Plasmonic Resonant Nanoantennas Induce Changes in the Shape and the Intensity of Infrared Spectra of Phospholipids
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Gold Nanoantennas
2.2. AFM Characterization of the DPPTE Bilayers
2.3. Molecular Group-Specific Detection by Nanoantennas
2.4. Temperature-Dependence of the Infrared Signal of DPPTE Bilayers on Nanoantennas
2.5. Temperature Phase Transition of DPPTE Bilayers on Different Gold Substrates
3. Materials and Methods
3.1. FDTD Simulations
3.2. Nanoantenna Fabrication
3.3. Preparation of Gold Substrates
3.3.1. Gold Layer Deposition
3.3.2. Deposition of Gold Nanostructures
3.4. Formation of Supported DPPTE Lipid Bilayers on Gold Substrates
3.5. Infrared Microscopy and Temperature Dependence of the IR Spectra
3.6. Data Analysis of the IR Spectra
3.7. Scanning Electron Microscopy (SEM)
3.8. AFM Imaging
3.8.1. AFM Imaging of Gold Nanoantenna after the Heat Treatment
3.8.2. AFM Imaging of the DPPTE Lipid Bilayers on Gold Substrates
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Peter, J.D. Nanoantenna Plasmon-Enhanced Spectroscopies for Biotechnological Applications, edited by Marc Lamy de la Chapelle and Annemarie Pucci. Contemp. Phys. 2015, 56, 506. [Google Scholar] [CrossRef]
- Yu, P.; Besteiro, L.V.; Huang, Y.; Wu, J.; Fu, L.; Tan, H.H.; Jagadish, C.; Wiederrecht, G.P.; Govorov, A.O.; Wang, Z. Broadband metamaterial absorbers. Adv. Opt. Mater. 2019, 7, 1800995–1801027. [Google Scholar] [CrossRef] [Green Version]
- Omeis, F.; Santos Seica, A.F.; Bernard, R.; Javahiraly, N.; Majjad, H.; Moss, D.; Hellwig, P. Following the chemical immobilization of membrane proteins on plasmonic nanoantennas using infrared spectroscopy. ACS Sens. 2020, 5, 2191–2197. [Google Scholar] [CrossRef] [PubMed]
- Vogt, J.; Zimmermann, S.; Huck, C.; Tzschoppe, M.; Neubrech, F.; Fatikow, S.; Pucci, A. Chemical identification of individual fine dust particles with resonant plasmonic enhancement of nanoslits in the infrared. ACS Photonics 2017, 4, 560–566. [Google Scholar] [CrossRef]
- Aurelian, J.-H.; Kavungal, D.; Von Mücke, L.; Altug, H. Infrared Metasurface augmented by deep learning for monitoring dynamics between all major classes of biomolecules. Adv. Mater. 2021, 33, 2006054–2006062. [Google Scholar] [CrossRef]
- Huang, J.-A.; Mousavi, M.Z.; Zhao, Y.; Hubarevich, A.; Omeis, F.; Giovannini, G.; Schütte, M.; Garoli, D.; De Angelis, F. SERS discrimination of single DNA bases in single oligonucleotides by electro-plasmonic trapping. Nat. Commun. 2019, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kuhner, L.; Semenyshyn, R.; Hentschel, M.; Neubrech, F.; Tarin, C.; Giessen, H. Vibrational sensing using infrared nanoantennas: Toward the noninvasive quantitation of physiological levels of glucose and fructose. ACS Sens. 2019, 4, 1973–1979. [Google Scholar] [CrossRef]
- Etezadi, D.; Warner IV, J.B.; Lashuel, H.A.; Altug, H. Real-time in situ secondary structure analysis of protein monolayer with mid-infrared plasmonic nanoantennas. ACS Sens. 2018, 3, 1109–1117. [Google Scholar] [CrossRef]
- Rezus, Y.L.A.; Selig, O. Impact of local-field effects on the plasmonic enhancement of vibrational signals by infrared nanoantennas. Opt. Express 2016, 24, 12202–12227. [Google Scholar] [CrossRef]
- Limaj, O.; Etezadi, D.; Wittenberg, N.J.; Rodrigo, D.; Yoo, D.; Oh, S.-H.; Altug, H. Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes. Nano Lett. 2016, 16, 1502–1508. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo, D.; Tittl, A.; Ait-Bouziad, N.; John-Herpin, A.; Limaj, O.; Kelly, C.; Yoo, D.; Wittenberg, N.J.; Oh, S.-H.; Lashuel, H.A.; et al. Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces. Nat. Commun. 2018, 9, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winkler, P.M.; Regmi, R.; Flauraud, V.; Brugger, J.; Rigneault, H.; Wenger, J.; Garcia Parajo, M.F. Transient nanoscopic phase separation in biological lipid membranes resolved by planar plasmonic antennas. ACS Nano 2017, 11, 7241–7250. [Google Scholar] [CrossRef]
- Neubrech, F.; Pucci, A. Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. Phys. Rev. Lett. 2008, 101, 157403–157407. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Adato, R.; Altug, H. Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy. ACS Nano 2012, 6, 7998–8006. [Google Scholar] [CrossRef] [PubMed]
- Vogt, J.; Huck, C.; Neubrech, F.; Toma, A.; Gerbert, D.; Pucci, A. Impact of the plasmonic near- and far-field resonance-energy shift on the enhancement of infrared vibrational signals. Phys. Chem. Chem. Phys. 2015, 17, 21169–21175. [Google Scholar] [CrossRef]
- Neubrech, F.; Beck, S.; Glaser, T.; Hentschel, M.; Giessen, H.; Pucci, A. Spatial extent of plasmonic enhancement of vibrational signals in the infrared. ACS Nano 2014, 8, 6250–6258. [Google Scholar] [CrossRef] [PubMed]
- Adato, R.; Yanik, A.A.; Amsden, J.J.; Kaplan, D.L.; Omenetto, F.G.; Hong, M.K.; Erramilli, S.; Altug, H. Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays. Proc. Natl. Acad. Sci. USA 2009, 106, 19227–19232. [Google Scholar] [CrossRef] [Green Version]
- Dahlin, A.B.; Wittenberg, N.J.; Höök, F.; Oh, S.H. Promises and challenges of nanoplasmonic devices for refractometric biosensing. Nanophotonics 2013, 2, 83–101. [Google Scholar] [CrossRef] [Green Version]
- Brown, L.V.; Zhao, K.; King, N.; Sobhani, H.; Nordlander, P.; Halas, N.J. Surface-enhanced infrared absorption using individual antenna tailored to chemical moieties. J. Am. Chem. Soc. 2013, 135, 3688–3695. [Google Scholar] [CrossRef]
- Reddy, H.; Guler, U.; Kildishev, A.V.; Boltasseva, A.; Shalaev, V.M. Temperature-dependent optical properties of gold thin films. Opt. Mater. Express 2016, 6, 27776-2802. [Google Scholar] [CrossRef] [Green Version]
- Lettieri, R.; Di Giorgio, F.; Colella, A.; Magnusson, R.; Bjorefors, F.; Placidi, E.; Palleschi, A.; Ve-nanzi, M.; Gatto, E. DPPTE Thiolipid Self-Assembled Monolayer: A Critical Assay. Langmuir 2016, 32, 11560–11572. [Google Scholar] [CrossRef] [PubMed]
- Vockenroth, I.K.; Rossi, C.; Shah, M.R.; Köper, I. Formation of Tethered Bilayer Lipid Membranes Probed by Various Surface Sensitive Techniques. Biointerphases 2009, 4, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Matyszewska, D.; Sek, S.; Bilewicz, R. Electrochemical and Microscopic Characteristics of Thio-lipid Layers as Simple Models of Cell Membranes. Langmuir 2012, 28, 5182–5189. [Google Scholar] [CrossRef]
- Sun, W.; Kewalramani, S.; Hujsak, K.; Zhang, H.; Bedzyk, M.J.; Dravid, V.P.; Thaxton, C.S. Mesophase in a Thiolate-Containing Diacyl Phospholipid Self-Assembled Monolayer. Langmuir 2015, 31, 3232–3241. [Google Scholar] [CrossRef]
- Fezoua-Boubegtiten, Z.; Hastoy, B.; Scotti, P.; Milochau, A.; Bathany, K.; Desbat, B.; Castano, S.; Oda, R.; Lang, J. The transmembrane domain of the SNARE protein VAMP2 is highly sensitive to its lipid environment. BBA Biomembr. 2019, 1861, 670–676. [Google Scholar] [CrossRef]
- Lewis, R.N.A.H.; McElhaney, R.N. Structures of the subgel phases of n-saturated phosphatidylcho-line bilayers: FTIR spectroscopic studies of 13C=O and 2H-labeled lipids. Biophys. J. 1992, 61, 63–77. [Google Scholar] [CrossRef] [Green Version]
- Hubner, W.; Mantsch, H.H.; Paltauf, F.; Hauser, H. Conformation of phosphatidylserine in bilayers as studied by Fourier transform infrared spectroscopy. Biochemistry 1994, 33, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Lewis, R.N.A.H.; McElhaney, R.N. Studies of mixed-chain diacylphosphatidylcholines with highly asymmetric acyl chains. A Fourier transform infrared spectroscopic study of interfacial hydration and hydrocarbon chain packing in the mixed interdigitated gel phase. Biophys. J. 1993, 65, 1866–1877. [Google Scholar] [CrossRef] [Green Version]
- Leberle, K.; Kempf, I.; Zundel, G. An intramolecular hydrogen bond with large proton polarizability within the head group of phosphatidylserine. An infrared investigation. Biophys. J. 1989, 55, 637–648. [Google Scholar] [CrossRef] [Green Version]
- Blume, A.; Hubner, W.; Messner, G. Fourier transform infrared spectroscopy of 13C=O labelled phospholipids hydrogen bonding to carbonyl groups. Biochemistry 1988, 27, 8239–8249. [Google Scholar] [CrossRef]
- Le Bihan, T.; Pézolet, M. Study of the structure and phase behavior of dipalmitoylphosphatidylcho-line by infrared spectroscopy: Characterization of the pretransition and subtransition. Chem. Phys. Lipids 1998, 94, 13–33. [Google Scholar] [CrossRef]
- Cieślik-Boczula, K.; Czarnik-Matusewicz, B.; Perevozkina, M.; Rospenk, M. MCR-ALS as an effective tool for monitoring subsequent phase transitions in pure and doped DPPC liposomes. RSC Adv. 2015, 5, 40455–40464. [Google Scholar] [CrossRef]
- Hereć, M.; Islamov, A.; Kuklin, A.; Gagoś, M.; Gruszecki, W.I. Effect of antibiotic amphotericin B on structural and dynamic properties of lipid membranes formed with egg yolk phosphatidylcholine. Chem. Phys. Lipids 2007, 147, 78–86. [Google Scholar] [CrossRef]
- Maroncelli, M.; Qi, S.P.; Strauss, H.L.; Snyder, R.G. Nonplanar conformers and the phase behavior of solid n-alkanes. J. Am. Chem. Soc. 1982, 104, 6237–6247. [Google Scholar] [CrossRef]
- Mantsch, H.H.; Martin, A.; Cameron, D.G. Characterization by infrared spectroscopy of the bilayer to nonbilayer phase transition of phosphatidylethanolamine. Biochemistry 1981, 20, 3138–3145. [Google Scholar] [CrossRef]
- Mendelsohn, R. IR spectroscopy of lipid chains: Theoretical background and applications to phase transitions, membranes, cells and tissues. In The Structure of Biological Membranes, 3rd ed.; Yeagle, P.L., Ed.; CRC Press: Boca Raton, FL, USA, 2012; pp. 91–118. [Google Scholar]
- Casal, H.L.; McElhaney, R.N. Quantitative determination of hydrocarbon chain conformational order in bilayers of saturated phosphatidylcholines of various chain lengths by Fourier transform infrared spectroscopy. Biochemistry 1990, 29, 5423–5427. [Google Scholar] [CrossRef]
- Marsh, D. General features of phospholipid phase transitions. Chem. Phys. Lipids 1991, 57, 109–120. [Google Scholar] [CrossRef]
- Jose, C.; Nieva, J.-L.; Rivas, E.; Alonsot, A. Partial dehydration of phosphatidylethano-lamine phosphate groups during hexagonal phase formation, as seen by IR spectroscopy. Biochem. J. 1992, 282, 467–470. [Google Scholar] [CrossRef] [Green Version]
- Bush, S.F.; Levin, H.; Levin, I.W. Cholesterol-lipid interactions: An infrared and raman spectroscopic study of the carbonyl stretching mode region of 1,2-dipalmitoyl phosphatidylcholine bilayers. Chem. Phys. Lipids 1980, 27, 101–111. [Google Scholar] [CrossRef]
- Lewis, R.N.A.H.; McElhaney, R.N. Fourier transform infrared spectroscopy in the study of lipid phase transitions in model and biological membranes. In Methods in Membrane Lipids; Dopico, A., Ed.; Humana Press: Totowa, NJ, USA, 2007; pp. 207–226. [Google Scholar]
- Lewis, R.N.A.H.; McElhaney, R.N. Fourier transform infrared spectroscopy in the study of hydrated membrane lipids and lipid bilayer membranes. In Infrared Spectroscopy of Biomolecules; Mantsch, H.H., Chapman, D., Eds.; Wiley-Liss: New York, NY, USA, 1996; pp. 159–202. [Google Scholar]
- Lewis, R.N.A.H.; McElhaney, R.N. Membrane lipid phase transitions and phase organization studied by Fourier transform infrared spectroscopy. Rev. Biochim. Biophys. Acta 2013, 1828, 2347–2358. [Google Scholar] [CrossRef] [Green Version]
- Lingler, S.; Rubinstein, I.; Knoll, W.; Offenhäusser, A. Fusion of Small Unilamellar Lipid Vesicles to Alkanethiol and Thiolipid Self-Assembled Monolayers on Gold. Langmuir 1997, 13, 7085–7091. [Google Scholar] [CrossRef]
- Adato, R.; Artar, A.; Erramilli, S.; Altug, H. Engineered absorption enhancement and induced transparency in coupled molecular and plasmonic resonator systems. Nano Lett. 2013, 13, 2584–2591. [Google Scholar] [CrossRef] [PubMed]
- Kischkat, J.; Peters, S.; Gruska, B.; Semtsiv, M.; Chashnikova, M.; Klinkmüller, M.; Fedosenko, O.; Machulik, S.; Aleksandrova, A.; Monastyrskyi, G.; et al. Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. Appl. Opt. 2012, 51, 6789–6798. [Google Scholar] [CrossRef] [PubMed]
- Santos Seica, A.F.; Iqbal, M.H.; Carvalho, A.; Choe, J.-Y.; Boulmedais, F.; Hellwig, P. Study of Membrane Protein Monolayers Using Surface-Enhanced Infrared Absorption Spectroscopy (SEIRAS): Critical Dependence of Nanostructured Gold Surface Morphology. ACS Sens. 2021, 6, 2875–2882. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omeis, F.; Boubegtiten-Fezoua, Z.; Seica, A.F.S.; Bernard, R.; Iqbal, M.H.; Javahiraly, N.; Vergauwe, R.M.A.; Majjad, H.; Boulmedais, F.; Moss, D.; et al. Plasmonic Resonant Nanoantennas Induce Changes in the Shape and the Intensity of Infrared Spectra of Phospholipids. Molecules 2022, 27, 62. https://doi.org/10.3390/molecules27010062
Omeis F, Boubegtiten-Fezoua Z, Seica AFS, Bernard R, Iqbal MH, Javahiraly N, Vergauwe RMA, Majjad H, Boulmedais F, Moss D, et al. Plasmonic Resonant Nanoantennas Induce Changes in the Shape and the Intensity of Infrared Spectra of Phospholipids. Molecules. 2022; 27(1):62. https://doi.org/10.3390/molecules27010062
Chicago/Turabian StyleOmeis, Fatima, Zahia Boubegtiten-Fezoua, Ana Filipa Santos Seica, Romain Bernard, Muhammad Haseeb Iqbal, Nicolas Javahiraly, Robrecht M. A. Vergauwe, Hicham Majjad, Fouzia Boulmedais, David Moss, and et al. 2022. "Plasmonic Resonant Nanoantennas Induce Changes in the Shape and the Intensity of Infrared Spectra of Phospholipids" Molecules 27, no. 1: 62. https://doi.org/10.3390/molecules27010062
APA StyleOmeis, F., Boubegtiten-Fezoua, Z., Seica, A. F. S., Bernard, R., Iqbal, M. H., Javahiraly, N., Vergauwe, R. M. A., Majjad, H., Boulmedais, F., Moss, D., & Hellwig, P. (2022). Plasmonic Resonant Nanoantennas Induce Changes in the Shape and the Intensity of Infrared Spectra of Phospholipids. Molecules, 27(1), 62. https://doi.org/10.3390/molecules27010062