Effects of High-Intensity Ultrasound Pretreatment on Structure, Properties, and Enzymolysis of Walnut Protein Isolate
Abstract
:1. Introduction
2. Results and Discussion
2.1. Particle Size
2.2. Effect of HIU Treatment on ζ-Potential of WPI
2.3. Effect of HIU on Secondary Structure of WPI
2.4. Fluorescence Spectra Analysis
2.5. Degree of Hydrolysis of WPI Hydrolysates
2.6. Antioxidant Activity of WPI Hydrolysates
3. Materials and Methods
3.1. Materials
3.2. HIU Treatment of WPI
3.3. Particle Size and Zeta Potential Measurements
3.4. Fourier Transform Infrared Spectroscopy
3.5. Fluorescence Measurements
3.6. Preparation of WPI Hydrolysates
3.7. Degree of Hydrolysis
3.8. Determination of Antioxidant Activity of WPI Hydrolysates
3.8.1. Hydroxyl Radical-Scavenging Capacity Assay
3.8.2. DPPH Scavenging Activity
3.9. Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Martínez, M.L.; Labuckas, D.O.; Lamarque, A.L.; Maestri, D.M. Walnut (Juglans regia L.): Genetic resources, chemistry, by-products. J. Sci. Food Agric. 2010, 90, 1959–1967. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Sun, N.; Li, Y.; Cheng, S.; Jiang, C.Y.; Lin, S.Y. Effects of electron beam irradiation (EBI) on structure characteristics and thermal properties of walnut protein flour. Food Res. Int. 2017, 100, 850–857. [Google Scholar] [CrossRef]
- Fuentealba, C.; Hernandez, I.; Saa, S.; Toledo, L.; Burdiles, P.; Chirinos, R.; Pedreschi, R. Colour and in vitro quality attributes of walnuts from different growing conditions correlate with key precursors of primary and secondary metabolism. Food Chem. 2017, 232, 664–672. [Google Scholar] [CrossRef]
- Sabate, J.; Fraser, G.E.; Burke, K.; Knutsen, S.F.; Bennett, H.; Lindsted, K.D. Effects of walnuts on serum lipid levels and blood pressure in normal men. N. Engl. J. Med. 1993, 328, 603–607. [Google Scholar] [CrossRef] [PubMed]
- Gu, M.; Chen, H.-P.; Zhao, M.-M.; Wang, X.; Yang, B.; Ren, J.-Y.; Su, G.-W. Identification of antioxidant peptides released from defatted walnut (Juglans Sigillata Dode) meal proteins with pancreatin. LWT-Food Sci. Technol. 2015, 60, 213–220. [Google Scholar] [CrossRef]
- Lv, Y.; Wei, K.; Meng, X.; Huang, Y.; Zhang, T.; Li, Z. Separation and identification of iron-chelating peptides from defatted walnut flake by nanoLC-ESI-MS/MS and de novo sequencing. Process Biochem. 2017, 59, 223–228. [Google Scholar] [CrossRef]
- Bakkalbasi, E.; Meral, R.; Dogan, I. Bioactive compounds, physical and sensory properties of cake made with walnut press-cake. J. Food Qual. 2016, 38, 422–430. [Google Scholar] [CrossRef]
- Taheri, A.; Farvin, K.S.; Jacobsen, C.; Baron, C.P. Antioxidant activities and functional properties of protein and peptide fractions isolated from salted herring brine. Food Chem. 2014, 142, 318–326. [Google Scholar] [CrossRef]
- Qin, Z.; Guo, X.; Lin, Y.; Chen, J.; Liao, X.; Hu, X.; Wu, J. Effects of high hydrostatic pressure on physicochemical and functional properties of walnut (Juglans regia L.) protein isolate. J. Sci. Food Agric. 2013, 93, 1105–1111. [Google Scholar] [CrossRef]
- Zhu, Z.B.; Zhu, W.D.; Yi, J.H.; Liu, N.; Cao, Y.G.; Lu, J.L.; Decker, E.A.; McClements, D.J. Effects of sonication on the physicochemical and functional properties of walnut protein isolate. Food Res. Int. 2018, 106, 853–861. [Google Scholar] [CrossRef]
- Rahaman, T.; Vasiljevic, T.; Ramchandran, L. Effect of processing on conformational changes of food proteins related to allergenicity. Trends Food Sci. Technol. 2016, 49, 24–34. [Google Scholar] [CrossRef]
- Ojha, K.S.; Mason, T.J.; O’Donnell, C.P.; Kerry, J.P.; Tiwari, B.K. Ultrasound technology for food fermentation applications. Ultrason. Sonochem. 2017, 34, 410–417. [Google Scholar] [CrossRef]
- Shriver, S.K.; Yang, W.W. Thermal and nonthermal methods for food allergen control. Food Eng. Rev. 2011, 3, 26–43. [Google Scholar] [CrossRef]
- Zheng, L.Y.; Sun, D.W. Innovative applications of power ultrasound during food freezing processes—A review. Trends Food Sci. Technol. 2006, 17, 16–23. [Google Scholar] [CrossRef]
- Knorr, D.; Zenker, M.; Heinz, V.; Lee, D. Applications and potential of ultrasonics in food processing. Trends Food Sci. Technol. 2004, 15, 261–266. [Google Scholar] [CrossRef]
- Soria, A.C.; Villamiel, M. Effect of ultrasound on the technological properties and bioactivity of food: A review. Trends Food Sci. Technol. 2010, 21, 323–331. [Google Scholar] [CrossRef]
- Castro, L.D.; Priego-Capote, F. Ultrasound-assisted crystallization (sonocrystallization). Ultrason. Sonochem. 2007, 14, 717–724. [Google Scholar] [CrossRef]
- Zhao, F.; Liu, X.M.; Ding, X.Z.; Dong, H.Z.; Wang, W.T. Effects of High-Intensity Ultrasound Pretreatment on Structure, Properties, and Enzymolysis of Soy Protein Isolate. Molecules 2019, 24, 3637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, L.Z.; Wang, J.; Li, Y.; Wang, Z.J.; Liang, J.; Wang, R.; Chen, Y.; Ma, W.J.; Qi, B.K.; Zhang, M. Effects of ultrasound on the structure and physical properties of black bean protein isolates. Food Res. Int. 2014, 62, 595–601. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Ma, H.L.; Wang, B.; Qu, W.J.; Li, Y.L.; He, R.H.; Wali, A. Effects of ultrasound pretreatment on the enzymolysis and structural characterization of wheat gluten. Food Biophys. 2015, 10, 385–395. [Google Scholar] [CrossRef]
- Wang, Y.T.; Wang, Z.J.; Handa, C.L.; Xu, J. Effects of ultrasound pre-treatment on the structure of β-conglycinin and glycinin and the antioxidant activity of their hydrolysates. Food Chem. 2017, 218, 165–172. [Google Scholar] [CrossRef]
- Kinsella, J.E. Functional properties of soy proteins. J. Am. Oil Chem. Soc. 1979, 56, 242–258. [Google Scholar] [CrossRef]
- Hu, H.; Cheung, I.W.Y.; Pan, S.Y.; Li-Chan, E.C.Y. Effect of high intensity ultrasound on physicochemical and functional properties of aggregated soybean β-conglycinin and glycinin. Food Hydrocoll. 2015, 45, 102–110. [Google Scholar] [CrossRef]
- Hu, H.; Wu, J.H.; Li-Chan, E.C.Y.; Zhu, L.; Zhang, F.; Xu, X.Y.; Fan, G.; Wang, L.F.; Huang, X.J.; Pan, S.Y. Effects of ultrasound on structural and physical properties of soy protein isolate (SPI) dispersions. Food Hydrocoll. 2013, 30, 647–655. [Google Scholar] [CrossRef]
- Arzeni, C.; Martínez, K.; Zema, P.; Arias, A.; Pérez, O.E.; Pilosof, A.M.R. Comparative study of high intensity ultrasound effects on food proteins functionality. J. Food Eng. 2012, 108, 463–472. [Google Scholar] [CrossRef]
- Malik, M.A.; Sharma, H.K.; Saini, C.S. High intensity ultrasound treatment of protein isolate extracted from dephenolized sunflower meal: Effect on physicochemical and functional properties. Ultrason. Sonochem. 2017, 39, 511–519. [Google Scholar] [CrossRef]
- Martínez-Velasco, A.; Lobato-Calleros, C.; Hernández-Rodríguez, B.E.; Román-Guerrero, A.; Alvarez-Ramirez, J.; Vernon-Carter, E.J. High intensity ultrasound treatment of faba bean (Vicia faba L.) protein: Effect on surface properties, foaming ability and structural changes. Ultrason. Sonochem. 2018, 44, 97–105. [Google Scholar] [CrossRef]
- Kentish, S.; Wooster, T.J.; Ashokkumar, M.; Balachandran, S.; Mawson, R.; Simons, L. The use of ultrasonics for nanoemulsion preparation. Innov. Food Sci. Emerg. 2008, 9, 170–175. [Google Scholar] [CrossRef]
- Zhou, C.S.; Hu, J.L.; Yu, X.J.; Yagoub, A.E.A.; Zhang, Y.Y.; Ma, H.L.; Gao, X.L.; Otu, P.N.Y. Heat and/or ultrasound pretreatments motivated enzymolysis of corn gluten meal: Hydrolysis kinetics and protein structure. LWT-Food Sci. Technol. 2016, 77, 488–496. [Google Scholar] [CrossRef]
- Liu, Q.; Lu, Y.; Han, J.; Chen, Q.; Kong, B. Structure-modification by moderate oxidation in hydroxyl radical-generating systems promote the emulsifying properties of soy protein isolate. Food Struct. 2015, 6, 21–28. [Google Scholar] [CrossRef]
- Bouzid, H.; Rabiller-Baudry, M.; Paugam, L.; Rousseau, F.; Derriche, Z.; Bettahar, N.E. Impact of zeta potential and size of caseins as precursors of fouling deposit on limiting and critical fluxes in spiral ultrafiltration of modified skim milks. J. Membr. Sci. 2008, 314, 67–75. [Google Scholar] [CrossRef]
- Vanapalli, S.; Coupland, J.N. Characterization of food colloids by phase analysis light scattering. Food Hydrocoll. 2000, 14, 315–317. [Google Scholar] [CrossRef]
- Malhotra, A.; Coupland, J.N. The effect of surfactants on the solubility, zeta potential, and viscosity of soy protein isolates. Food Hydrocoll. 2004, 18, 101–108. [Google Scholar] [CrossRef]
- Tolano-Villaverde, I.J.; Ezquerra-Brauer, J.M.; Ocano-Higuera, V.M.; Ramírez-Wong, B.; Armenta-Villegas, L.; Herrera-Urbina, R.; Barajas, E.M.; Márquez-Ríos, E. A jumbo squid (Dosidicus gigas) protein concentrate obtained by alkaline dissolution and its conformational changes evaluation. Food Sci. Technol. Res. 2013, 19, 601–608. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Yang, Y.; Zhou, P.; Zhang, X.; Wang, J. Effects of high pressure modification on conformation and gelation properties of myofibrillar protein. Food Chem. 2017, 217, 678–686. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.; Yu, S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim. Biophys. Sin. 2007, 39, 549–559. [Google Scholar] [CrossRef] [Green Version]
- Chandrapala, J.; Zisu, B.; Palmer, M.; Kentish, S.; Ashokkumar, M. Effects of ultrasound on the thermal and structural characteristics of proteins in reconstituted whey protein concentrate. Ultrason. Sonochem. 2011, 18, 951–957. [Google Scholar] [CrossRef] [PubMed]
- Malik, M.A.; Saini, C.S. Rheological and structural properties of protein isolates extracted from dephenolized sunflower meal: Effect of high intensity ultrasound. Food Hydrocoll. 2018, 81, 229–241. [Google Scholar] [CrossRef]
- Matmaroh, K.; Benjakul, S.; Prodpran, T.; Encarnacion, A.B.; Kishimura, H. Characteristics of Acid Soluble Collagen and Pepsin Soluble Collagen from Scale of Spotted Golden Goatfish (Parupeneus heptacanthus). Food Chem. 2011, 129, 1179–1186. [Google Scholar] [CrossRef] [PubMed]
- Weng, S.F.; Xu, Y.Z. Fourier Transform Infrared Spectroscopy, 3rd ed.; Chemistry Industry Press: Beijing, China, 2016; pp. 490–507. [Google Scholar]
- Chao, D.F.; He, R.; Jung, S.; Aluko, R.E. Effect of pressure or temperature pretreatment of isolated pea protein on properties of the enzymatic hydrolysates. Food Res. Int. 2013, 54, 1528–1534. [Google Scholar] [CrossRef]
- Bermúdez-Aguirre, D.; Corradini, M.G.; Mawson, R.; Barbosa-Cánovas, G.V. Modeling the inactivation of listeria innocua in raw whole milk treated under thermo-sonication. Innov. Food Sci. Emerg. 2009, 10, 172–178. [Google Scholar] [CrossRef]
- Huang, L.; Ding, X.; Dai, C.; Ma, H. Changes in the structure and dissociation of soybean protein isolate induced by ultrasound-assisted acid pretreatment. Food Chem. 2017, 232, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Wang, Y.; Zhang, C.; Wan, J.; Shah, B.R.; Pei, Y.; Li, B. High intensity ultrasound modified ovalbumin: Structure, interface and gelation properties. Ultrason. Sonochem. 2016, 31, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Xue, H.; Chen, Z.; Ding, Q.; Wang, X. Comparative studies on the physicochemical properties of peanut protein isolate-polysaccharide conjugates prepared by ultrasonic treatment or classical heating. Food Res. Int. 2014, 57, 1–7. [Google Scholar] [CrossRef]
- Wang, B.; Meng, T.; Ma, H.; Zhang, Y.; Li, Y.; Jin, J.; Ye, X. Mechanism study of dual-frequency ultrasound assisted enzymolysis on rapeseed protein by immobilized Alcalase. Ultrason. Sonochem. 2016, 32, 307–313. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, K.; Zhou, H.; Tang, S. Study on the preparation of soybean protein antioxidant peptides by ultrasonic assisted enzymatic method. Sci. Technol. Food Ind. 2012, 33, 212–219. [Google Scholar]
- Jia, J.; Ma, H.; Zhao, W.; Wang, Z.; Tian, W.; Luo, L.; He, R. The use of ultrasound for enzymatic preparation of ACE-inhibitory peptides from wheat germ protein. Food Chem. 2010, 119, 336–342. [Google Scholar] [CrossRef]
- Adler-Nissen, J. Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzene sulfonic acid. J. Agric. Food Chem. 1979, 27, 1256–1262. [Google Scholar] [CrossRef] [PubMed]
- Smirnoff, N.; Cumbes, Q.J. Hyroxyl radical scavenging activity of compatible solutes. Phytochemistry 1989, 28, 1057–1060. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Takamura, H.; Matoba, T.; Terao, J. HPLC method for evaluation of the free radical-scavenging activity of foods by using l,l-dipheny l-2-picrylhydrazy. Biosci. Biotechnol. Biochem. 1998, 62, 1201–1204. [Google Scholar] [CrossRef]
Ultrasonic Power (W) | Ultrasonic Processing Time (min) | ||||||
---|---|---|---|---|---|---|---|
0 | 5 | 10 | 15 | 20 | 25 | 30 | |
Effective Diameter (nm) | |||||||
600 | 173.57 ± 0.15 Aa | 143.03 ± 0.70 Bf | 134.33 ± 1.12 Cd | 128.87 ± 0.31 Dd | 134.60 ± 1.41 Ccd | 133.83 ± 2.20 Cd | 124.90 ± 1.32 Eg |
800 | 173.57 ± 0.15 Aa | 149.57 ± 0.90 Bd | 129.70 ± 0.75 Ee | 144.37 ± 2.06 Cb | 136.97 ± 2.48 Dc | 130.90 ± 0.62 Ee | 144.90 ± 0.44 Cc |
1000 | 173.57 ± 0.15 Aa | 140.90 ± 1.66 Cg | 129.40 ± 0.26 Ee | 128.07 ± 1.60 Ede | 135.07 ± 2.14 Dcd | 143.80 ± 1.21 Bc | 141.00 ± 0.60 Cd |
1200 | 173.57 ± 0.15 Aa | 147.27 ± 1.04 Ce | 143.90 ± 0.50 Db | 127.17 ± 0.59 Fe | 140.10 ± 1.61 Eb | 115.63 ± 0.55 Gg | 155.03 ± 0.29 Bb |
1400 | 173.57 ± 0.15 Aa | 138.67 ± 0.35 Dh | 108.70 ± 0.20 Gf | 117.03 ± 0.15 Ef | 114.63 ± 0.12 Fe | 148.57 ± 0.35 Bb | 144.40 ± 0.53 Cc |
1600 | 173.57 ± 0.15 Aa | 155.20 ± 0.26 Bb | 130.13 ± 0.71 Ee | 112.03 ± 0.51 Gg | 116.03 ± 0.29 Fe | 143.43 ± 0.38 Cc | 136.80 ± 0.95 De |
1800 | 173.57 ± 0.15 Aa | 152.60 ± 0.62 Bc | 139.93 ± 0.42 Cc | 133.17 ± 0.06 Ec | 133.87 ± 0.15 Dd | 126.00 ± 0.36 Gf | 127.00 ± 0.10 Ff |
2000 | 173.57 ± 0.15 Aa | 150.67 ± 0.32 Bd | 144.60 ± 0.36 Cb | 127.27 ± 0.15 Edc | 136.83 ± 0.15 Dc | 114.33 ± 0.12 Gg | 124.60 ± 0.72 Fg |
Entry | α-Helix (%) | Random Coil (%) | β-Sheet (%) | β-Turn (%) |
---|---|---|---|---|
Control | 7.55 | 15.80 | 31.01 | 45.64 |
600 W-5 min | 6.54 | 15.89 | 32.00 | 45.57 |
600 W-10 min | 8.92 | 15.06 | 31.07 | 44.95 |
600 W-15 min | 8.92 | 15.05 | 31.00 | 45.03 |
600 W-20 min | 7.14 | 15.63 | 31.90 | 45.33 |
600 W-25 min | 7.05 | 15.63 | 31.66 | 45.66 |
600 W-30 min | 8.69 | 15.21 | 30.36 | 45.74 |
800 W-5 min | 6.84 | 16.28 | 31.57 | 45.32 |
800 W-10 min | 8.46 | 15.53 | 30.61 | 45.4 |
800 W-15 min | 7.23 | 15.66 | 31.65 | 45.45 |
800 W-20 min | 7.23 | 15.58 | 31.75 | 45.44 |
800 W-25 min | 6.93 | 15.61 | 32.21 | 45.24 |
800 W-30 min | 8.81 | 15.04 | 31.26 | 44.89 |
1000 W-5 min | 8.09 | 15.05 | 31.63 | 45.23 |
1000 W-10 min | 6.58 | 15.97 | 32.17 | 45.28 |
1000 W-15 min | 7.50 | 15.84 | 31.03 | 45.62 |
1000 W-20 min | 7.45 | 15.73 | 31.50 | 45.32 |
1000 W-25 min | 7.86 | 14.99 | 33.16 | 43.98 |
1000 W-30 min | 7.96 | 15.12 | 32.66 | 44.29 |
1200 W-5 min | 8.11 | 14.42 | 33.54 | 43.93 |
1200 W-10 min | 7.56 | 15.89 | 31.17 | 45.38 |
1200 W-15 min | 8.59 | 14.88 | 32.17 | 44.37 |
1200 W-20 min | 8.01 | 15.13 | 32.47 | 44.39 |
1200 W-25 min | 7.85 | 14.11 | 33.18 | 44.85 |
1200 W-30 min | 8.65 | 14.75 | 32.12 | 44.47 |
1400 W-5 min | 7.41 | 15.79 | 31.52 | 45.28 |
1400 W-10 min | 8.32 | 14.47 | 32.68 | 44.53 |
1400 W-15 min | 7.90 | 15.04 | 32.62 | 44.44 |
1400 W-20 min | 6.84 | 16.08 | 31.24 | 45.84 |
1400 W-25 min | 8.30 | 15.38 | 31.36 | 44.96 |
1400 W-30 min | 7.34 | 15.75 | 32.01 | 44.9 |
1600 W-5 min | 8.44 | 15.55 | 30.93 | 45.08 |
1600 W-10 min | 6.81 | 15.92 | 31.57 | 45.69 |
1600 W-15 min | 6.56 | 15.84 | 31.87 | 45.73 |
1600 W-20 min | 7.43 | 15.59 | 31.6 | 45.37 |
1600 W-25 min | 8.75 | 14.93 | 31.36 | 44.96 |
1600 W-30 min | 8.55 | 14.98 | 30.80 | 45.67 |
1800 W-5 min | 7.46 | 15.74 | 31.17 | 45.64 |
1800 W-10 min | 7.36 | 15.58 | 31.51 | 45.55 |
1800 W-15 min | 7.48 | 15.65 | 30.97 | 45.90 |
1800 W-20 min | 7.87 | 14.96 | 32.70 | 44.48 |
1800 W-25 min | 7.90 | 15.00 | 32.66 | 44.44 |
1800 W-30 min | 8.37 | 14.64 | 33.03 | 41.76 |
2000 W-5 min | 7.97 | 15.11 | 32.56 | 44.36 |
2000 W-10 min | 7.82 | 14.95 | 32.95 | 44.28 |
2000 W-15 min | 8.09 | 15.15 | 32.18 | 44.58 |
2000 W-20 min | 6.26 | 15.60 | 33.01 | 45.12 |
2000 W-25 min | 8.00 | 15.17 | 32.65 | 44.18 |
2000 W-30 min | 7.55 | 15.80 | 31.01 | 45.64 |
Ultrasonic Power (W) | Ultrasonic Processing Time (min) | ||||||
---|---|---|---|---|---|---|---|
0 | 5 | 10 | 15 | 20 | 25 | 30 | |
Degree of Hydrolysis (%) | |||||||
600 | 11.84 ± 0.51 Da | 14.50 ± 0.51 BCd | 13.91 ± 0.51 Ce | 18.05 ± 0.51 Aa | 13.61 ± 0.51 Cc | 15.09 ± 0.00 Bc | 14.50 ± 0.51 BCc |
800 | 11.84 ± 0.51 Ca | 10.95 ± 0.51 Df | 11.07 ± 0.45 Dg | 15.68 ± 0.51 Bbc | 12.55 ± 0.21 Ce | 16.57 ± 0.51 Ab | 10.06 ± 0.51 Ee |
1000 | 11.84 ± 0.51 Da | 18.64 ± 0.00 Aa | 18.05 ± 0.51 Ab | 16.28 ± 0.51 Bb | 14.50 ± 0.51 Cc | 16.69 ± 0.31 Bb | 18.05 ± 0.51 Aa |
1200 | 11.84 ± 0.51 Ea | 18.20 ± 0.44 Ba | 19.83 ± 0.51 Aa | 15.39 ± 0.51 Dc | 18.05 ± 0.51 Ba | 16.39 ± 0.45 Cb | 16.39 ± 0.45 Cb |
1400 | 11.84 ± 0.51 Ea | 14.50 ± 0.51 Cd | 17.16 ± 0.51 Ac | 12.72 ± 0.51 Dc | 16.28 ± 0.51 Bb | 14.32 ± 0.21 Cd | 14.50 ± 0.51 Cc |
1600 | 11.84 ± 0.51 Ea | 16.28 ± 0.51 Ab | 14.91 ± 0.31 Bd | 14.32 ± 0.21 Cd | 14.20 ± 0.36 Cc | 13.49 ± 0.31 De | 16.10 ± 0.21 Ab |
1800 | 11.84 ± 0.51 Ea | 15.27 ± 0.31 Bc | 14.32 ± 0.21 Cd | 15.51 ± 0.45 Bbc | 13.91 ± 0.51 Cc | 17.87 ± 0.21 Aa | 12.72 ± 0.51 Dd |
2000 | 11.84 ± 0.51 Ea | 12.55 ± 0.21 De | 12.43 ± 0.00 Df | 13.20 ± 0.21 Ce | 14.38 ± 0.31 Bc | 15.21 ± 0.21 Ac | 14.15 ± 0.10 Bc |
Ultrasonic Power (W) | Ultrasonic Processing Time (min) | ||||||
---|---|---|---|---|---|---|---|
0 | 5 | 10 | 15 | 20 | 25 | 30 | |
Hydroxyl Radical-Scavenging Activity (%) | |||||||
600 | 43.92 ± 0.25 Ea | 55.76 ± 0.38 Aa | 54.65 ± 0.32 Ba | 49.95 ± 0.86 Dc | 48.46 ± 0.68 Ec | 51.01 ± 0.82 Cb | 53.82 ± 0.57 Ba |
800 | 43.92 ± 0.25 Ea | 52.37 ± 0.22 Bb | 51.32 ± 0.73 Cc | 55.22 ± 0.79 Aa | 50.28 ± 0.28 Dc | 46.85 ± 0.44 Ed | 46.89 ± 0.61 Ee |
1000 | 43.92 ± 0.25 Ea | 48.54 ± 0.39 Ce | 42.77 ± 0.36 Ff | 51.34 ± 0.33 Bb | 53.08 ± 1.00 Aa | 46.62 ± 0.74 Dd | 40.41 ± 0.33 Gf |
1200 | 43.92 ± 0.25 Ea | 49.19 ± 0.35 Cd | 48.69 ± 0.20 Cd | 55.97 ± 0.64 Aa | 48.65 ± 0.51 Cd | 54.55 ± 0.68 Be | 48.28 ± 0.57 Cd |
1400 | 43.92 ± 0.25 Ea | 44.03 ± 0.56 Dg | 41.11 ± 0.54 Eg | 48.25 ± 0.36 Bd | 48.09 ± 0.24 Bd | 46.41 ± 0.60 Cc | 50.43 ± 0.51 Ac |
1600 | 43.92 ± 0.25 Ea | 49.76 ± 0.48 Dd | 54.14 ± 0.47 Aa | 48.81 ± 0.35 Dc | 51.27 ± 0.58 Cb | 50.47 ± 0.32 Cb | 53.02 ± 0.86 Ba |
1800 | 43.92 ± 0.25 Ea | 47.80 ± 0.66 Cf | 43.89 ± 0.79 Ee | 45.69 ± 0.91 Dc | 50.15 ± 0.48 Bc | 48.85 ± 0.18 Cc | 52.25 ± 0.63 Ab |
2000 | 43.92 ± 0.25 Ea | 50.55 ± 0.46 Bc | 52.59 ± 0.68 Ab | 46.11 ± 0.19 De | 46.28 ± 0.79 De | 46.59 ± 0.43 Dd | 48.95 ± 0.46 Cd |
Ultrasonic Power (W) | Ultrasonic Processing Time (min) | ||||||
---|---|---|---|---|---|---|---|
0 | 5 | 10 | 15 | 20 | 25 | 30 | |
DPPH Radical-Scavenging Activity (%) | |||||||
600 | 80.63 ± 0.40 Aa | 75.92 ± 0.61 Ce | 75.98 ± 0.65 Ce | 75.83 ± 0.51 Ce | 77.89 ± 0.20 Be | 77.49 ± 0.64 Bd | 77.92 ± 0.82 Bd |
800 | 80.63 ± 0.40 Ba | 86.10 ± 0.16 Aa | 86.47 ± 0.77 Aa | 80.85 ± 0.71 Bc | 86.95 ± 0.25 Aa | 80.30 ± 0.49 Bb | 86.32 ± 0.57 Aa |
1000 | 80.63 ± 0.40 Aa | 78.69 ± 0.56 Bd | 78.12 ± 0.26 Bc | 80.80 ± 0.84 Ac | 80.58 ± 0.37 Ac | 80.04 ± 0.22 Ab | 77.76 ± 0.66 Bd |
1200 | 80.63 ± 0.40 Da | 83.06 ± 0.57 Bb | 79.30 ± 0.36 Ec | 82.39 ± 0.37 Bb | 81.54 ± 0.44 Cb | 81.38 ± 0.30 Ca | 84.56 ± 0.58 Ab |
1400 | 80.63 ± 0.40 Ba | 80.93 ± 0.36 Bc | 81.01 ± 0.55 Bb | 84.24 ± 0.67 Aa | 78.52 ± 0.11 Cd | 79.21 ± 0.08 Cc | 78.57 ± 0.70 Cc |
1600 | 80.63 ± 0.40 Aa | 76.71 ± 0.52 De | 79.12 ± 0.65 Bc | 75.56 ± 0.75 De | 77.55 ± 0.90 Ce | 75.96 ± 0.62 De | 77.96 ± 0.17 Cd |
1800 | 80.63 ± 0.40 Ba | 75.74 ± 0.36 Ee | 76.11 ± 0.50 Ee | 75.67 ± 0.88 Ee | 82.20 ± 0.17 Ab | 77.16 ± 0.35 Dd | 79.07 ± 0.57 Cc |
2000 | 80.63 ± 0.40 Aa | 78.11 ± 0.33 Bd | 76.19 ± 0.61 Ce | 78.36 ± 0.53 Bd | 77.00 ± 0.23 Cf | 80.13 ± 0.78 Ab | 77.00 ± 0.21 Ce |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, F.; Zhai, X.; Liu, X.; Lian, M.; Liang, G.; Cui, J.; Dong, H.; Wang, W. Effects of High-Intensity Ultrasound Pretreatment on Structure, Properties, and Enzymolysis of Walnut Protein Isolate. Molecules 2022, 27, 208. https://doi.org/10.3390/molecules27010208
Zhao F, Zhai X, Liu X, Lian M, Liang G, Cui J, Dong H, Wang W. Effects of High-Intensity Ultrasound Pretreatment on Structure, Properties, and Enzymolysis of Walnut Protein Isolate. Molecules. 2022; 27(1):208. https://doi.org/10.3390/molecules27010208
Chicago/Turabian StyleZhao, Fei, Xiaosong Zhai, Xuemei Liu, Meng Lian, Guoting Liang, Jingxiang Cui, Haizhou Dong, and Wentao Wang. 2022. "Effects of High-Intensity Ultrasound Pretreatment on Structure, Properties, and Enzymolysis of Walnut Protein Isolate" Molecules 27, no. 1: 208. https://doi.org/10.3390/molecules27010208
APA StyleZhao, F., Zhai, X., Liu, X., Lian, M., Liang, G., Cui, J., Dong, H., & Wang, W. (2022). Effects of High-Intensity Ultrasound Pretreatment on Structure, Properties, and Enzymolysis of Walnut Protein Isolate. Molecules, 27(1), 208. https://doi.org/10.3390/molecules27010208