Investigation of the Amide Linkages on Cooperative Supramolecular Polymerization of Organoplatinum(II) Complexes
Abstract
:1. Introduction
2. Results
2.1. Supramolecular Polymerization Behaviors of (S)-2 in Apolar Media
2.2. Comparison of Supramolecular Polymerization Thermodynamics between (S)-1 and (S)-2
2.3. Majority-Rules for Supramolecular Polymers Derived from (S)-2/(R)-2
2.4. Supramolecular Polymerization Behaviors of (S)-3
3. Discussion
4. Materials and Methods
4.1. Materials and Instruments
4.2. DFT Computations
4.3. Determination of the Assembling Thermodynamics for the Supramolecular Polymerization Process
4.4. Synthetic Procedures
4.4.1. Synthesis of (S)-2
4.4.2. Synthesis of (S)-3
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Hoeben, F.; Jonkheijm, P.; Meijer, E.W. About supramolecular assemblies of π-conjugated systems. Chem. Rev. 2005, 4, 1491–1546. [Google Scholar] [CrossRef]
- Aida, T.; Meijer, E.W.; Stupp, S.I. Functional supramolecular polymers. Science 2012, 335, 813–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, A.; George, S.J. New directions in supramolecular electronics. Mater. Today 2015, 18, 206–214. [Google Scholar] [CrossRef]
- Hossain, M.; Sato, T.; Higuchi, M. A green copper-based metallo-supramolecular polymers: Synthesis, structure, and electrochromic properties. Chem. Asian J. 2013, 8, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Herbst, F.; Seiffert, S.; Binder, W. Dynamic supramolecular poly(isobutylene)s for self-healing materials. Polym. Chem. 2012, 3, 3084–3092. [Google Scholar] [CrossRef]
- Busseron, E.; Ruff, Y.; Moulin, E.; Giuseppone, N. Supramolecular self-assemblies as functional nanomaterials. Nanoscale 2013, 5, 7098–7140. [Google Scholar] [CrossRef] [Green Version]
- Praveen, V.; Vedhanarayanan, B.; Mal, A.; Ajayaghosh, A. Self-assembled extened π-systems for sensing and security applications. Acc. Chem. Res. 2020, 53, 496–507. [Google Scholar] [CrossRef]
- Gershberg, J.; Fennel, F.; Rehm, T.; Lochbrunner, S.; Würthner, F. Anti-cooperative supramolecular polymerization: A new K2–K model applied to the self-assembly of perylene bisimide dye proceeding via well-defined hydrogen-bonded dimers. Chem. Sci. 2016, 7, 1729–1737. [Google Scholar] [CrossRef] [Green Version]
- Greef, T.; Smulders, M.; Woffls, M.; Meijer, E.W. Supramolecular Polymerization. Chem. Rev. 2009, 109, 5687–5754. [Google Scholar] [CrossRef]
- Wehner, M.; Würthner, F. Supramolecular polymerization through kinetic pathway control and living chain growth. Nat. Rev. Chem. 2020, 4, 38–53. [Google Scholar] [CrossRef]
- Ikeda, T.; Lijima, T.; Sekiya, R.; Takahashi, O.; Haino, T. Cooperative self-assembly of carbazole derivatives driven by multiple dipole-dipole interactions. J. Org. Chem. 2016, 81, 6832–6837. [Google Scholar]
- Ikeda, T.; Adachi, H.; Fueno, H.; Tanaka, K.; Haino, T. Induced-dipole-directed, cooperative self-assembly of a benzotrithiophene. J. Org. Chem. 2017, 82, 10062–10069. [Google Scholar]
- Wagner, W.; Wehner, M.; Stepanenko, V.; Würthner, F. Supramolecular block copolymers by seeded living polymerization of perylene bisimides. J. Am. Chem. Soc. 2019, 141, 12044–12054. [Google Scholar] [CrossRef]
- Chen, Z.; Xue, Y.; Gui, M.; Wang, F. Structural isomerism effect in platinum (II) acetylide-based supramolecular polymers. Inorg. Chem. 2020, 59, 6481–6488. [Google Scholar] [CrossRef]
- Obert, E.; Bellot, M.; Bouteiller, L. Both water- and organo-soluble supramolecular polymer stabilized by hydrogen-bonding and hydrophobic interactions. J. Am. Chem. Soc. 2007, 129, 15601–15605. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Sun, S. Narcissistic self-sorting of hydrogen-bonded dimeric capsules formed through self-assembly of flexible tripodal receptors in polar solvents. Chem. Commun. 2012, 48, 7392–7394. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.; Sun, S. Supramolecular assemblies of amide-derived organogels featuring rigid π-conjugated phenylethynyl frameworks. Langmuir 2013, 29, 15146–15158. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhu, B.; Zhang, F.; Han, Y.; Bo, Z. Hierarchical supramolecular self-assembly of nanotubes and layered sheets. Angew. Chem. Int. Ed. 2008, 47, 6015–6018. [Google Scholar] [CrossRef] [PubMed]
- Hirano, K.; Ikeda, T.; Fujii, N.; Hirao, T.; Nakamura, M.; Haino, T. Helical assembly of a dithienogermole exhibiting switchable circularly polarized luminescence. Chem. Commun. 2019, 55, 10607–10610. [Google Scholar] [CrossRef]
- Yuan, W.; Cheng, J.; Li, X.; Wu, M.; Han, Y.; Yan, C.; Zou, G.; Chen, Y. 5,6,12,13-Tetraazaperopyrenes as unique photonic and mechanochromic fluorophores. Angew. Chem. Int. Ed. 2020, 59, 9940–9945. [Google Scholar] [CrossRef]
- Han, Y.; Zhu, B.; Chen, Y.; Bo, Z.; Chen, Y. Amphiphilic dendrons with a pyrene functional group at the focal point: Synthesis, self-assembly and generation-dependent DNA condensation. Polym. Chem. 2017, 8, 4798–4804. [Google Scholar] [CrossRef]
- Greciano, E.; Calbo, J.; Buendía, J.; Cerdá, J.; Aragó, J.; Ortí, E.; Sánchez, L. Decoding the consequences of increasing the size of self-assembling tricarboxamides on chiral amplification. J. Am. Chem. Soc. 2019, 141, 7463–7472. [Google Scholar] [CrossRef]
- García, F.; Aparicio, F.; Fernández, G.; Sánchez, L. Solvophbic effects in the self-assembly of triangular-shape amphiphilic oligo (phenylene ethynylenes). Org. Lett. 2009, 11, 2748–2751. [Google Scholar] [CrossRef]
- Aparicio, F.; García, F.; Fernández, G.; Matesanz, E.; Sánchez, L. Mirror Helices and helicity switch at surfaces based on chiral triangular-shape oligo (phenylene ethynylenes). Chem. Eur. J. 2011, 17, 2769–2776. [Google Scholar] [CrossRef]
- Greciano, E.; Calbo, J.; Ortí, E.; Sánchez, L. N-annulated perylene bisimides to bias the differentiation of metastable supramolecular assemblies into J- and H-aggregates. Angew. Chem. Int. Ed. 2020, 132, 17670–17677. [Google Scholar] [CrossRef]
- Wagner, W.; Wehner, M.; Stepanenko, V.; Würthner, F. Impact of molecular shape on supramolecular copolymer synthesis in seeded living polymerization of perylene bisimides. CCS Chem. 2019, 1, 598–613. [Google Scholar] [CrossRef] [Green Version]
- Iavicoli, P.; Xu, H.; Feldborg, L.; Linares, M.; Paradinas, M.; Ocal, C.; Casado, J.; Lazzaroni, R.; Feyter, S.; Amabilino, D. Tuning the supramolecular chirality of one- and two-dimensional aggregates with the number of stereogenic centers in the component porphyrins. J. Am. Chem. Soc. 2010, 132, 9350–9362. [Google Scholar] [CrossRef]
- Moreira, L.; Calbo, J.; Nierengarten, J. Conjugated porphyrin dimers: Cooperative effects and electronic communication in supramolecular ensembles with C60. J. Am. Chem. Soc. 2016, 138, 15359–15367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveras-G, C.; Meo, F.; González-C, A.; Beljonne, D.; Norman, P.; Linares, M.; Amabilino, D. Bottom-up hierarchical self-assembly of chiral porphyrins through coordination and hydrogen bonds. J. Am. Chem. Soc. 2015, 137, 15795–15808. [Google Scholar] [CrossRef]
- Amabilino, D.; Smith, D.; Steed, J. Supramolecular materials. Chem. Soc. Rev. 2017, 46, 2404–2420. [Google Scholar] [CrossRef]
- Ikeda, T.; Hirano, K.; Haino, T. A circularly polarized luminescent organogel based on a Pt (II) complex possessing phenylisoxazoles. Mater. Chem. Front. 2018, 2, 468–474. [Google Scholar]
- Chang, K.; Lin, J.; Shen, Y.; Hung, C.; Chen, C.; Sun, S. Synthesis and photophysical properties of self-assembled metallogels of platinum (II) acetylide complexes with elaborate long-chain pyridine-2,6-dicarboxamides. Chem. Eur. J. 2012, 18, 1312–1321. [Google Scholar] [CrossRef]
- Gao, Z.; Zhu, J.; Han, Y.; Wang, F. Ligand effects on cooperative supramolecular polymerization of platinum (II) acetylide complexes. Polym. Chem. 2016, 7, 5763–5767. [Google Scholar] [CrossRef]
- Camerel, F.; Ziessel, R.; Donnio, B.; Bourgogne, C.; Guillon, D.; Schmutz, M.; Iacovita, C.; Bucher, J.-P. Formation of Gels and Liquid Crystals Induced by Pt⋅⋅⋅Pt and π-π * Interactions in Luminescent σ-Alkynyl Platinum (II) Terpyridine Complexes. Angew. Chem. Int. Ed. 2007, 46, 2659–2662. [Google Scholar] [CrossRef]
- Chang, K.; Chen, C.; Lin, T.; Ku, P.; Chen, C.; Wang, C.; Lin, H.; Tseng, M.; Singh, A.; Sun, S. Platinum (II)-directed self-assembly loop complexes for anion recognition and sensing. J. Chin. Chem. Soc. 2018, 65, 141–148. [Google Scholar] [CrossRef]
- Yakuphanoglu, F.; Dagdelen, F.; Aydogdu, Y.; Aydogdu, A.; Sekerci, M. Electrical and optical properties of semiconducting metal complexes. Mater. Lett. 2003, 57, 3330–3340. [Google Scholar] [CrossRef]
- Monzon, L.; Burke, F.; Coey, J.M.D. Optical, magnetic, electrochemical, and electrical properties of 8-hydroxyquinoline-based complexes with Al3+, Cr3+, Mn2+, Co2+, Ni2+, Cu2+, and Zn2+. J. Phys. Chem. C 2011, 115, 9182–9192. [Google Scholar] [CrossRef]
- Han, Y.; Gao, Z.; Wang, C.; Zhong, R.; Wang, F. Recent progress on supramolecular assembly of organoplatinum (II) complexes into long-range ordered nanostructures. Coordin. Chem. Rev. 2020, 414, 213300. [Google Scholar] [CrossRef]
- Tang, J.; Sun, Y.; Gong, Z.; Li, Z.; Zhou, Z.; Wang, H.; Li, X.; Saha, M.; Zhong, Y.; Stang, P.J. Temperature-responsive fluorescent organoplatinum (ii) metallacycles. J. Am. Chem. Soc. 2018, 140, 7723–7729. [Google Scholar] [CrossRef]
- Tian, Y.; Meijer, E.W.; Wang, F. Cooperative self-assembly of platinum (II) acetylide complexes. Chem. Commun. 2013, 49, 9197–9199. [Google Scholar] [CrossRef]
- Mauro, M.; Aliprandi, A.; Septiadi, D.; Kehr, N.; Cola, L. When self-assembly meets biology: Luminescent platinum complexes for imaging applications. Chem. Soc. Rev. 2014, 43, 4144–4166. [Google Scholar] [CrossRef]
- Wang, X.; Han, Y.; Liu, Y.; Zou, G.; Gao, Z.; Wang, F. Cooperative supramolecular polymerization of fluorescent platinum acetylides for optical waveguide applications. Angew. Chem. Int. Ed. 2017, 56, 12466–12470. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Han, Y.; Wang, F. Cooperative supramolecular polymers with anthracene-endoperoxide photo-switching for fluorescent anti-counterfeiting. Nat. Commun. 2018, 9, 3977. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.; Zheng, F.; Zhang, E.; Bisoyi, H.; Zheng, S.; Zhu, D.; Lu, Q.; Zhang, H.; Li, Q. Solvent polarity driven helicity inversion and circularly polarized luminescence in chiral aggregation induced emission fluorophores. Chem. Sci. 2020, 11, 9989–9993. [Google Scholar] [CrossRef]
- Cardolaccia, T.; Li, Y.; Schanze, K. Phosphorescent platinum acetylide organogelators. J. Am. Chem. Soc. 2008, 130, 2535–2545. [Google Scholar] [CrossRef]
- Nguyen, M.; Wong, C.; Yip, J.H.K. Ligand perturbations on fluorescence of dinuclear platinum complexes of 5, 12-diethynyltetracene: A spectroscopic and computational study. Organometallics 2013, 32, 1620–1629. [Google Scholar] [CrossRef]
- Lee, C.; Grenier, C.; Meijer, E.W.; Schening, A.P.H.J. Preparation and characterization of helical self-assembled nanofibers. Chem. Soc. Rev. 2009, 38, 671–683. [Google Scholar] [CrossRef] [PubMed]
- Dorca, Y.; Greciano, E.; Valera, J.; Gómez, R.; Sánchez, L. Hierarchy of asymmetry in chiral supramolecular polymers: Toward functional, helical supramolecular structures. Chem. Eur. J. 2019, 25, 5848–5864. [Google Scholar] [CrossRef]
- Wolffs, M.; George, S.; Meskers, S.; Schenning, A.P.H.J.; Meijer, E.W. Macroscopic origin of circular dichroism effects by alignment of self-assembled fibers in solution. Angew. Chem. Int. Ed. 2007, 46, 8203–8205. [Google Scholar] [CrossRef]
- Stals, P.J.M.; Smulders, M.M.J.; Palmans, A.R.A.; Meijer, E.W. Asymmetrically substituted benzene-1, 3, 5-tricarboxamides self-assembly and odd-even effects in the solid state and in dilute solution. Chem. Eur. J. 2009, 15, 2071–2080. [Google Scholar] [CrossRef] [PubMed]
- Roosma, J.; Mes, T.; Leclère, P.; Palmans, A.R.A.; Meijer, E.W. Probing the solvent-assisted nucleation pathway in chemical self-assembly. Science 2006, 313, 80–83. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A.J.; Masuda, M.; Sijbesma, R.P.; Meijer, E.W. Supramolecular materials from benzene 1, 3, 5-tricarboxamide –based nanorods. J. Am. Chem. Soc. 2008, 130, 1120–1121. [Google Scholar] [CrossRef]
- Wilson, A.J.; Masuda, M.; Sijbesma, R.P.; Meijer, E.W. Chiral amplification in the transcription of supramolecular helicity into a polymer backbone. Angew. Chem. Int. Ed. 2005, 44, 2275–2279. [Google Scholar] [CrossRef] [PubMed]
- Palmans, A.R.A.; Meijer, E.W. Amplification of chirality in dynamic supramolecular aggregates. Angew. Chem. Int. Ed. 2007, 46, 8948–8968. [Google Scholar] [CrossRef] [PubMed]
- Roman, M.; Cannizzo, C.; Pinault, T.; Isare, B.; Andrioletti, B.; Schoot, P.; Bouteiller, L. Supramolecular balance: Using cooperativity to amplify weak interactions. J. Am. Chem. Soc. 2010, 132, 16818–16824. [Google Scholar] [CrossRef] [Green Version]
- Cao, H.; Feyter, S. Amplification of chirality in surface-confined supramolecular bilayers. Nat. Commun. 2018, 9, 3416. [Google Scholar] [CrossRef]
- Smulders, M.; Stals, P.; Mes, T.; Paffen, T.; Schenning, P.H.J.; Palmans, A.R.A.; Meijer, E.W. Probing the limits of the majority-rules principle in a dynamic supramolecular polymer. J. Am.Chem. Soc. 2010, 132, 620–626. [Google Scholar] [CrossRef]
- Smulders, M.; Filot, I.; Leenders, J.; Schoot, P.; Palmans, A.R.A.; Schenning, P.H.J.; Meijer, E.W. Tuning the extent of chiral amplification by temperature in a dynamic supramolecular polymer. J. Am. Chem. Soc. 2010, 132, 611–619. [Google Scholar] [CrossRef] [Green Version]
- Shang, X.; Song, I.; Han, M.; Lee, J.; Ohtsu, H.; Choi, W.; Kim, J.; Ahn, J.; Kwak, S.; Oh, J. “Majority-rules” effect on supramolecular chirality and optoelectronic properties of chiral tetrachloro-perylene diimides. Adv. Opt. Mater. 2021, 9, 2001911. [Google Scholar] [CrossRef]
- Veld, M.; Haveman, D.; Palmans, A.R.A.; Meijer, E.W. Sterically demanding benzene-1,3,5-tricarboxamides: Tuning the mechanisms of supramolecular polymerization and chiral amplification. Soft Matter 2011, 7, 524–531. [Google Scholar] [CrossRef]
- Helmich, F.; Smulders, M.; Lee, C.C.; Schenning, P.H.J.; Meijer, E.W. Effect of stereogenic centers on the self-sorting, depolymerization, and atropisomerization kinetics of porphyrin-based aggregates. J. Am. Chem. Soc. 2011, 133, 12238–12246. [Google Scholar] [CrossRef] [PubMed]
- Narayan, B.; Bejagam, K.; Balasubramanian, S.; George, S. Autoresolution of segregated and mixed p-n stacks by stereoselective supramolecular polymerization in solution. Angew. Chem. Int. Ed. 2015, 54, 13053–13057. [Google Scholar] [CrossRef] [PubMed]
Compound | Te (K) | he (kJ mol−1) | ΔH (kJ mol−1) | ΔS (J mol−1 K−1) | ΔG (kJ mol−1, 293 K) |
---|---|---|---|---|---|
(S)-1 | 287.0 | –129 | –81.0 | –198 | –22.9 |
(S)-2 | 299.7 | –96.5 | –95.1 | –233 | –26.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gui, M.; Han, Y.; Zhong, H.; Liao, R.; Wang, F. Investigation of the Amide Linkages on Cooperative Supramolecular Polymerization of Organoplatinum(II) Complexes. Molecules 2021, 26, 2832. https://doi.org/10.3390/molecules26092832
Gui M, Han Y, Zhong H, Liao R, Wang F. Investigation of the Amide Linkages on Cooperative Supramolecular Polymerization of Organoplatinum(II) Complexes. Molecules. 2021; 26(9):2832. https://doi.org/10.3390/molecules26092832
Chicago/Turabian StyleGui, Mingliang, Yifei Han, Hua Zhong, Rui Liao, and Feng Wang. 2021. "Investigation of the Amide Linkages on Cooperative Supramolecular Polymerization of Organoplatinum(II) Complexes" Molecules 26, no. 9: 2832. https://doi.org/10.3390/molecules26092832
APA StyleGui, M., Han, Y., Zhong, H., Liao, R., & Wang, F. (2021). Investigation of the Amide Linkages on Cooperative Supramolecular Polymerization of Organoplatinum(II) Complexes. Molecules, 26(9), 2832. https://doi.org/10.3390/molecules26092832