Lignin and Lignin-Derived Compounds for Wood Applications—A Review
Abstract
:1. Introduction
2. Composition of Lignin
3. Applications of Lignin in Wood
4. Applying Lignin without Cleavage
4.1. General Remarks
4.2. Application in PF Resins
4.2.1. Methylolated Lignin in Resoles
4.2.2. Other Pretreatment Methods for Lignin in Resoles
4.2.3. Comparison of Selected Examples
4.3. Application in UF Resins
4.4. Application in Other Resins
5. Cleavage of Lignin
5.1. General Remarks
5.2. Characterization of Cleavage Products
5.3. Cleavage of Lignin
5.4. Cleavage of Lignocellulosic Biomass
6. Challenges for the Application of Lignin and Lignin-Derived Compounds
7. Current or Past Commercial Products of Lignin-Based Adhesives in Wood Industry
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Qu, Y.; Luo, H.; Li, H.; Xu, J. Comparison on Structural Modification of Industrial Lignin by Wet Ball Milling and Ionic Liquid Pretreatment. Biotechnol. Rep. 2015, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.-Y.; Meng, X.; Pu, Y.J.; Ragauskas, A. Recent Advances in the Application of Functionalized Lignin in Value-Added Polymeric Materials. Polymers 2020, 12, 2277. [Google Scholar] [CrossRef] [PubMed]
- Bajwa, D.S.; Pourhashem, G.; Ullah, A.H.; Bajwa, S.G. A Concise Review of Current Lignin Production, Applications, Products and Their Environmental Impact. Ind. Crop. Prod. 2019, 139, 111526. [Google Scholar] [CrossRef]
- Chakar, F.S.; Ragauskas, A.J. Review of Current and Future Softwood Kraft Lignin Process Chemistry. Ind. Crop. Prod. 2004, 20, 131–141. [Google Scholar] [CrossRef]
- Luo, H.; Abu-Omar, M.M. Chemicals from Lignin. In Encyclopedia of Sustainable Technologies; Elsevier: Amsterdam, The Netherlands, 2017; pp. 573–585. ISBN 978-0-12-804792-7. [Google Scholar]
- Wang, Y.; Wang, Q.; He, J.; Zhang, Y. Highly Effective C–C Bond Cleavage of Lignin Model Compounds. Green Chem. 2017, 19, 3135–3141. [Google Scholar] [CrossRef]
- Rinaldi, R.; Jastrzebski, R.; Clough, M.T.; Ralph, J.; Kennema, M.; Bruijnincx, P.C.A.; Weckhuysen, B.M. Paving the Way for Lignin Valorisation: Recent Advances in Bioengineering, Biorefining and Catalysis. Angew. Chem. Int. Ed. 2016, 55, 8164–8215. [Google Scholar] [CrossRef] [Green Version]
- De Wild, P.J.; Huijgen, W.J.J.; Gosselink, R.J.A. Lignin Pyrolysis for Profitable Lignocellulosic Biorefineries. Biofuels Bioprod. Bioref. 2014, 8, 645–657. [Google Scholar] [CrossRef]
- Kai, D.; Tan, M.J.; Chee, P.L.; Chua, Y.K.; Yap, Y.L.; Loh, X.J. Towards Lignin-Based Functional Materials in a Sustainable World. Green Chem. 2016, 18, 1175–1200. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, W.; Zhou, X.; Liang, J.; Du, G.; Wu, Z. Lignin-Based Adhesive Crosslinked by Furfuryl Alcohol–Glyoxal and Epoxy Resins. Nord. Pulp. Pap. Res. J. 2019, 34, 228–238. [Google Scholar] [CrossRef]
- Evstigneyev, E.I.; Shevchenko, S.M. Lignin Valorization and Cleavage of Arylether Bonds in Chemical Processing of Wood: A Mini-Review. Wood Sci. Technol. 2020, 54, 787–820. [Google Scholar] [CrossRef]
- Stora Enso OYJ. LineoTM by Stora Enso Nominated for “Bio-Based Material of the Year 2019” Innovation Award. Available online: https://www.storaenso.com/en/newsroom/news/2019/5/lineotm-award-nomination (accessed on 16 March 2021).
- CIMV Biolignin ®. Available online: http://www.cimv.fr/products/11-.html?lang=en (accessed on 16 March 2021).
- Suzano, S.A. Suzano—Lignin. Available online: https://www.suzano.com.br/en/brands-and-products/lignin/ (accessed on 19 March 2021).
- Solt, P.; Jaaskelainen, A.-S.; Lingenfelter, P.; Konnerth, J. Impact of Molecular Weight of Kraft Lignin on Adhesive Performance of Lignin-Based Phenol-Formaldehyde Resins. For. Prod. J. 2018, 68, 7. [Google Scholar] [CrossRef]
- Paananen, H.; Pakkanen, T.T. Kraft Lignin Reaction with Paraformaldehyde. Holzforschung 2020, 74, 663–672. [Google Scholar] [CrossRef]
- Kim, J.-S. Production, Separation and Applications of Phenolic-Rich Bio-Oil—A Review. Bioresour. Technol. 2015, 178, 90–98. [Google Scholar] [CrossRef]
- Ghorbani, M.; Liebner, F.; van Herwijnen, H.W.G.; Solt, P.; Konnerth, J. Ligneous Resole Adhesives for Exterior-Grade Plywood. Eur. J. Wood Prod. 2018, 76, 251–258. [Google Scholar] [CrossRef] [Green Version]
- Lora, J.H.; Glasser, W.G. Recent Industrial Applications of Lignin: A Sustainable Alternative to Nonrenewable Materials. J. Polym. Environ. 2002, 10, 39–48. [Google Scholar] [CrossRef]
- Fengel, D.; Wegener, G. Wood: Chemistry, Ultrastructure, Reactions, Reprint der Orig.-Ausg. (ehem. de Gruyter); Kessel: Remagen, Germany, 2003; ISBN 978-3-935638-39-5. [Google Scholar]
- Ghorbani, M.; Liebner, F.; Van Herwijnen, H.W.G.; Pfungen, L.; Krahofer, M.; Budjav, E.; Konnerth, J. Lignin Phenol Formaldehyde Resoles: The Impact of Lignin Type on Adhesive Properties. Bioresources 2016, 11, 6727–6741. [Google Scholar] [CrossRef] [Green Version]
- Kalami, S.; Chen, N.; Borazjani, H.; Nejad, M. Comparative Analysis of Different Lignins as Phenol Replacement in Phenolic Adhesive Formulations. Ind. Crop. Prod. 2018, 125, 520–528. [Google Scholar] [CrossRef]
- Lourençon, T.V.; Alakurtti, S.; Virtanen, T.; Jääskeläinen, A.-S.; Liitiä, T.; Hughes, M.; Magalhães, W.L.E.; Muniz, G.I.B.; Tamminen, T. Phenol-Formaldehyde Resins with Suitable Bonding Strength Synthesized from “Less-Reactive” Hardwood Lignin Fractions. Holzforschung 2020, 74, 175–183. [Google Scholar] [CrossRef] [Green Version]
- Balakshin, M.; Capanema, E. Rethinking Biorefinery Lignins: Breaking Dogmas. In Proceedings of the 14th European Workshop on Lignocellulosics and Pulp; Grenoble INP, Autrans, France, 28 June–1 July 2016. [Google Scholar]
- Stücker, A.; Schütt, F.; Saake, B.; Lehnen, R. Lignins from Enzymatic Hydrolysis and Alkaline Extraction of Steam Refined Poplar Wood: Utilization in Lignin-Phenol-Formaldehyde Resins. Ind. Crop. Prod. 2016, 85, 300–308. [Google Scholar] [CrossRef]
- Crestini, C.; Lange, H.; Sette, M.; Argyropoulos, D.S. On the Structure of Softwood Kraft Lignin. Green Chem. 2017, 19, 4104–4121. [Google Scholar] [CrossRef]
- Vishtal, A.; Kraslawski, A. Challenges in Industrial Applications of Technical Lignins. Bioresources 2011, 6, 3547–3568. [Google Scholar] [CrossRef]
- Paone, E.; Tabanelli, T.; Mauriello, F. The Rise of Lignin Biorefinery. Curr. Opin. Green Sustain. Chem. 2020, 24, 1–6. [Google Scholar] [CrossRef]
- Luo, H.; Abu-Omar, M.M. Lignin Extraction and Catalytic Upgrading from Genetically Modified Poplar. Green Chem. 2018, 20, 745–753. [Google Scholar] [CrossRef]
- Jiménez-López, L. Co-Production of Soluble Sugars and Lignin from Short Rotation White Poplar and Black Locust Crops. Wood Sci. Technol. 2020, 27, 1617–1643. [Google Scholar] [CrossRef]
- Liao, J.J.; Latif, N.H.A.; Trache, D.; Brosse, N.; Hussin, M.H. Current Advancement on the Isolation, Characterization and Application of Lignin. Int. J. Biol. Macromol. 2020, 162, 985–1024. [Google Scholar] [CrossRef]
- Rowell, R.M. Handbook of Wood Chemistry and Wood Composites; CRC Press: Boca Raton, FL, USA, 2005; ISBN 978-0-8493-1588-6. [Google Scholar]
- Bicke, S.; Militz, H. Modification of Beech Veneers with Low Molecular Weight Phenol Formaldehyde for the Production of Plywood: Comparison of the Submersion and Vacuum Impregnation; Laboratório Nacional Deengenharia Civil: Lisbon, Portugal, 2014. [Google Scholar]
- Hill, C.A.S. Wood Modification: Chemical, Thermal and Other Processes; Wiley Series in Renewable Resources; John Wiley & Sons: Chichester, UK; Hoboken, NJ, USA, 2006; ISBN 978-0-470-02172-9. [Google Scholar]
- Furuno, T.; Imamura, Y.; Kajita, H. The Modification of Wood by Treatment with Low Molecular Weight Phenol-Formaldehyde Resin: A Properties Enhancement with Neutralized Phenolic-Resin and Resin Penetration into Wood Cell Walls. Wood Sci. Technol. 2004, 37, 349–361. [Google Scholar]
- Biziks, V.; Bicke, S.; Militz, H. Penetration Depth of Phenol-Formaldehyde (PF) Resin into Beech Wood Studied by Light Microscopy. Wood Sci. Technol. 2019, 53, 165–176. [Google Scholar] [CrossRef]
- Hu, L.; Pan, H.; Zhou, Y.; Zhang, M. Methods to Improve Lignin’s Reactivity as a Phenol Substitute and as Replacement for Other Phenolic Compounds: A Brief Review. Bioresources 2011, 6, 3515–3525. [Google Scholar] [CrossRef]
- Yang, S.; Wen, J.-L.; Yuan, T.-Q.; Sun, R.-C. Characterization and Phenolation of Biorefinery Technical Lignins for Lignin–Phenol–Formaldehyde Resin Adhesive Synthesis. RSC Adv. 2014, 4, 57996–58004. [Google Scholar] [CrossRef]
- Klašnja, B.; Kopitović, S. Lignin-Phenol-Formaldehyde Resins as Adhesives in the Production of Plywood. Holz Roh. Werkst. 1992, 50, 282–285. [Google Scholar] [CrossRef]
- Tejado, A.; Kortaberria, G.; Peña, C.; Labidi, J.; Echeverría, J.M.; Mondragon, I. Lignins for Phenol Replacement in Novolac-Type Phenolic Formulations, Part I: Lignophenolic Resins Synthesis and Characterization. J. Appl. Polym. Sci. 2007, 106, 2313–2319. [Google Scholar] [CrossRef]
- Tejado, A.; Kortaberria, G.; Peña, C.; Blanco, M.; Labidi, J.; Echeverría, J.M.; Mondragon, I. Lignins for Phenol Replacement in Novolac-Type Phenolic Formulations. II. Flexural and Compressive Mechanical Properties. J. Appl. Polym. Sci. 2008, 107, 159–165. [Google Scholar] [CrossRef]
- Jing, Z.; Lihong, H.; Bingchuan, L.; Caiying, B.; Puyou, J.; Yonghong, Z. Preparation and Characterization of Novolac Phenol–Formaldehyde Resins with Enzymatic Hydrolysis Lignin. J. Taiwan Inst. Chem. Eng. 2015, 54, 178–182. [Google Scholar] [CrossRef]
- Kalami, S.; Arefmanesh, M.; Master, E.; Nejad, M. Replacing 100% of Phenol in Phenolic Adhesive Formulations with Lignin. J. Appl. Polym. Sci. 2017, 134, 45124. [Google Scholar] [CrossRef] [Green Version]
- Luo, B.; Jia, Z.; Jiang, H.; Wang, S.; Min, D. Improving the Reactivity of Sugarcane Bagasse Kraft Lignin by a Combination of Fractionation and Phenolation for Phenol–Formaldehyde Adhesive Applications. Polymers 2020, 12, 1825. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-J.; Chang, K.-C.; Tseng, I.-M. Properties of Phenol-Formaldehyde Resins Prepared from Phenol-Liquefied Lignin. J. Appl. Polym. Sci. 2011. [Google Scholar] [CrossRef]
- Gao, S.; Cheng, Z.; Zhou, X.; Liu, Y.; Chen, R.; Wang, J.; Wang, C.; Chu, F.; Xu, F.; Zhang, D. Unexpected Role of Amphiphilic Lignosulfonate to Improve the Storage Stability of Urea Formaldehyde Resin and Its Application as Adhesives. Int. J. Biol. Macromol. 2020, 161, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Younesi-Kordkheili, H.; Pizzi, A.; Niyatzade, G. Reduction of Formaldehyde Emission from Particleboard by Phenolated Kraft Lignin. J. Adhes. 2016, 92, 485–497. [Google Scholar] [CrossRef]
- Chen, Y.; Gong, X.; Yang, G.; Li, Q.; Zhou, N. Preparation and Characterization of a Nanolignin Phenol Formaldehyde Resin by Replacing Phenol Partially with Lignin Nanoparticles. RSC Adv. 2019, 9, 29255–29262. [Google Scholar] [CrossRef]
- Gao, S.; Liu, Y.; Wang, C.; Chu, F.; Xu, F.; Zhang, D. Synthesis of Lignin-Based Polyacid Catalyst and Its Utilization to Improve Water Resistance of Urea–Formaldehyde Resins. Polymers 2020, 12, 175. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Wu, J.-Q.; Zhang, Y.; Yuan, T.-Q.; Sun, R.-C. Preparation of Lignin-Phenol-Formaldehyde Resin Adhesive Based on Active Sites of Technical Lignin. J. Biobased Mat. Bioenergy 2015, 9, 266–272. [Google Scholar] [CrossRef]
- Ghorbani, M.; Konnerth, J.; van Herwijnen, H.W.G.; Zinovyev, G.; Budjav, E.; Requejo Silva, A.; Liebner, F. Commercial Lignosulfonates from Different Sulfite Processes as Partial Phenol Replacement in PF Resole Resins. J. Appl. Polym. Sci. 2018, 135, 45893. [Google Scholar] [CrossRef]
- Solt, P.; van Herwijnen, H.W.G.; Konnerth, J. Thermoplastic and Moisture-dependent Behavior of Lignin Phenol Formaldehyde Resins. J. Appl. Polym. Sci. 2019, 136, 48011. [Google Scholar] [CrossRef] [Green Version]
- Kouisni, L.; Fang, Y.; Paleologou, M.; Ahvazi, B.; Hawari, J.; Zhang, Y.; Wang, X.-M. Kraft Lignin Recovery and Its Use in the Preparation of Lignin-Based Phenol Formaldehyde Resins for Plywood. Cellul. Chem. Technol. 2011, 45, 515–520. [Google Scholar]
- Abdelwahab, N.A.; Nassar, M.A. Preparation, Optimisation and Characterisation of Lignin Phenol Formaldehyde Resin as Wood Adhesive. Pigment Resin Technol. 2011, 40, 169–174. [Google Scholar] [CrossRef]
- Cheng, S.; Yuan, Z.; Leitch, M.; Anderson, M.; Xu, C.C. Highly Efficient Depolymerization of Organosolv Lignin Using a Catalytic Hydrothermal Process and Production of Phenolic Resins/Adhesives with the Depolymerized Lignin as a Substitute for Phenol at a High Substitution Ratio. Ind. Crop. Prod. 2013, 44, 315–322. [Google Scholar] [CrossRef]
- Tachon, N.; Benjelloun-Mlayah, B.; Delmas, M. Organosolv Wheat Straw Lignin as a Phenol Substitute for Green Phenolic Resins. Bioresources 2016, 11, 5797–5815. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Cheng, X.; Zheng, Z. Preparation and Characterization of Phenol–Formaldehyde Adhesives Modified with Enzymatic Hydrolysis Lignin. Bioresour. Technol. 2010, 101, 2046–2048. [Google Scholar] [CrossRef]
- Qiao, W.; Li, S.; Guo, G.; Han, S.; Ren, S.; Ma, Y. Synthesis and Characterization of Phenol-Formaldehyde Resin Using Enzymatic Hydrolysis Lignin. J. Ind. Eng. Chem. 2015, 21, 1417–1422. [Google Scholar] [CrossRef]
- Pang, B.; Cao, X.-F.; Sun, S.-N.; Wang, X.-L.; Wen, J.-L.; Lam, S.S.; Yuan, T.-Q.; Sun, R.-C. The Direct Transformation of Bioethanol Fermentation Residues for Production of High-Quality Resins. Green Chem. 2020, 22, 439–447. [Google Scholar] [CrossRef]
- Cetin, N.S.; Ozmen, N. Use of Organosolv Lignin in Phenol-Formaldehyde Resins for Particleboard Production—I. Organosolv Lignin Modified Resins. Int. J. Adhes. Adhes. 2002, 22, 477–480. [Google Scholar] [CrossRef]
- Khan, M.A.; Ashraf, S.M. Studies on Thermal Characterization of Lignin. J. Therm. Anal. Calorim. 2007, 89, 993–1000. [Google Scholar] [CrossRef]
- Vázquez, G.; González, J.; Freire, S.; Antorrena, G. Effect of Chemical Modification of Lignin on the Gluebond Performance of Lignin-Phenolic Resins. Bioresour. Technol. 1997, 60, 191–198. [Google Scholar] [CrossRef]
- Yang, W.; Rallini, M.; Natali, M.; Kenny, J.; Ma, P.; Dong, W.; Torre, L.; Puglia, D. Preparation and Properties of Adhesives Based on Phenolic Resin Containing Lignin Micro and Nanoparticles: A Comparative Study. Mater. Des. 2019, 161, 55–63. [Google Scholar] [CrossRef]
- Ghorbani, M.; Konnerth, J.; Budjav, E.; Silva, A.; Zinovyev, G.; van Herwijnen, H.; Edler, M.; Griesser, T.; Liebner, F. Ammoxidized Fenton-Activated Pine Kraft Lignin Accelerates Synthesis and Curing of Resole Resins. Polymers 2017, 9, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Wang, W.; Zhang, S.; Gao, Q.; Zhang, W.; Li, J. Preparation and Characterization of Lignin Demethylated at Atmospheric Pressure and Its Application in Fast Curing Biobased Phenolic Resins. RSC Adv. 2016, 6, 67435–67443. [Google Scholar] [CrossRef]
- Younesi-Kordkheili, H.; Pizzi, A. A Comparison between Lignin Modified by Ionic Liquids and Glyoxalated Lignin as Modifiers of Urea-Formaldehyde Resin. J. Adhes. 2017, 93, 1120–1130. [Google Scholar] [CrossRef]
- Younesi-Kordkheili, H.; Pizzi, A.; Honarbakhsh-Raouf, A.; Nemati, F. The Effect of Soda Bagasse Lignin Modified by Ionic Liquids on Properties of the Urea–Formaldehyde Resin as a Wood Adhesive. J. Adhes. 2017, 93, 914–925. [Google Scholar] [CrossRef]
- Younesi-Kordkheili, H.; Pizzi, A.; Mohammadghasemipour, A. Improving the Properties of Ionic Liquid-Treated Lignin-Urea-Formaldehyde Resins by a Small Addition of Isocyanate for Wood Adhesive. J. Adhes. 2018, 94, 406–419. [Google Scholar] [CrossRef]
- Younesi-Kordkheili, H. Improving Physical and Mechanical Properties of New Lignin-Urea-Glyoxal Resin by Nanoclay. Eur. J. Wood Prod. 2017, 75, 885–891. [Google Scholar] [CrossRef]
- Younesi-Kordkheili, H.; Pizzi, A. Improving the Properties of Urea-Lignin-Glyoxal Resin as a Wood Adhesive by Small Addition of Epoxy. Int. J. Adhes. Adhes. 2020, 102, 102681. [Google Scholar] [CrossRef]
- Younesi-Kordkheili, H.; Pizzi, A. Some of Physical and Mechanical Properties of Particleboard Panels Bonded with Phenol-Lignin-Glyoxal Resin. J. Adhes. 2020, 96, 1385–1395. [Google Scholar] [CrossRef]
- Younesi-Kordkheili, H.Y.; Pizzi, A. Improving Properties of Phenol-Lignin-Glyoxal Resin as a Wood Adhesive by an Epoxy Resin. Eur. J. Wood Prod. 2021, 79, 199–205. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, N.; Chen, Z.; Ding, C.; Zheng, Q.; Xu, J.; Meng, Q. Synthesis of High-Water-Resistance Lignin-Phenol Resin Adhesive with Furfural as a Crosslinking Agent. Polymers 2020, 12, 2805. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Fu, S.; Zhang, H. Signally Improvement of Polyurethane Adhesive with Hydroxy-Enriched Lignin from Bagasse. Colloids Surf. A Physicochem. Eng. Asp. 2020, 585, 124164. [Google Scholar] [CrossRef]
- Liu, W.; Fang, C.; Chen, F.; Qiu, X. Strong, Reusable, and Self-Healing Lignin-Containing Polyurea Adhesives. ChemSusChem 2020, 13. [Google Scholar] [CrossRef]
- Yuan, Y.; Guo, M.H.; Liu, F.Y. Preparation and Evaluation of Green Composites Using Modified Ammonium Lignosulfonate and Polyethylenimine as a Binder. Bioresources 2013, 9, 836–848. [Google Scholar] [CrossRef] [Green Version]
- Raj, A.; Devendra, L.P.; Sukumaran, R.K. Comparative Evaluation of Laccase Mediated Oxidized and Unoxidized Lignin of Sugarcane Bagasse for the Synthesis of Lignin-Based Formaldehyde Resin. Ind. Crop. Prod. 2020, 150, 112385. [Google Scholar] [CrossRef]
- Marciano, S.J.; Avelino, F.; da Silva, L.R.R.; Mazzetto, S.E.; Lomonaco, D. Microwave-Assisted Phosphorylation of Organosolv Lignin: New Bio-Additives for Improvement of Epoxy Resins Performance. Biomass Conv. Bioref. 2020. [Google Scholar] [CrossRef]
- Liang, X.; Hu, Q.; Wang, X.; Li, L.; Dong, Y.; Sun, C.; Hu, C.; Gu, X. Thermal Kinetics of a Lignin-Based Flame Retardant. Polymers 2020, 12, 2123. [Google Scholar] [CrossRef]
- Biziks, V.; Fleckenstein, M.; Mai, C.; Militz, H. Suitability of a Lignin-Derived Mono-Phenol Mimic to Replace Phenol in Phenol-Formaldehyde Resin for Use in Wood Treatment. Holzforschung 2020, 74, 344–350. [Google Scholar] [CrossRef] [Green Version]
- Nakos, P.; Tsiantzi, S.; Athanassiadou, E. Wood Adhesives Made with Pyrolysis Oils. ACM Wood Chem. Plc 2001, 1–8. [Google Scholar]
- Dier, T.K.F.; Fleckenstein, M.; Militz, H.; Volmer, D.A. Exploring the Potential of High Resolution Mass Spectrometry for the Investigation of Lignin-Derived Phenol Substitutes in Phenolic Resin Syntheses. Anal. Bioanal. Chem. 2017, 409, 3441–3451. [Google Scholar] [CrossRef]
- Farag, S.; Chaouki, J. Economics Evaluation for On-Site Pyrolysis of Kraft Lignin to Value-Added Chemicals. Bioresour. Technol. 2015, 175, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Di, B.; Li, Z.; Lei, Y.; Wang, X.; Zhu, Y.; Qi, W.; Tian, Y. Phenol-enriched Hydroxy Depolymerized Lignin by Microwave Alkali Catalysis to Prepare High-adhesive Biomass Composites. Polym. Eng. Sci. 2021, pen.25664. [Google Scholar] [CrossRef]
- Solt, P.; Rößiger, B.; Konnerth, J.; van Herwijnen, H. Lignin Phenol Formaldehyde Resoles Using Base-Catalysed Depolymerized Kraft Lignin. Polymers 2018, 10, 1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czernik, S.; Bridgwater, A.V. Overview of Applications of Biomass Fast Pyrolysis Oil. Energy Fuels 2004, 18, 590–598. [Google Scholar] [CrossRef]
- Roy, C.; Lu, X.; Pakdel, H. Process for the Production of Phenolic-Rich Pyrolysis Oils for Use in Making Phenol-Formaldehyde Resole Resins. U.S. Patent No. 6,143,856, 7 November 2000. [Google Scholar]
- Chan, F.; Riedl, B.; Wang, X.-M.; Lu, X.; Ame-Chen, C.; Roy, C. Performance of Pyrolysis Oil-Based Wood Adhesives in OSB. For. Prod. J. 2002, 52, 31–38. [Google Scholar]
- Zabelkin, S.; Valeeva, A.; Sabirzyanova, A.; Grachev, A.; Bashkirov, V. Neutrals Influence on the Water Resistance Coefficient of Phenol-Formaldehyde Resin Modified by Wood Pyrolysis Liquid Products. Biomass Conv. Bioref. 2020. [Google Scholar] [CrossRef]
- Sukhbaatar, B.; Steele, P.H.; Kim, M.G. Use of Lignin Separated Form Bio-Oil in Oriented Strand Board Bilder Phenol-Formaldehyde Resins. Bioresources 2009, 4, 789–804. [Google Scholar]
- Celikbag, Y.; Nuruddin, M.; Biswas, M.; Asafu-Adjaye, O.; Via, B.K. Bio-Oil-Based Phenol–Formaldehyde Resin: Comparison of Weight- and Molar-Based Substitution of Phenol with Bio-Oil. J. Adhes. Sci. Technol. 2020, 2743–2754. [Google Scholar] [CrossRef]
- Dessbesell, L.; Yuan, Z.; Hamilton, S.; Leitch, M.; Pulkki, R.; Xu, C.C. Bio-Based Polymers Production in a Kraft Lignin Biorefinery: Techno-Economic Assessment: Bio-Based Polymer Production in a Kraft Lignin Biorefinery. Biofuels Bioprod. Bioref. 2018, 12, 239–250. [Google Scholar] [CrossRef]
- Xu, C.C.; Dessbesell, L.; Zhang, Y.; Yuan, Z. Lignin Valorization beyond Energy Use: Has Lignin’s Time Finally Come? Biofuels Bioprod. Bioref. 2020, 15, 32–36. [Google Scholar] [CrossRef]
- van Herwijnen, H.W.G.; Fliedner, E.; Heep, W. Verwendung nachwachsender Rohstoffe in Bindemitteln für Holzwerkstoffe. Chem. Ing. Tech. 2010, 82, 1161–1168. [Google Scholar] [CrossRef]
- Schröder, I. Prefere Resins Germany GmbH Konsolidierte Umwelterklärung 2019 EG-VO Nr. 1221/2009 (EMAS III); Prefere Resins Germany GmbH: Erkner, Germany, 2019. [Google Scholar]
- UPM Biochemicals GmbH Bahnbrechende Entwicklungen in der LIGNIN Wertschöpfungskette. Available online: https://www.upm.com/de/neuigkeiten-und-artikel/articles/2019/11/bahnbrechende-entwicklungen-in-der-lignin-wertschopfungskette/ (accessed on 16 March 2021).
- Borregaard LignoTech Binding Agent. Available online: https://www.lignotech.com/Product-Functionalities/Binding-Agent (accessed on 16 March 2021).
- Kruus, K.; Hakala, T. The Making of Bioeconomy Transformation; VTT Technical Research Centre of Finland: Espoo, Finland, 2017; ISBN 978-951-38-8503-8. [Google Scholar]
- HEXION Hexion-Canadian Partnership for Bio-Based Resins. Available online: https://www.hexion.com/en-us/catalyst/catalyst-blog/2020/05/21/hexion-canadian-partnership-for-bio-based-resins (accessed on 19 March 2021).
- Klabin, S.A. Klabin Acquires Technology for Extracting Lignin at Pilot Mill Complex. Available online: https://klabin.com.br/en/newsroom/press-release/klabin-acquires-technology-for-extracting-lignin-at-pilot-mill-complex/ (accessed on 19 March 2021).
- Lettner, M.; Hesser, F.; Hedeler, B.; Schwarzbauer, P.; Stern, T. Barriers and Incentives for the Use of Lignin-Based Resins: Results of a Comparative Importance Performance Analysis. J. Clean. Prod. 2020, 256, 120520. [Google Scholar] [CrossRef]
- Wallmo, H.; Karlsson, H.; Littorin, A. Lignin Production Upgraded—Industry-Specific Qualities to Broaden the Commercial Potential; 2020. [Google Scholar]
- Chum, H.L.; Black, S.K. Process for Fractionating Fast-Pyrolysis Oils, and Products Derived Therefrom. U.S. Patent No. 4,942,269, 17 July 1990. [Google Scholar]
- McFarlaine, H.M. Resins from Spent Sulphite Liquor. CA. Patent No. 696,732, 17 October 1964. [Google Scholar]
- Pecina, H.; Wienhaus, O.; Kühne, G.; Bernaczyk, Z.; Lubisch, H.-J.; Sauer, J.-D. Verfahren zur Herstellung eines Bindemittels auf Ligninbasis. D.D. Patent No. 297,898, 17 October 1983. [Google Scholar]
- Wennerblom, B.A.; Karlsson, A.H. Verfahren zur Herstellung von Ligninharz. DE. Patent No. 2,408,441, 21 February 1973. [Google Scholar]
- Wallace, F.J. Manufacture of Resins from Lignin. U.S. Patent No. 2,209,289, 23 July 1940. [Google Scholar]
- Read, D.W. Process for Producing Desulfonated Lignin Resins. U.S. Patent No. 3,551,405, 29 December 1970. [Google Scholar]
- Schneider, M.H.; Phillips, J.G. Furfuryl Alcohol and Lignin Adhesive Composition. U.S. Patent No. 6,747,076, 8 June 2004. [Google Scholar]
- Lettner, M.; Solt, P.; Rößiger, B.; Pufky-Heinrich, D.; Jääskeläinen, A.-S.; Schwarzbauer, P.; Hesser, F. From Wood to Resin—Identifying Sustainability Levers through Hotspotting Lignin Valorisation Pathways. Sustainability 2018, 10, 2745. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Guo, M. Do Green Wooden Composites Using Lignin-Based Binder Have Environmentally Benign Alternatives? A Preliminary LCA Case Study in China. Int. J. Life Cycle Assess. 2017, 22, 1318–1326. [Google Scholar] [CrossRef]
- Hildebrandt, J.; Budzinski, M.; Nitzsche, R.; Weber, A.; Krombholz, A.; Thrän, D.; Bezama, A. Assessing the Technical and Environmental Performance of Wood-Based Fiber Laminates with Lignin Based Phenolic Resin Systems. Resour. Conserv. Recycl. 2019, 141, 455–464. [Google Scholar] [CrossRef]
Phenol Substitution Levels in the Resin | Wood Sample | Mechanical Properties | Reference |
---|---|---|---|
20% substitution with methylolated organosolv lignin | Particle board | Internal bond strength (IB) = 1.02 MPa, Thickness swelling (TS) (2 h) = 10.6% | [60] |
PF resin with 5% nanolignin | Wood lap joints | Shear strength = 10.9 MPa | [63] |
100% substitution with methylolated enzymatic hydrolysis lignin | Plywood | Dry shear strength: 3.4 MPa (84% wood failure), wet shear strength: 2.6 MPa (73% wood failure) | [43] |
40% phenolated sodium lignosulfonates | Plywood | Shear strength = 5.6 MPa | [51] |
Lignin-Formaldehyde resins with methylolated softwood Kraft lignin, and corn stover enzymatic hydrolysislignin | Plywood | Enzymatic hydrolysis lignin: shear strength = 3.2 MPa (75% wood failure), softwood Kraft lignin: shear strength = 2.6 MPa (41% wood failure) | [22] |
50% replacement with methylolated pine sawdust organosolv lignin | Plywood | Tensile strength = 2.25 MPa (93% wood failure), tensile wet strength = 1.9 MPa (85% wood failure) | [55] |
PF resin with 30% nanolignin | Plywood | Dry bond strength = 1.59 MPa (100% wood failure), wet bond strength = 0.89 MPa (100% wood failure) | [48] |
Urea Substitution Levels in the Resin | Wood Sample | Mechanical Properties | Reference |
---|---|---|---|
10% ionic liquid pretreated soda bagasse lignin | Plywood | shear strength = 1.89 MPa, wood failure = 70% | [67] |
5% lignin-based polyacid catalyst | Plywood and MDF | Plywood: shear strength = 1.72 MPa, wet shear strength = 1.2 MPa MDF: IB = 1.35 MPa, 24h TS = 9% | [49] |
15% ionic-liquid-treated soda bagasse lignin with 6% PMDI additive | Plywood | Dry shear strength = 2.2 MPa (100% wood failure), wet shear strength = 0.99 MPa (70% wood failure), water adsorption = 22% | [68] |
Resin Composition | Wood Sample | Mechanical Properties | Reference |
---|---|---|---|
LPG resin with 20% soda bagasse black liquor | Particle board | IB = 0.6 MPa, water absorption = 14%, thickness swelling = 10% | [71] |
LPG resin with 30% bagasse soda black liquor and 7% epoxy resin | Plywood | Dry shear strength = 1.74 MPa (100% wood failure); wet shear strength = 1.0 MPa (80% wood failure), thickness swelling = 4% | [72] |
LUG resin with 15% glyoxalated bagasse soda black liquor and 5% epoxy resin | Plywood | Dry shear strength = 1.7 MPa (100% wood failure), Wet shear strength = 1.3 MPa (80% wood failure), Water absorption = 6% | [70] |
Polyurea adhesive doped with 20% polyetheramine chain grafted lignin with functional disulfide bonds | Beech wood boards | Lap shear strength = 7.8 MPa | [75] |
Resin Composition | Wood Sample | Mechanical Properties | Reference |
---|---|---|---|
PF resin with 70% oligomer lignin from pine Kraft lignin treated by base-catalyzed depolymerization | Beech lamellas | Tensile shear strength = 15 MPa. Wet tensile shear strength about 6 MPa | [85] |
PF resin with 40% alkaline-catalyzed microwave-digested wheat straw lignin | Plywood | Bonding strength = 1.70 MPa | [84] |
PF resin with 40% phenol replacement by lignin liquefied in phenol | Plywood | Dry bonding strength = 1.42 MPa, warm water soaking bonding strength = 1.22 MPa, repetitive boiling water soaking bonding strength = 1.10 MPa | [45] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karthäuser, J.; Biziks, V.; Mai, C.; Militz, H. Lignin and Lignin-Derived Compounds for Wood Applications—A Review. Molecules 2021, 26, 2533. https://doi.org/10.3390/molecules26092533
Karthäuser J, Biziks V, Mai C, Militz H. Lignin and Lignin-Derived Compounds for Wood Applications—A Review. Molecules. 2021; 26(9):2533. https://doi.org/10.3390/molecules26092533
Chicago/Turabian StyleKarthäuser, Johannes, Vladimirs Biziks, Carsten Mai, and Holger Militz. 2021. "Lignin and Lignin-Derived Compounds for Wood Applications—A Review" Molecules 26, no. 9: 2533. https://doi.org/10.3390/molecules26092533