Co-Microencapsulated Black Rice Anthocyanins and Lactic Acid Bacteria: Evidence on Powders Profile and In Vitro Digestion
Abstract
:1. Introduction
2. Results and Discussion
2.1. Bioactives Profile of the Black Rice Flour Extracts
2.2. The Encapsulation Efficiency and Bioactive Profile of the Powders
2.3. In Vitro Digestion of the Anthocyanin in the Microencapsulated Powders
2.4. Structure and Morphology of the Microencapsulated Powders
2.5. Storage Stability Test
2.6. The Viability of the L. Paracasei within the Microencapsulated Powders
3. Materials and Methods
3.1. Black Rice Material
3.2. Reagents and Bacterial Strain
3.3. The Black Rice Flour Extracts
3.4. Characterization of Black Rice Flour Extracts
3.5. Co-Microencapsulation of Anthocyanins and Lactic Acid Bacteria
3.6. The Microencapsulation Efficiency and Powders Phytochemical Profile
3.7. Short-Term Storage Stability Test
3.8. In Vitro Digestion of Anthocyanins from Microcapsules
3.9. Viability of the Probiotic Strain
3.10. Confocal Laser Scanning Microscopy Analysis
3.11. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Bolea, C.-A.; Vizireanu, C. Polyphenolic content and antioxidant properties of black rice flour. Ann. Univ. Dunarea Jos Galati Fascicle–Food Technol. 2017, 41, 75–85. [Google Scholar]
- Ling, W.H.; Wang, L.L.; Ma, J. Supplementation of the black rice outer layer fraction to rabbits decreases a the rosclerotic plaque formation and increases antioxidant status. J. Nutr. 2002, 132, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Sompong, R.; Siebenhandl, E.S.; Linsberger, M.G.; Berghofer, E. Physicochemical and antioxidative properties of red and black rice varieties from Thailand, China and Sri Lanka. Food Chem. 2011, 124, 132–140. [Google Scholar] [CrossRef]
- Chang, K.K.; Kikuchi, S.; Kim, Y.K.; Park, S.H.; Yoon, U.; Lee, G.S.; Choi, J.W.; Kim, Y.H.; Park, S.C. Computational identification of seed specific transcription factors involved in anthocyanin production in black rice. Biochip J. 2010, 4, 247–255. [Google Scholar]
- Adom, K.K.; Liu, R.H. Antioxidant activity of grains. J. Agric. Food Chem. 2002, 50, 6170–6182. [Google Scholar] [CrossRef] [PubMed]
- Dipti, S.S.; Bergman, C.; Indrasari, S.D.; Herath, T.; Hall, R.; Lee, H.; Habibi, F.; Bassinello, P.Z.; Graterol, E.; Ferraz, J.P. The potential of rice to offer solutions for malnutrition and chronic diseases. Rice 2012, 5, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papillo, V.A.; Locatelli, M.; Travaglia, F.; Bordiga, M.; Garino, C.; Arlorio, M.; Coïsson, J.D. Spray-dried polyphenolic extract from Italian black rice (Oryza sativa L., var. Artemide) as new ingredient for bakery products. Food Chem. 2018, 269, 603–609. [Google Scholar] [CrossRef]
- Cavalcanti, R.N.; Santos, D.T.; Meireles, M.A.A. Non-thermal stabilization mechanisms of anthocyanins in model and food systems–An overview. Food Res. Int. 2011, 44, 499–509. [Google Scholar] [CrossRef]
- Mahdavi, S.A.; Jafari, S.M.; Assadpoor, E.; Dehnad, D. Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin. Int. J. Biol. Macromol. 2016, 85, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Vasisht, N. Microencapsulation in the Food Industry, A Practical Implementation Guide; Academic Press: Durham, NC, USA, 2014; pp. 15–24. [Google Scholar]
- Arroyo-Maya, I.J.; McClements, D.J. Biopolymer nanoparticles as potential delivery systems for anthocyanins: Fabrication and properties. Food Res. Int. 2015, 69, 1–8. [Google Scholar] [CrossRef]
- Khazaei, K.M.; Jafari, S.M.; Ghorbani, M.; Kakhki, A.H. Application of maltodextrin and gum Arabic in microencapsulation of saffron petal’s anthocyanins and evaluating their storage stability and color. Carbohydr. Polym. 2014, 105, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, C.; Chung, M.M.S.; Santos dos, C.; Mayer, C.R.M.; Moraes, I.C.F.; Branco, I.G. Microencapsulation of an anthocyanin-rich blackberry (Rubus spp.) by-product extract by freeze-drying. LWT-Food Sci. Technol. 2017, 84, 256–262. [Google Scholar] [CrossRef] [Green Version]
- Dullius, A.; Goettert, M.I.; Volken de Souza, C.F. Whey protein hydrolysates as a source of bioactive peptides for functional foods-Biotechnological facilitation of industrial scale-up. J. Funct. Foods 2018, 42, 58–74. [Google Scholar] [CrossRef]
- Pihlanto-Leppälä, A. Bioactive peptides derived from bovine whey proteins: Opioid and ace-inhibitory peptides. Trends Food Sci. Technol. 2000, 11, 347–356. [Google Scholar] [CrossRef]
- Zaeim, D.; Sarabi-Jamab, M.; Ghorani, B.; Kadkhodaee, R.; Liu, W.; Tromp, R.H. Microencapsulation of probiotics in multi-polysaccharide microcapsules by electro-hydrodynamic atomization and incorporation into ice-cream formulation. Food Struct. 2020, 25, 100147. [Google Scholar] [CrossRef]
- Tripathi, M.K.; Giri, S.K. Probiotic functional foods: Survival of probiotics during processing and storage. J. Funct. Foods. 2014, 9, 225–241. [Google Scholar] [CrossRef]
- Cook, M.T.; Tzortzis, G.; Charalampopoulos, D.; Khutoryanskiy, V.V. Production and Evaluation of Dry Alginate-Chitosan Microcapsules as an Enteric Delivery Vehicle for Probiotic Bacteria. Biomacromolecules 2011, 12, 2834–2840. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-H.; Ng, L.T. Quantification of polyphenolic content and bioactive constituents of somecommercial rice varieties in Taiwan. J. Food Compos. Anal. 2012, 26, 122–127. [Google Scholar] [CrossRef]
- Alves, G.H.; Ferreira, C.D.; Vivian, P.G.; Monks JL, F.; Elias, M.C.; Vanier, N.L.; de Oliveira, M. Effects of the extraction procedure. Food Chem. 2016, 208, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Das, A.B.; Goud, V.V.; Das, C. Extraction of phenolic compounds and anthocyanin from black and purple rice bran (Oryza sativa L.) using ultrasound: A comparative analysis and phytochemical profiling. Ind. Crop. Prod. 2017, 95, 332–341. [Google Scholar] [CrossRef]
- Shao, Y.; Hu, Z.; Yu, Y.; Mou, R.; Zhu, Z.; Beta, T. Phenolic acids, anthocyanins, proanthocyanidins, antioxidant activity, minerals and their correlations in non-pigmented, red, and black rice. Food Chem. 2018, 239, 733–741. [Google Scholar] [CrossRef]
- Kang, Y.R.; Lee, Y.K.; Kim, Y.J.; Chang, Y.H. Characterization and storage stability of chlorophylls microencapsulated in different combination of gum Arabic and maltodextrin. Food Chem. 2019, 272, 337–346. [Google Scholar] [CrossRef]
- Santos, D.T.; Albarelli, J.Q.; Beppu, M.M.; Meireles, M.A.A. Stabilization of anthocyanin extract from jabuticaba skins by encapsulation using supercritical CO2 as solvent. Food Res. Int. 2013, 50, 617–624. [Google Scholar] [CrossRef] [Green Version]
- Stanciuc, N.; Turturica, M.; Oancea, A.-M.; Barbu, V.; Ionita, E.; Aprodu, I.; Râpeanu, G. Microencapsulation of anthocyanins from grapes skins by whey proteins isolates and different polymers. Food Bioproc. Technol. 2017, 10, 1715–1726. [Google Scholar] [CrossRef]
- Huang, Y.; Zhou, W. Microencapsulation of anthocyanins through two-step emulsification and release characteristics during in vitro digestion. Food Chem. 2019, 278, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.T.; Ma, G.H.; Qiu, W.; Su, Z.G. W/O/W double emulsion technique using ethyl acetate as organic solvent: Effects of its diffusion rate on the characteristics of microparticles. J. Control. Release 2003, 91, 407–416. [Google Scholar] [CrossRef]
- Adachi, S.; Imaoka, H.; Ashida, H.; Maeda, H.; Matsuno, R. Preparation of microcapsules of W/O/W emulsions containing a polysaccharide in the outer aqueous phase by spray-drying. Eur. J. Lipid Sci. Technol. 2004, 106, 225–231. [Google Scholar] [CrossRef]
- Kaimainen, M.; Marze, S.; Järvenpää, E.; Anton, M.; Huopalahti, R. Encapsulation of betalain into w/o/w double emulsion and release during in vitro intestinal lipid digestion. LWT-Food Sci. Technol. 2015, 60, 899–904. [Google Scholar] [CrossRef]
- Aprodu, I.; Milea, S.A.; Anghel, R.-M.; Enachi, E.; Barbu, V.; Craciunescu, O.; Râpeanu, G.; Bahrim, G.E.; Oancea, A.; Stanciuc, N. New Functional Ingredients Based on Microencapsulation of Aqueous Anthocyanin-Rich Extracts Derived from Black Rice (Oryza sativa L.). Molecules 2019, 24, 3389. [Google Scholar] [CrossRef] [Green Version]
- Flores, F.P.; Singh, R.K.; Kerr, W.L.; Phillips, D.R.; Kong, F. In vitro release properties of encapsulated blueberry (Vaccinium ashei) extracts. Food Chem. 2015, 168, 225–232. [Google Scholar] [CrossRef]
- Kahle, K.; Kraus, M.; Scheppach, W.; Ackermann, M.; Ridder, F.; Richling, E. Studies on apple and blueberry fruit constituents: Do the polyphenols reach the colon after ingestion? Mol. Nutr. Food Res. 2006, 50, 418–423. [Google Scholar] [CrossRef]
- Shpigelman, A.; Cohen, Y.; Livney, Y.D. Thermally-induced β-lactoglobulin EGCG nanovehicles: Loading, stability, sensory and digestive-release study. Food Hydrocoll. 2012, 29, 57–67. [Google Scholar] [CrossRef]
- Oancea, A.-M.; Hasanb, M.; Vasile, A.M.; Barbu, V.; Enachi, E.; Bahrim, G.; Râpeanu, G.; Milea, S.; Stănciuc, N. Functional evaluation of microencapsulated anthocyanins from sour cherries skins extract in whey proteins isolate. LWT-Food Sci. Technol. 2018, 95, 129–134. [Google Scholar] [CrossRef]
- Das, A.B.; Goud, V.V.; Das, C. Microencapsulation of anthocyanin extract from purple rice bran using modified rice starch and its effect on rice dough rheology. Int. J. Biol. Macromol. 2019, 124, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Weber, F.; Boch, K.; Schieber, A. Influence of copigmentation on the stability of spray dried anthocyanins from blackberry. LWT Food Sci. Technol. 2017, 75, 72–77. [Google Scholar] [CrossRef]
- Patras, A.; Brunton, N.P.; O’Donnell, C.; Tiwari, B.K. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci. Technol. 2010, 21, 3–11. [Google Scholar] [CrossRef]
- Enache, I.M.; Vasile, A.M.; Enachi, E.; Barbu, V.; Stănciuc, N.; Vizireanu, C. Co-microencapsulation of anthocyanins from black currant extract and lactic acid bacteria in biopolymeric matrices. Molecules 2020, 25, 1700. [Google Scholar] [CrossRef] [Green Version]
- Yee, W.L.; Yee, C.L.; Lin, N.K.; Phing, P.L. Microencapsulation of Lactobacillus acidophilus NCFM incorporated with mannitol and its storage stability in mulberry tea. Ciência e Agrotecn. 2019, 43, 005819. [Google Scholar] [CrossRef] [Green Version]
- Bolea, C.; Turturică, M.; Stănciuc, N.; Vizireanu, C. Thermal degradation kinetics of bioactive compounds from black rice flour (Oryza sativa L.) extracts. J. Cereal Sci. 2016, 71, 160–166. [Google Scholar] [CrossRef]
- Enache, I.M.; Vasile, A.M.; Enachi, E.; Barbu, V.; Stănciuc, N.; Vizireanu, C. Co-microencapsulation of anthocyanins from cornelian cherry fruits and lactic acid bacteria in biopolymeric matrices by freeze-drying: Evidences on functional properties and applications in food. Polymers 2020, 12, 906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Type of Extract | Total Antochyanins, mg C3G/g DW | Total Polyphenols, mg Gallic Acid Equivalents (GAE)/g DW | Total Flavonoids, mg EC/g DW | 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), % |
---|---|---|---|---|
Aqueous extract | 134.18 ± 0.02 b | 18.43 ± 0.18 b | 19.47 ± 0.50 b | 75.73 ± 1.28 b |
Ethanolic extract | 174.90 ± 4.66 a | 453.36 ± 6.21 a | 428.71 ± 21.32 a | 88.92 ± 1.26 a |
Powders | Total Anthocyanins, mg C3G/g DW | Total Polyphenols, mg GAE/g DW | Total Flavonoids, mg Catechin Equivalents (CE)/g DW | ABTS, % |
---|---|---|---|---|
P2 | 27.60 ± 17.36 b | 113.85 ± 1.92 b | 50.97 ± 5.70 a | 82.50 ± 0.29 b |
P1 | 102.91 ± 1.83 a | 200.70 ± 8.34 a | 39.77 ± 5.37 b | 87.92 ± 0.54 a |
P2 | ||||
0 | 7 days | 14 days | 21 days | |
Total anthocyanins, mg C3G/DW | 27.60 ± 9.75 a | 27.86 ± 3.83 a | 28.38 ± 3.89 a | 28.96 ± 3.68 a |
Total polyphenols, mg GAE/ DW | 113.85 ± 1.92 a | 118.40 ± 4.28a | 123.41 ± 4.60 a | 123.73 ± 2.26 a |
Total flavonoids, mg EC/g DW | 50.97 ± 5.70 b | 53.61 ± 2.32 ab | 63.34 ± 1.40 ab | 65.16 ± 4.80 a |
2,2-diphenyl-1-picrylhydrazyl (DPPH) % | 73.72 ± 1.39 a | 75 ± 4.15 a | 75.10 ± 1.57 a | 76.11 ± 0.25 a |
ABTS % | 82.50 ± 0.29 b | 84.20 ± 1.10 ab | 84.40 ± 0.80 ab | 85.17 ± 0.78 a |
P1 | ||||
Total anthocyanins, mg C3G/DW | 102.91 ± 1.83 b | 119.27 ± 2.10 a | 97.64 ± 2.43 bc | 94.01 ± 6.94 c |
Total polyphenols, mg GAE/ DW | 200.70 ± 8.34 a | 198.45 ± 8.92 a | 193.77 ± 2.3 a | 190.91 ± 1.43 a |
Total flavonoids, mg EC/g DW | 39.77 ± 5.37 a | 39.26 ± 8.99 a | 38.93 ± 1.13 a | 37.79 ± 8.47 a |
DPPH % | 80.27 ± 0,39 a | 80.22 ± 2.56 a | 80.11 ± 0.54 a | 80.06 ± 0.66 a |
ABTS % | 87.92 ± 0.54 a | 85.46 ± 0.05 b | 84.19 ± 1.05 b | 84.09 ± 1.88 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bolea, C.-A.; Cotârleț, M.; Enachi, E.; Barbu, V.; Stănciuc, N. Co-Microencapsulated Black Rice Anthocyanins and Lactic Acid Bacteria: Evidence on Powders Profile and In Vitro Digestion. Molecules 2021, 26, 2579. https://doi.org/10.3390/molecules26092579
Bolea C-A, Cotârleț M, Enachi E, Barbu V, Stănciuc N. Co-Microencapsulated Black Rice Anthocyanins and Lactic Acid Bacteria: Evidence on Powders Profile and In Vitro Digestion. Molecules. 2021; 26(9):2579. https://doi.org/10.3390/molecules26092579
Chicago/Turabian StyleBolea, Carmen-Alina, Mihaela Cotârleț, Elena Enachi, Vasilica Barbu, and Nicoleta Stănciuc. 2021. "Co-Microencapsulated Black Rice Anthocyanins and Lactic Acid Bacteria: Evidence on Powders Profile and In Vitro Digestion" Molecules 26, no. 9: 2579. https://doi.org/10.3390/molecules26092579
APA StyleBolea, C. -A., Cotârleț, M., Enachi, E., Barbu, V., & Stănciuc, N. (2021). Co-Microencapsulated Black Rice Anthocyanins and Lactic Acid Bacteria: Evidence on Powders Profile and In Vitro Digestion. Molecules, 26(9), 2579. https://doi.org/10.3390/molecules26092579