± 12.83 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nemzer, B.; Al-Taher, F.; Abshiru, N. Extraction and Natural Bioactive Molecules Characterization in Spinach, Kale and Purslane: A Comparative Study. Molecules 2021, 26, 2515. https://doi.org/10.3390/molecules26092515
Nemzer B, Al-Taher F, Abshiru N. Extraction and Natural Bioactive Molecules Characterization in Spinach, Kale and Purslane: A Comparative Study. Molecules. 2021; 26(9):2515. https://doi.org/10.3390/molecules26092515
Chicago/Turabian StyleNemzer, Boris, Fadwa Al-Taher, and Nebiyu Abshiru. 2021. "Extraction and Natural Bioactive Molecules Characterization in Spinach, Kale and Purslane: A Comparative Study" Molecules 26, no. 9: 2515. https://doi.org/10.3390/molecules26092515
APA StyleNemzer, B., Al-Taher, F., & Abshiru, N. (2021). Extraction and Natural Bioactive Molecules Characterization in Spinach, Kale and Purslane: A Comparative Study. Molecules, 26(9), 2515. https://doi.org/10.3390/molecules26092515