Use of the 2D 1H-13C HSQC NMR Methyl Region to Evaluate the Higher Order Structural Integrity of Biopharmaceuticals
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Sample Preparation
4.2. Intrinsic Tryptophan Fluorescence Spectroscopy
4.3. Near-Ultraviolet Circular Dichroism Spectroscopy
4.4. Nuclear Magnetic Resonance
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
HOS | Higher-order structure |
HOS by NMR | higher-order structure by nuclear magnetic resonance |
FTIR | Fourier transform infrared |
NUV-CD | near-ultraviolet circular dichroism |
FLD | intrinsic fluorescence spectroscopy |
NMR | nuclear magnetic resonance |
ppm | parts per million |
mAb | monoclonal antibody |
References
- Berkowitz, S.A.; Engen, J.R.; Mazzeo, J.R.; Jones, G.B. Analytical tools for characterizing biopharmaceuticals and the implications for biosimilars. Nature reviews. Drug Discov. 2012, 11, 527–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabrielson, J.P.; Weiss, W.F., 4th. Technical Decision-Making with Higher Order Structure Data: Starting a New Dialogue. J. Pharm. Sci. 2015, 104, 1240–1245. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Batabyal, D.; Knutson, N.; Lord, H.; Wikström, M. A Comparison Between Emerging and Current Biophysical Methods for the Assessment of Higher-Order Structure of Biopharmaceuticals. J. Pharm. Sci. 2020, 109, 247–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poppe, L.; Jordan, J.B.; Lawson, K.; Jerums, M.; Apostol, I.; Schnier, P.D. Profiling Formulated Monoclonal Antibodies by 1H NMR Spectroscopy. Anal. Chem. 2013, 85, 9623–9629. [Google Scholar] [CrossRef] [PubMed]
- Poppe, L.; Jordan, J.B.; Rogers, G.; Schnier, P.D. On the Analytical Superiority of 1D NMR for Fingerprinting the Higher Order Structure of Protein Therapeutics Compared to Multidimensional NMR Methods. Anal. Chem. 2015, 87, 5539–5545. [Google Scholar] [CrossRef] [PubMed]
- Arbogast, L.W.; Brinson, R.G.; Marino, J.P. Mapping monoclonal antibody structure by 2D 13C NMR at natural abundance. Anal. Chem. 2015, 87, 3556–3561. [Google Scholar] [CrossRef] [PubMed]
- Brinson, R.G.; Marino, J.P.; Delaglio, F.; Arbogast, L.W.; Evans, R.M.; Kearsley, A.; Gingras, G.; Ghasriani, H.; Aubin, Y.; Pierens, G.K.; et al. Enabling adoption of 2D-NMR for the higher order structure assessment of monoclonal antibody therapeutics. mAbs 2019, 11, 94–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Smith, D.L. Determination of amide hydrogen exchange by mass spectrometry: A new tool for protein structure elucidation. Protein Sci. 1993, 2, 522–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goswami, D.; Zhang, J.; Bondarenko, P.; Zhang, Z. MS-based conformation analysis of recombinant proteins in design, optimization and development of biopharmaceuticals. Methods 2018, 144, 134–151. [Google Scholar] [CrossRef] [PubMed]
- Ramachander, R.; Jiang, Y.; Li, C.; Eris, T.; Young, M.; Dimitrova, M.; Narhi, L. Solid state fluorescence of lyophilized proteins. Anal. Biochem. 2008, 376, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 2nd ed.; Springer: New York, NY, USA, 1999. [Google Scholar]
- Wishart, D.S.; Bigam, C.G.; Holm, A.; Hodges, R.S.; Sykes, B.D. 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J. Biomol. NMR 1995, 5, 67–81. [Google Scholar] [CrossRef] [PubMed]
- Dillon, T.M.; Ricci, M.S.; Vezina, C.; Flynn, G.C.; Liu, Y.D.; Rehder, D.S.; Plant, M.; Henkle, B.; Li, Y.; Deechongkit, S.; et al. Structural and Functional Characterization of Disulfide Isoforms of the Human IgG2 Subclass. J. Biol. Chem. 2008, 23, 16206–16215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sattler, M.; Schmidt, P.; Schedletzky, O.; Glaser, S.J.; Sørensen, O.W.; Griesinger., C. A general enhancement scheme in heteronuclear multidimensional NMR employing pulsed field gradients. J. Biomol. NMR 1994, 4, 301–306. [Google Scholar]
- Smallcombe, S.H.; Patt, S.L.; Keifer, P.A. WET solvent suppression and its applications to LC NMR and high-resolution NMR spectroscopy. J. Magn. Reson. A. 1995, 117, 295–303. [Google Scholar] [CrossRef]
- Hwang, T.-L.; van Zijl, P.C.M.; Garwood, M. Asymmetric adiabatic pulses for NH selection. J. Magn. Reson. 1999, 138, 173–177. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, T.-L.; Batabyal, D.; Knutson, N.; Wikström, M. Use of the 2D 1H-13C HSQC NMR Methyl Region to Evaluate the Higher Order Structural Integrity of Biopharmaceuticals. Molecules 2021, 26, 2714. https://doi.org/10.3390/molecules26092714
Hwang T-L, Batabyal D, Knutson N, Wikström M. Use of the 2D 1H-13C HSQC NMR Methyl Region to Evaluate the Higher Order Structural Integrity of Biopharmaceuticals. Molecules. 2021; 26(9):2714. https://doi.org/10.3390/molecules26092714
Chicago/Turabian StyleHwang, Tsang-Lin, Dipanwita Batabyal, Nicholas Knutson, and Mats Wikström. 2021. "Use of the 2D 1H-13C HSQC NMR Methyl Region to Evaluate the Higher Order Structural Integrity of Biopharmaceuticals" Molecules 26, no. 9: 2714. https://doi.org/10.3390/molecules26092714
APA StyleHwang, T. -L., Batabyal, D., Knutson, N., & Wikström, M. (2021). Use of the 2D 1H-13C HSQC NMR Methyl Region to Evaluate the Higher Order Structural Integrity of Biopharmaceuticals. Molecules, 26(9), 2714. https://doi.org/10.3390/molecules26092714