Factors That Affect the Accumulation of Strecker Aldehydes in Standardized Wines: The Importance of pH in Oxidation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Factors Affecting the Accumulation of Strecker Aldehydes. Discussion of the Main Correlations Found
2.1.1. Weight of pH in Variability of SA Accumulation Rate
2.1.2. Weight of Oxidation Time in Variability of SA Accumulation Rate
2.1.3. Weight of Initial SA Level in Variability of SA Accumulation Rate
3. Materials and Methods
3.1. Solvents and Chemicals
3.2. Samples and Oxidation Procedure
3.2.1. Commercial Wines
3.2.2. Synthetic Wines
3.3. Strecker Aldehydes Determination
3.3.1. Chromatographic System
3.3.2. Chromatographic Conditions
3.3.3. Experimental Procedure
3.4. Data Treatment and Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Strecker, A. On a peculiar oxidation by alloxan. Justus Liebigs Ann. Chem. 1862, 123, 363–367. [Google Scholar]
- Rizzi, G.P. The strecker degradation of amino acids: Newer avenues for flavor formation. Food Rev. Int. 2008, 24, 416–435. [Google Scholar] [CrossRef]
- Saijō, R.; Takeo, T. The Formation of Aldehydes from Amino Acids by Tea Leaves Extracts. Agric. Biol. Chem. 1970, 34, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Delgado, R. Contribution of Phenolic Compounds to Food Flavors: Strecker-Type Degradation of Amines and Amino Acids Produced by o- and p-Diphenols. J. Agric. Food Chem. 2014, 63, 312–318. [Google Scholar] [CrossRef]
- Bueno, M.; Marrufo-Curtido, A.; Carrascon, V.; Fernandez-Zurbano, P.; Escudero, A.; Ferreira, V. Formation and Accumulation of Acetaldehyde and Strecker Aldehydes during Red Wine Oxidation. Front. Chem. 2018, 6, 20. [Google Scholar] [CrossRef]
- Bueno, M.; Carrascón, V.; Ferreira, V. Release and Formation of Oxidation-Related Aldehydes during Wine Oxidation. J. Agric. Food Chem. 2016, 64, 608–617. [Google Scholar] [CrossRef] [Green Version]
- Wildenra, H.l.; Singleto, V.l. Production of aldehydes as a result of oxidation of polyphenolic compounds and its relation to wine aging. Am. J. Enol. Vitic. 1974, 25, 119–126. [Google Scholar]
- Hashimoto, N. Oxidation of higher alcohols by melanoidins in beer. J. Inst. Brew. 1972, 78, 43–51. [Google Scholar] [CrossRef]
- Escudero, A.; Hernandez-Orte, P.; Cacho, J.; Ferreira, V. Clues about the role of methional as character impact odorant of some oxidized wines. J. Agric. Food Chem. 2000, 48, 4268–4272. [Google Scholar] [CrossRef]
- Grant-Preece, P.; Fang, H.J.; Schmidtke, L.M.; Clark, A.C. Sensorially important aldehyde production from amino acids in model wine systems: Impact of ascorbic acid, erythorbic acid, glutathione and sulphur dioxide. Food Chem. 2013, 141, 304–312. [Google Scholar] [CrossRef]
- Peterson, A.L.; Waterhouse, A.L. H-1 NMR: A Novel Approach To Determining the Thermodynamic Properties of Acetaldehyde Condensation Reactions with Glycerol, (+)-Catechin, and Glutathione in Model Wine. J. Agric. Food Chem. 2016, 64, 6869–6878. [Google Scholar] [CrossRef] [PubMed]
- Bueno, M.; Zapata, J.; Ferreira, V. Simultaneous determination of free and bonded forms of odor-active carbonyls in wine using a headspace solid phase microextraction strategy. J. Chromatogr. A 2014, 1369, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Escott, C.; Morata, A.; Zamora, F.; Loira, I.; del Fresno, J.M.; Suarez-Lepe, J.A. Study of the Interaction of Anthocyanins with Phenolic Aldehydes in a Model Wine Solution. Acs Omega 2018, 3, 15575–15581. [Google Scholar] [CrossRef] [PubMed]
- Pissarra, J.; Mateus, N.; Rivas-Gonzalo, J.; Santos Buelga, C.; De Freitas, V. Reaction Between Malvidin 3-Glucoside and(+)-Catechin in Model Solutions Containing Different Aldehydes. J. Food Sci. 2003, 68, 476–481. [Google Scholar] [CrossRef]
- Timberlake, C.F.; Bridle, P. Interactions between anthocyanins, phenolic compounds, and acetaldehyde and their significance in red wines. Am. J. Enol. Vitic. 1976, 27, 97–105. [Google Scholar]
- Pissarra, J.; Lourenco, S.; Gonzalez-Paramas, A.M.; Mateus, N.; Buelga, C.S.; Silva, A.M.S.; De Freitas, V. Structural characterization of new malvidin 3-glucoside-catechin aryl/alkyl-linked pigments. J. Agric. Food Chem. 2004, 52, 5519–5526. [Google Scholar] [CrossRef]
- Pissarra, J.; Lourenco, S.; Gonzalez-Paramas, A.M.; Mateus, N.; Buelga, C.S.; Silva, A.M.S.; De Freitas, V. Isolation and structural characterization of new anthocyanin-alkyl-catechin pigments. Food Chem. 2005, 90, 81–87. [Google Scholar] [CrossRef]
- Pissarra, J.; Lourenco, S.; Gonzalez-Paramas, A.M.; Mateus, N.; Santos-Buelga, C.; De Freitas, V. Formation of new anthocyanin-alkyl/aryl-flavanol pigments in model solutions. Anal. Chim. Acta 2004, 513, 215–221. [Google Scholar] [CrossRef]
- Pissarra, J.I.; Lourenco, S.; Machado, J.M.; Mateus, N.; Guimaraens, D.; de Freitas, V. Contribution and importance of wine spirit to the port wine final quality - initial approach. J. Sci. Food Agric. 2005, 85, 1091–1097. [Google Scholar] [CrossRef]
- Monforte, A.R.; Martins, S.; Ferreira, A.C.S. Strecker Aldehyde Formation in Wine: New Insights into the Role of Gallic Acid, Glucose, and Metals in Phenylacetaldehyde Formation. J. Agric. Food Chem. 2018, 66, 2459–2466. [Google Scholar] [CrossRef]
- Oliveira, C.M.; Santos, S.A.O.; Silvestre, A.J.D.; Barros, A.S.; Ferreira, A.C.S.; Silva, A.M.S. Quinones as Strecker degradation reagents in wine oxidation processes. Food Chem. 2017, 228, 618–624. [Google Scholar] [CrossRef]
- Monforte, A.R.; Oliveira, C.; Martins, S.; Ferreira, A.C.S. Response surface methodology: A tool to minimize aldehydes formation and oxygen consumption in wine model system. Food Chem. 2019, 283, 559–565. [Google Scholar] [CrossRef]
- Bueno-Aventín, E.; Escudero, A.; Fernández-Zurbano, P.; Ferreira, V. Role of Grape-Extractable Polyphenols in the Generation of Strecker Aldehydes and in the Instability of Polyfunctional Mercaptans during Model Wine Oxidation. J. Agric. Food Chem. 2021, 69, 15290–15300. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, A.L.; Sacks, G.L.; Jeffery, D.W. Understanding Wine Chemistry; John Wiley & Sons Ltd.: Chichester, UK, 2016; pp. 1–443. [Google Scholar]
- Marrufo-Curtido, A.; de-la-Fuente-Blanco, A.; Sáenz-Navajas, M.-P.; Ferreira, V.; Bueno, M.; Escudero, A. Sensory Relevance of Strecker Aldehydes inWines. Preliminary Studies of Its Removal with Different Type of Resins. Foods 2021, 10, 1711. [Google Scholar] [CrossRef] [PubMed]
- Gislason, N.E.; Currie, B.L.; Waterhouse, A.L. Novel Antioxidant Reactions of Cinnamates in Wine. J. Agric. Food Chem. 2011, 59, 6221–6226. [Google Scholar] [CrossRef] [PubMed]
- McRae, J.M.; Kassara, S.; Kennedy, J.A.; Waters, E.J.; Smith, P.A. Effect of Wine pH and Bottle Closure on Tannins. J. Agric. Food Chem. 2013, 61, 11618–11627. [Google Scholar] [CrossRef] [PubMed]
- Ferreira; Carrascon, V.; Bueno, M.; Ugliano, M.; Fernandez-Zurbano, P. Oxygen Consumption by Red Wines. Part I: Consumption Rates, Relationship with Chemical Composition, and Role of SO2. J. Agric. Food Chem. 2015, 63, 10928–10937. [Google Scholar] [CrossRef]
- Danilewicz, J.C. Review of reaction mechanisms of oxygen and proposed intermediate reduction products in wine: Central role of iron and copper. Am. J. Enol. Vitic. 2003, 54, 73–85. [Google Scholar]
- Bueno, M.; Cullere, L.; Cacho, J.; Ferreira, V. Chemical and sensory characterization of oxidative behavior in different wines. Food Res. Int. 2010, 43, 1423–1428. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Handbook of Enology. Volume 2. The Chemistry of Wine Stabilization and Treatments, New York ed.; John Wiley & Sons: Chichester, UK, 2006; Volume 2. [Google Scholar]
- OIV, OIV-MA-AS323-04A Sulphur Dioxide. Compendium of International Methods of Analysis. 2009. Available online: https://www.oiv.int/public/medias/2584/oiv-ma-as323-05.pdf (accessed on 13 April 2022).
- Grindlay, G.; Mora, J.; de Loos-Vollebregt, M.T.C.; Vanhaecke, F. Evaluation of the multi-element capabilities of collision/reaction cell inductively coupled plasma-mass spectrometry in wine analysis. Talanta 2014, 128, 379–385. [Google Scholar] [CrossRef] [Green Version]
- Hernandez-Orte, P.; Ibarz, M.J.; Cacho, J.; Ferreira, V. Amino acid determination in grape juices and wines by HPLC using a modification of the 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) method. Chromatographia 2003, 58, 29–35. [Google Scholar]
- Marrufo-Curtido, A.; Carrascon, V.; Bueno, M.; Ferreira, V.; Escudero, A. A procedure for the measurement of Oxygen Consumption Rates (OCRs) in red wines and some observations about the influence of wine initial chemical composition. Food Chem. 2018, 248, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Castejón, O. Desarrollo, validación e implementación de un procedimiento normalizado para análsis de aldehídos en vino mediante GC-MS. TFM Universidad Zaragoza 2019, 1, 1423–1428. [Google Scholar]
- Danilewicz, J.C.; Wallbridge, P.J. Further Studies on the Mechanism of Interaction of Polyphenols, Oxygen, and Sulfite in Wine. Am. J. Enol. Vitic. 2010, 61, 166–175. [Google Scholar]
Type of Wine | Code | Variety | Vintage | Fe | Valine | Isoleucine | Luecine | Methionine | Phenylalanine | pH | TPI 7 | Free SO2 | Total SO2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CV-A 1 | G/T/Cr 5 | 2008 | 1.3 | 44.6 | 33.9 | 95.3 | 16.8 | 58.8 | 3.49 | 53.0 | 4.8 | 62.8 | |
DM-A | Tempranillo | 2012 | 1.2 | 38.7 | 31.4 | 41.1 | 10.1 | 34.1 | 3.82 | 55.5 | 3.2 | 20.0 | |
CL-A | Tempranillo | 2013 | 1.9 | 68.9 | 48.4 | 105.0 | 21.5 | 69.0 | 3.66 | 46.3 | 11.2 | 81.0 | |
Red wines | VF-A | Garnacha | 2015 | 1.2 | 48.5 | 36.0 | 68.8 | 19.7 | 59.9 | 3.48 | 54.7 | 11.2 | 124.0 |
MT-Y 2 | Tempranillo | 2018 | 0.9 | 30.2 | 22.8 | 33.1 | 11.0 | 33.3 | 3.80 | 61.7 | 8.8 | 57.0 | |
FP-Y | Tempranillo | 2018 | 1.8 | 42.2 | 29.5 | 52.0 | 15.7 | 46.7 | 3.60 | 46.7 | 12.8 | 52.0 | |
BG-Y | Garnacha | 2018 | 2.2 | 52.3 | 33.7 | 70.9 | 20.8 | 63.1 | 3.46 | 50.5 | 11.2 | 37.0 | |
RB-Y | Garnacha | 2018 | 1.2 | 41.6 | 29.7 | 59.2 | 18.0 | 60.9 | 3.43 | 44.1 | 3.2 | 96.0 | |
Rosé | VMG-R 3 | Garnacha | 2018 | 0.4 | 60.6 | 51.2 | 108.0 | 26.4 | 70.4 | 3.26 | 11.7 | 3.84 | 86.0 |
wines | GF-R | G/T/M/C/Sy 6 | 2018 | 2.1 | 30.6 | 25.1 | 64.1 | 16.2 | 47.4 | 3.15 | 13.3 | 5.6 | 78.0 |
White | VT-W 4 | Viura | 2018 | 0.6 | 52.7 | 33.1 | 87.2 | 21.4 | 64.9 | 3.23 | 10.7 | 14.4 | 115.0 |
wines | VM-W | Viura | 2018 | 0.2 | 41.3 | 28.0 | 65.0 | 16.7 | 41.6 | 3.33 | 7.41 | 10.4 | 97.0 |
Code | Total SO2 (mg/L) | O2notSO2 5 (mg/L) | s | Days of Oxidation | Isobutyraldehyde | 2-methylbutanal | 3-methylbutanal | Methional | Phenylacetaldehyde |
---|---|---|---|---|---|---|---|---|---|
CV-A 1 initial | 62.8 | - | - | 37.6 ± 1.8 | 8.32 ± 0.4 | 27.4 ± 1.0 | 3.1 ± 0.0 | 19.4 ± 0.6 | |
CV-A after oxidation | 19.2 | 27.57 | 0.8 | 45.8 | 37.5 ± 0.6 | 15.4 ± 0.0 * | 52.0 ± 1.1 * | 31.2 ± 0.6 * | 59.4 ± 1.6 * |
DM-A initial | 20.0 | - | - | 29.5 ± 1.2 | 7.0 ± 0.2 | 15.7 ± 1.1 | 1.8 ± 0.3 | 12.6 ± 1.1 | |
DM-A after oxidation | 11.2 | 34.48 | 0.2 | 23.8 | 41.8 ± 1.0 * | 17.9 ± 0.2 * | 178.1 ± 1.0 * | 71.3 ± 0.2 * | 188.5 ± 0.9 * |
CL-A initial | 81.0 | - | - | 31.7 ± 0.3 | 5.08 ± 0.1 | 69.1 ± 0.9 | 2.7 ± 0.0 | 30.7 ± 0.2 | |
CL-A after oxidation | 37.6 | 38.47 | 0.4 | 45.8 | 29.3 ± 0.4 * | 9.93 ± 0.3 * | 55.0 ± 8.3 | 28.1 ± 0.4 * | 63.1 ± 0.2 * |
VF-A initial | 124 | - | - | 29.0 ± 14 | 6.79 ± 3.3 | 43.7 ± 21.8 | 4.9 ± 2.2 | 43.6 ± 19.7 | |
VF-A after oxidation | 15.2 | 22.6 | 0.8 | 51.8 | 31.4 ± 0.7 | 10.6 ± 0.0 | 79.3 ± 1.0 | 21.8 ± 0.3 * | 67.0 ± 0.6 |
MT-Y 2 initial | 57.0 | - | - | 18.3 ± 1.7 | 4.3 ± 0.7 | 26.9 ± 4.7 | 1.4 ± 0.4 | 12.9 ± 1.1 | |
MT-Y after oxidation | 19.4 | 33.71 | 0.4 | 30.8 | 31.1 ± 1.2 * | 19.1 ± 0.4 * | 93.8 ± 3.3 * | 47.7 ± 0.2 * | 155.0 ± 0.8 * |
FP-Y initial | 52.0 | - | - | 28.1 ± 1.2 | 5.24 ± 0.2 | 38.8 ± 1.2 | 2.4 ± 0.0 | 22.3 ± 0.5 | |
FP-Y after oxidation | 25.6 | 36.5 | 0.6 | 38.3 | 36.2 ± 2.5 | 16.8 ± 1.1 * | 124.6 ± 10.3 * | 36.5 ± 1.1 * | 112.0 ± 4.3 * |
BG-Y initial | 37.0 | - | - | 21.3 ± 0.3 | 4.13 ± 0.1 | 10.3 ± 0.2 | 1.4 ± 0.0 | 11.0 ± 0.0 | |
BG-Y after oxidation | 21.6 | 36.12 | 0.4 | 38.8 | 29.4 ± 1.0 * | 14.8 ± 0.4 * | 69.9 ± 0.5 * | 24.5 ± 0.6 * | 59.7 ± 0.6 * |
RB-Y initial | 96.0 | - | - | 44.5 ± 4.6 | 19.9 ± 2.2 | 129.3 ± 15.2 | 2.9 ± 0.0 | 17.6 ± 0.3 | |
RB-Y after oxidation | 26.9 | 26.26 | 0.1 | 51.8 | 20.2 ± 0.0 * | 9.01 ± 0.1 * | 53.1 ± 1.8 * | 18.1 ± 0.2 * | 43.6 ± 0.9 * |
VMG-R 3 initial | 86.0 | - | - | 21.7 ± 0.4 | 6.56 ± 0.0 | 21.4 ± 0.0 | 1.4 ± 0.0 | 8.7 ± 0.3 | |
VMG-R after oxidation | 40.0 | 23.65 | 0.8 | 51.8 | 15.6 ± 0.9 * | 5.45 ± 0.2 * | 40.2 ± 0.6 * | 8.4 ± 0.0 * | 28.0 ± 0.4 * |
GF-R initial | 78.0 | - | - | 24.8 ± 0.5 | 4.18 ± 0.2 | 22.8 ± 0.1 | 1.7 ± 0.0 | 7.8 ± 0.3 | |
GF-R after oxidation | 31.5 | 21.51 | 0.8 | 53.8 | 16.4 ± 0.5 * | 5.97 ± 0.2 * | 47.2 ± 3.5 * | 14.7 ± 0.4 * | 45.7 ± 1.2 * |
VT-W 4 initial | 115 | - | - | 20.5 ± 1.1 | 4.79 ± 0.1 | 44.6 ± 3.4 | 10.9 ± 0.0 | 18.3 ± 0.3 | |
VT-W after oxidation | 60.8 | 13.68 | 2.5 | 53.8 | 13.1 ± 0.4 * | 4.93 ± 0.1 | 55.3 ± 1.5 | 19.5 ± 0.1 * | 29.6 ± 0.3 * |
VM-W initial | 97.0 | - | - | 27.1 ± 3.7 | 9.53 ± 1.3 | 70.5 ± 5.4 | 2.1 ± 0.0 | 6.9 ± 0.2 | |
VM-W after oxidation | 33.1 | 16.94 | 1.3 | 53.8 | 14.1 ± 0.5 | 4.97 ± 0.2 | 41.8 ± 1.9 * | 12.6 ± 0.3 * | 32.4 ± 0.4 * |
Isobutyraldehyde | 2-methylbutanal | 3-methylbutanal | Methional | Phenylacetaldehyde | |
---|---|---|---|---|---|
CV-A 1 | −2.14 × 10−3 | 0.15 | 0.55 | 0.62 | 0.88 |
DM-A | 0.41 | 0.37 | 5.45 | 2.33 | 5.90 |
CL-A | −0.04 | 0.08 | −0.22 | 0.40 | 0.51 |
VF-A | 0.06 | 0.07 | 0.84 | 0.40 | 0.55 |
MT-Y 2 | 0.34 | 0.39 | 1.78 | 1.23 | 3.77 |
FP-Y | 0.21 | 0.30 | 1.67 | 0.66 | 1.75 |
BG-Y | 0.21 | 0.21 | 1.17 | 0.46 | 0.96 |
RB-Y | −0.49 | −0.22 | −1.54 | 0.31 | 0.53 |
VMG-R 3 | −0.24 | −0.04 | 0.73 | 0.27 | 0.75 |
GF-R | −0.25 | 0.05 | 0.74 | 0.4 | 1.15 |
VT-W 4 | −0.16 | 0 | 0.23 | 0.19 | 0.25 |
VM-W | −0.31 | −0.11 | −0.69 | 0.25 | 0.61 |
Total average | −0.03 C | 0.10 C | 0.89 AB | 0.63 BC | 1.47 A |
s | 0.27 | 0.18 | 1.72 | 0.6 | 1.68 |
RSD (%) | - | >100 | >100 | 97 | >100 |
Average red wines | 0.07 C | 0.16 C | 1.21 AB | 0.80 BC | 1.86 A |
s | 0.28 | 0.19 | 2.03 | 0.68 | 1.97 |
RSD (%) | >100 | >100 | >100 | 85 | >100 |
Average red wines except DM-A and MT-Y | −9.70 × 10−3 B | 0.09 B | 0.54 AB | 0.55 AB | 1.02 A |
s | 0.24 | 0.16 | 1.15 | 0.14 | 0.47 |
RSD (%) | - | >100 | >100 | 29 | 55 |
Average W and R wines | −0.24 C | −0.02 BC | 0.12 AB | 0.18 AB | 0.44 A |
s | 0.06 | 0.07 | 0.67 | 0.09 | 0.37 |
RSD (%) | - | - | >100 | 32 | 54 |
pH 4.2 | pH 3.5 | pH 2.8 | p | |
---|---|---|---|---|
Cons. O2 rate (mg /L/day) | 0.68 ± 0.02 a | 0.60 ± 0.01 b | 0.53 ± 0.02 c | 0.011 |
Isobutyraldehyde | 1364.2 ± 4.8 a | 1109.9 ± 61.9 b | 886.0 ± 52.3 c | 0.005 |
2-methylbutanal | 1476.8 ± 35.2 a | 1206.3 ± 34.9 b | 976.2 ± 63.5 c | 0.004 |
3-methylbutanal | 2833.6 ± 0.1 a | 2009.5 ± 132.0 b | 1217.1 ± 122.8 c | 0.001 |
Methional | 4286.6 ± 150.3 a | 3575.4 ± 50.4 b | 3043.3 ± 241.4 c | 0.011 |
Phenylacetaldehyde | 3026.7 ± 78.9 a,b | 3230.0 ± 3.3 a | 2845.8 ± 180.0 b | 0.094 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marrufo-Curtido, A.; Ferreira, V.; Escudero, A. Factors That Affect the Accumulation of Strecker Aldehydes in Standardized Wines: The Importance of pH in Oxidation. Molecules 2022, 27, 3056. https://doi.org/10.3390/molecules27103056
Marrufo-Curtido A, Ferreira V, Escudero A. Factors That Affect the Accumulation of Strecker Aldehydes in Standardized Wines: The Importance of pH in Oxidation. Molecules. 2022; 27(10):3056. https://doi.org/10.3390/molecules27103056
Chicago/Turabian StyleMarrufo-Curtido, Almudena, Vicente Ferreira, and Ana Escudero. 2022. "Factors That Affect the Accumulation of Strecker Aldehydes in Standardized Wines: The Importance of pH in Oxidation" Molecules 27, no. 10: 3056. https://doi.org/10.3390/molecules27103056
APA StyleMarrufo-Curtido, A., Ferreira, V., & Escudero, A. (2022). Factors That Affect the Accumulation of Strecker Aldehydes in Standardized Wines: The Importance of pH in Oxidation. Molecules, 27(10), 3056. https://doi.org/10.3390/molecules27103056