Long-Term Calculation of Predicted Environmental Concentrations to Assess the Risk of Anticancer Drugs in Environmental Waters
Abstract
:1. Introduction
2. Results and Discussion
2.1. Consumption of Cytostatic Drugs in Hospitals and Pharmacies from Catalonia
2.2. PECs in Wastewater Effluents
2.3. PECs in Rivers
2.4. PECs vs. MECs
2.5. Risk Assessment
3. Materials and Methods
3.1. Consumption Data
3.2. Calculation of PECs
3.3. Estimation of Risk Quotient
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Besse, J.P.; Latour, J.F.; Garric, J. Anticancer Drugs in Surface Waters: What Can We Say about the Occurrence and Environmental Significance of Cytotoxic, Cytostatic and Endocrine Therapy Drugs? Environ. Int. 2012, 39, 73–86. [Google Scholar] [CrossRef] [PubMed]
- Kümmerer, K.; Haiß, A.; Schuster, A.; Hein, A.; Ebert, I. Antineoplastic Compounds in the Environment—Substances of Special Concern. Environ. Sci. Pollut. Res. 2016, 23, 14791–14804. [Google Scholar] [CrossRef] [PubMed]
- Booker, V.; Halsall, C.; Llewellyn, N.; Johnson, A.; Williams, R. Prioritising Anticancer Drugs for Environmental Monitoring and Risk Assessment Purposes. Sci. Total Environ. 2014, 473–474, 159–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, M.S.F.; Franquet-Griell, H.; Lacorte, S.; Madeira, L.M.; Alves, A. Anticancer Drugs in Portuguese Surface Waters–Estimation of Concentrations and Identification of Potentially Priority Drugs. Chemosphere 2017, 184, 1250–1260. [Google Scholar] [CrossRef]
- Franquet-Griell, H.; Gómez-Canela, C.; Ventura, F.; Lacorte, S. Anticancer Drugs: Consumption Trends in Spain, Prediction of Environmental Concentrations and Potential Risks. Environ. Pollut. 2017, 229, 505–515. [Google Scholar] [CrossRef]
- Haber, D.A.; Gray, N.S.; Baselga, J. The Evolving War on Cancer. Cell 2011, 145, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Nassour, C.; Barton, S.J.; Nabhani-Gebara, S.; Saab, Y.; Barker, J. Occurrence of Anticancer Drugs in the Aquatic Environment: A Systematic Review. Environ. Sci. Pollut. Res. 2020, 27, 1339–1347. [Google Scholar] [CrossRef] [Green Version]
- Johnson, A.C.; Jürgens, M.D.; Williams, R.J.; Kümmerer, K.; Kortenkamp, A.; Sumpter, J.P. Do Cytotoxic Chemotherapy Drugs Discharged into Rivers Pose a Risk to the Environment and Human Health? An Overview and UK Case Study. J. Hydrol. 2008, 348, 167–175. [Google Scholar] [CrossRef]
- Jureczko, M.; Kalka, J. Cytostatic Pharmaceuticals as Water Contaminants. Eur. J. Pharmacol. 2020, 866, 172816. [Google Scholar] [CrossRef]
- Li, D.; Chen, H.; Liu, H.; Schlenk, D.; Mu, J.; Lacorte, S.; Ying, G.G.; Xie, L. Anticancer Drugs in the Aquatic Ecosystem: Environmental Occurrence, Ecotoxicological Effect and Risk Assessment. Environ. Int. 2021, 153, 106543. [Google Scholar] [CrossRef]
- Novak, M.; Žegura, B.; Modic, B.; Heath, E.; Filipič, M. Cytotoxicity and Genotoxicity of Anticancer Drug Residues and Their Mixtures in Experimental Model with Zebrafish Liver Cells. Sci. Total Environ. 2017, 601–602, 293–300. [Google Scholar] [CrossRef]
- Russo, C.; Lavorgna, M.; Piscitelli, C.; Isidori, M. Toxicity of Anticancer Drug Residues in Organisms of the Freshwater Aquatic Chain. In Fate and Effects of Anticancer Drugs in the Environment; Springer: Berlin/Heidelberg, Germany, 2020; pp. 379–401. [Google Scholar] [CrossRef]
- Gómez-Canela, C.; Ventura, F.; Caixach, J.; Lacorte, S. Occurrence of Cytostatic Compounds in Hospital Effluents and Wastewaters, Determined by Liquid Chromatography Coupled to High-Resolution Mass Spectrometry. Anal. Bioanal. Chem. 2014, 406, 3801–3814. [Google Scholar] [CrossRef] [PubMed]
- Santana-Viera, S.; Montesdeoca-Esponda, S.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. Analytical Methodologies for the Determination of Cytostatic Compounds in Environmental Matrices. In Fate and Effects of Anticancer Drugs in the Environment; Springer: Berlin/Heidelberg, Germany, 2020; pp. 169–195. [Google Scholar] [CrossRef]
- Cristóvão, M.B.; Bento-Silva, A.; Bronze, M.R.; Crespo, J.G.; Pereira, V.J. Detection of Anticancer Drugs in Wastewater Effluents: Grab versus Passive Sampling. Sci. Total Environ. 2021, 786, 147477. [Google Scholar] [CrossRef] [PubMed]
- Franquet-Griell, H.; Cornadó, D.; Caixach, J.; Ventura, F.; Lacorte, S. Determination of Cytostatic Drugs in Besòs River (NE Spain) and Comparison with Predicted Environmental Concentrations. Environ. Sci. Pollut. Res. 2017, 24, 6492–6503. [Google Scholar] [CrossRef]
- Gouveia, T.I.A.; Alves, A.; Santos, M.S.F. New Insights on Cytostatic Drug Risk Assessment in Aquatic Environments Based on Measured Concentrations in Surface Waters. Environ. Int. 2019, 133, 105236. [Google Scholar] [CrossRef]
- Cristóvão, M.B.; Janssens, R.; Yadav, A.; Pandey, S.; Luis, P.; Van der Bruggen, B.; Dubey, K.K.; Mandal, M.K.; Crespo, J.G.; Pereira, V.J. Predicted Concentrations of Anticancer Drugs in the Aquatic Environment: What Should We Monitor and Where Should We Treat? J. Hazard. Mater. 2020, 392, 122330. [Google Scholar] [CrossRef]
- Franquet-Griell, H.; Gómez-Canela, C.; Ventura, F.; Lacorte, S. Predicting Concentrations of Cytostatic Drugs in Sewage Effluents and Surface Waters of Catalonia (NE Spain). Environ. Res. 2015, 138, 161–172. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Canela, C.; Pueyo, V.; Barata, C.; Lacorte, S.; Marcé-Recasens, R.M. Development of Predicted Environmental Concentrations to Prioritize the Occurrence of Pharmaceuticals in Rivers from Catalonia. Sci. Total Environ. 2019, 666, 57–67. [Google Scholar] [CrossRef]
- Franquet-Griell, H.; Ventura, F.; Boleda, M.R.; Lacorte, S. Do Cytostatic Drugs Reach Drinking Water? The Case of Mycophenolic Acid. Environ. Pollut. 2016, 208, 532–536. [Google Scholar] [CrossRef] [PubMed]
- IQVIA Global Oncology Trends 2018—Innovation, Expansion and Disruption; The IQVIA Institute for Human Data Science: Parsippany, NJ, USA, 2018.
- EPI SuiteTM-Estimation Program Interface|US EPA. Available online: https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface (accessed on 16 March 2022).
- Drugbank Online DrugBank Online|Database for Drug and Drug Target Info. Available online: https://go.drugbank.com/ (accessed on 16 March 2022).
- European Environment Agency (EEA). Urban Waste Water Treatment—European Environment Agency. Available online: https://www.eea.europa.eu/themes/water/european-waters/water-use-and-environmental-pressures/uwwtd/interactive-maps/urban-waste-water-treatment-maps-3 (accessed on 16 March 2022).
- Johnson, A.C.; Oldenkamp, R.; Dumont, E.; Sumpter, J.P. Predicting Concentrations of the Cytostatic Drugs Cyclophosphamide, Carboplatin, 5-Fluorouracil, and Capecitabine throughout the Sewage Effluents and Surface Waters of Europe. Environ. Toxicol. Chem. 2013, 32, 1954–1961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The European Medicines Agency in 2006. Available online: https://www.ema.europa.eu/en/documents/annual-report/summary-european-medicines-agencys-annual-report-2006_en.pdf/ (accessed on 6 April 2022).
- Coetsier, C.M.; Spinelli, S.; Lin, L.; Roig, B.; Touraud, E. Discharge of Pharmaceutical Products (PPs) through a Conventional Biological Sewage Treatment Plant: MECs vs PECs? Environ. Int. 2009, 35, 787–792. [Google Scholar] [CrossRef] [PubMed]
- Negreira, N.; López de Alda, M.; Barceló, D. On-Line Solid Phase Extraction-Liquid Chromatography-Tandem Mass Spectrometry for the Determination of 17 Cytostatics and Metabolites in Waste, Surface and Ground Water Samples. J. Chromatogr. A 2013, 1280, 64–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negreira, N.; de Alda, M.L.; Barceló, D. Cytostatic Drugs and Metabolites in Municipal and Hospital Wastewaters in Spain: Filtration, Occurrence, and Environmental Risk. Sci. Total Environ. 2014, 497–498, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Marcus, M.D.; Covington, S.; Liu, B.; Smith, N.R. Use of Existing Water, Sediment, and Tissue Data to Screen Ecological Risks to the Endangered Rio Grande Silvery Minnow. Sci. Total Environ. 2010, 409, 83–94. [Google Scholar] [CrossRef]
- U.S. Pharmacopeia. Available online: https://www.usp.org/ (accessed on 6 April 2022).
- Global Biopharmaceutical Company—Bristol Myers Squibb. Available online: https://www.bms.com/ (accessed on 6 April 2022).
- Parrella, A.; Lavorgna, M.; Criscuolo, E.; Russo, C.; Fiumano, V.; Isidori, M. Acute and Chronic Toxicity of Six Anticancer Drugs on Rotifers and Crustaceans. Chemosphere 2014, 115, 59–66. [Google Scholar] [CrossRef] [PubMed]
- DellaGreca, M.; Fiorentino, A.; Iesce, M.R.; Isidori, M.; Nardelli, A.; Previtera, L.; Temussi, F. Identification of Phototransformation Products of Prednisone by Sunlight: Toxicity of the Drug and Its Derivatives on Aquatic Organisms. Environ. Toxicol. Chem. 2003, 22, 534–539. [Google Scholar] [CrossRef]
- Roche|Global Product Strategy & Safety Data Sheets. Available online: https://www.roche.com/about/sustainability/environment/product-strategy-safety (accessed on 6 April 2022).
- Publichem-Homepage-Log In. Available online: https://www.publichem.com/ (accessed on 6 April 2022).
- Cristóvão, M.B.; Torrejais, J.; Janssens, R.; Luis, P.; Van der Bruggen, B.; Dubey, K.K.; Mandal, M.K.; Bronze, M.R.; Crespo, J.G.; Pereira, V.J. Treatment of Anticancer Drugs in Hospital and Wastewater Effluents Using Nanofiltration. Sep. Purif. Technol. 2019, 224, 273–280. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Available online: https://www.fda.gov/ (accessed on 6 April 2022).
- Duchefa Biochemie. Available online: https://www.duchefa-biochemie.com/product/ (accessed on 6 April 2022).
- Martín, J.; Camacho-Muñoz, D.; Santos, J.L.; Aparicio, I.; Alonso, E. Occurrence and Ecotoxicological Risk Assessment of 14 Cytostatic Drugs in Wastewater. Water. Air. Soil Pollut. 2014, 225, 1896. [Google Scholar] [CrossRef]
- ATCC WHOCC-ATC/DDD Index. Available online: https://www.whocc.no/atc_ddd_index/?code=L&showdescription=yes (accessed on 15 February 2022).
- Keller, V.D.J.; Williams, R.J.; Lofthouse, C.; Johnson, A.C. Worldwide Estimation of River Concentrations of Any Chemical Originating from Sewage-Treatment Plants Using Dilution Factors. Environ. Toxicol. Chem. 2014, 33, 447–452. [Google Scholar] [CrossRef] [Green Version]
- Nika, M.C.; Ntaiou, K.; Elytis, K.; Thomaidi, V.S.; Gatidou, G.; Kalantzi, O.I.; Thomaidis, N.S.; Stasinakis, A.S. Wide-Scope Target Analysis of Emerging Contaminants in Landfill Leachates and Risk Assessment Using Risk Quotient Methodology. J. Hazard. Mater. 2020, 394, 122493. [Google Scholar] [CrossRef]
- Home—Electronic Medicines Compendium (Emc). Available online: https://www.medicines.org.uk/emc/ (accessed on 9 April 2022).
- Dubbelman, A.C.; Rosing, H.; Darwish, M.; D’Andrea, D.; Bond, M.; Hellriegel, E.; Robertson, P.; Beijnen, J.H.; Schellens, J.H.M. Pharmacokinetics and Excretion of 14C-Bendamustine in Patients with Relapsed or Refractory Malignancy. Drugs R. D. 2013, 13, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- BC Cancer. Available online: http://www.bccancer.bc.ca/ (accessed on 9 April 2022).
- Rowney, N.C.; Johnson, A.C.; Williams, R.J. Cytotoxic Drugs in Drinking Water: A Prediction and Risk Assessment Exercise for the Thames Catchment in the United Kingdom. Environ. Toxicol. Chem. 2009, 28, 2733–2743. [Google Scholar] [CrossRef] [PubMed]
- Drugs.Com|Prescription Drug Information, Interactions & Side Effects. Available online: https://www.drugs.com/# (accessed on 9 April 2022).
- Chang, H.; Wan, Y.; Wu, S.; Fan, Z.; Hu, J. Occurrence of Androgens and Progestogens in Wastewater Treatment Plants and Receiving River Waters: Comparison to Estrogens. Water Res. 2011, 45, 732–740. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov/ (accessed on 9 April 2022).
Consumption (g day−1) | ||||||||
---|---|---|---|---|---|---|---|---|
Cytostatic Drug | 2010 * | 2011 * | 2012 * | 2013 | 2014 | 2015 | 2016 | 2017 |
Mycophenolic acid | 5093 | 5408 | 5554 | 5928 | 6456 | 6788 | 7036 | 7331 |
Hydroxycarbamide | 1598 | 1742 | 1698 | 1801 | 1906 | 2007 | 2123 | 2217 |
Capecitabine | 2259 | 2273 | 1863 | 1752 | 1607 | 1769 | 1797 | 1899 |
Prednisone | 608 | 627 | 635 | 658 | 693 | 783 | 899 | 963 |
Azathioprine | 553 | 606 | 633 | 672 | 710 | 753 | 793 | 815 |
Megestrol | 619 | 614 | 538 | 448 | 397 | 391 | 467 | 447 |
Imatinib | 245 | 259 | 262 | 274 | 280 | 270 | 282 | 297 |
Abiraterone | - | - | 52 | 107 | 177 | 226 | 228 | 266 |
Ciclosporin | 330 | 321 | 306 | 295 | 292 | 280 | 271 | 245 |
Bicalutamide | 303 | 302 | 263 | 245 | 223 | 202 | 185 | 166 |
Tamoxifen | 133 | 136 | 135 | 143 | 150 | 149 | 144 | 142 |
Gemcitabine | 97 | 89 | 87 | 87 | 92 | 92 | 92 | 94 |
Nilotinib | 42 | 53 | 65 | 77 | 82 | 81 | 93 | 93 |
Sorafenib | 73 | 73 | 63 | 64 | 65 | 66 | 82 | 80 |
Leflunomide | 44 | 46 | 46 | 47 | 50 | 52 | 55 | 57 |
Cyproterone | 72 | 70 | 60 | 56 | 53 | 50 | 50 | 49 |
Exemestane | 58 | 57 | 54 | 51 | 51 | 50 | 48 | 48 |
Flutamide | 259 | 209 | 153 | 119 | 99 | 78 | 67 | 47 |
2013 | 2014 | 2015 | 2016 | 2017 | PECwwtp (mean ± sd) | PECriver (mean ± sd) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PECwwtp | PECriver | PECwwtp | PECriver | PECwwtp | PECriver | PECwwtp | PECriver | PECwwtp | PECriver | |||||||
MPA | 2224 | 85.8 | MPA | 2422 | 93.4 | MPA | 2546 | 98.2 | MPA | 2640 | 102 | MPA | 2750 | 106 | 2516 ± 203 | 97.0 ± 7.8 |
HYD | 892 | 34.4 | HYD | 944 | 36.4 | HYD | 994 | 38.3 | HYD | 1051 | 40.6 | HYD | 1098 | 42.4 | 995 ± 82 | 38.4 ± 3.2 |
CAP | 165 | 6.4 | CAP | 152 | 5.8 | CAP | 167 | 6.4 | CAP | 170 | 6.5 | CAP | 179 | 6.9 | 166 ± 10 | 6.4 ± 0.4 |
BIC | 132 | 5.1 | BIC | 120 | 4.6 | BIC | 109 | 4.2 | BIC | 100 | 3.8 | BIC | 89.6 | 3.4 | 110 ± 17 | 4.2 ± 0.7 |
IMA | 65.1 | 2.5 | IMA | 66.6 | 2.6 | IMA | 64.1 | 2.5 | IMA | 67.0 | 2.6 | IMA | 70.7 | 2.7 | 66.7 ± 2.5 | 2.6 ± 0.1 |
PRED | 43.2 | 1.7 | PRED | 45.5 | 1.7 | PRED | 51.4 | 2.0 | PRED | 59.0 | 2.3 | PRED | 63.1 | 2.4 | 52.4 ± 8.5 | 2.0 ± 0.3 |
LEF | 42.2 | 1.6 | LEF | 44.6 | 1.7 | LEF | 46.5 | 1.8 | LEF | 49.2 | 1.9 | LEF | 51.2 | 1.9 | 49.0 ± 3.6 | 1.2 ± 0.1 |
PZ | 18 | 0.69 | PZ | 29.6 | 1.1 | ABI | 28.2 | 1.1 | PZ | 31.0 | 1.2 | ABI | 33.2 | 1.3 | 25.0 ± 7.7 | 0.97 ± 0.30 |
CPA | 15.9 | 0.61 | ABI | 22.1 | 0.85 | PZ | 27.9 | 1.1 | ABI | 28.4 | 1.1 | PZ | 31.2 | 1.2 | 27.5 ± 5.5 | 1.0 ± 0.1 |
MEG | 14.1 | 0.54 | CPA | 14.9 | 0.57 | AZA | 14.9 | 0.57 | PTX | 16.7 | 0.64 | PTX | 19.3 | 0.74 | 14.8 ± 3.4 | 0.57 ± 0.04 |
AZA | 13.3 | 0.51 | AZA | 14.1 | 0.54 | PTX | 14.8 | 0.57 | AZA | 15.7 | 0.60 | AZA | 16.1 | 0.62 | 14.8 ± 1.2 | 0.57 ± 0.04 |
ABI | 13.3 | 0.51 | PTX | 12.8 | 0.49 | CPA | 14.2 | 0.55 | MEG | 14.7 | 0.56 | RIX | 15.1 | 0.58 | 13.5 ± 2.3 | 0.52 ± 0.08 |
NILO | 11.7 | 0.45 | NILO | 12.5 | 0.48 | NILO | 12.4 | 0.48 | NILO | 14.2 | 0.55 | NILO | 14.3 | 0.55 | 13.0 ± 1.2 | 0.50 ± 0.05 |
FLUT | 10.8 | 0.41 | MEG | 12.5 | 0.48 | MEG | 12.3 | 0.47 | CPA | 14.2 | 0.55 | MEG | 14.1 | 0.54 | 13.5 ± 1.1 | 0.52 ± 0.04 |
PTX | 10.4 | 0.4 | PMT | 10.4 | 0.4 | PMT | 11.8 | 0.45 | RIX | 11.9 | 0.46 | CPA | 13.9 | 0.54 | 14.6 ± 0.8 | 0.56 ± 0.06 |
IFO | 10.2 | 0.36 | IFO | 10.3 | 0.39 | TMAB | 11.8 | 0.45 | TMAB | 12.2 | 0.47 | 12.0 ± 0.3 | 0.46 ± 0.05 | |||
PMT | 11.6 | 0.45 | PMT | 10.6 | 0.41 | 11.1 ± 0.7 | 0.43 ± 0.01 | |||||||||
FLUT | nd | nd | 10.8 ± 0.0 | 0.41 ± 0.02 | ||||||||||||
6-MP | 10.4 | 0.4 | 10.4 ± 0.0 | 0.40 ± 0.00 | ||||||||||||
IFO | nd | nd | 10.3 ± 0.1 | 0.38 ± 0.02 |
Negreira 2013 | Negreira 2014 | Ferrando-Climent et al. (2014) | Gomez-Canela et al. (2014) | Julià Martin et al. | Franquet 2017 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Highest PECs Cytostatics | WWTP inf | PEC/ MEC | River Water (Surface) | PEC/ MEC | WWTP eff | PEC/ MEC | WWTP eff | PEC/ MEC | River Water (Surface) | PEC/ MEC | WWTP eff | PEC/MEC | River Water (Surface) | PEC/ MEC | River Water (Surface) | PEC/ MEC | River Water (Surface) | PEC/ MEC |
Mycophenolic acid | 656 | 0.2 | ||||||||||||||||
Capecitabine | 27 | 6.2 | 7.7 | 21.6 | <15 | <11.1 | ||||||||||||
Imatinib | <180 | <0.4 | <180 | <0.01 | ||||||||||||||
Prednisone | <12 | <4.4 | ||||||||||||||||
Azathioprine | <6.1 | <2.4 | <3.9 | 0.1 | <3.9 | <0.1 | ||||||||||||
Paclitaxel | 4.4 | 3.4 | <3.1 | <0.2 | <8.7 | <1.7 | <2.9 | <1.7 | <2.9 | <0.2 | <0.2 | <2.9 | ||||||
Cyproterone | <4.1 | <3.6 | ||||||||||||||||
Megestrol | <3–20 | <4.5–0.7 | 6 | 0.1 | ||||||||||||||
Ifosfamide | <2.0 | <5 | <2.0 | <0.2 | 8.9 | 1.2 | <1.3 | 7.9 | <1.1 | <0.3 | <6 | <1.7 | <1.1 | 0.3 | <1.7 | 0.2 | 13.9 | 0.03 |
ATC Group | Name | Organism | Test | References | Toxicity (mg L−1) | PECriver ng L−1 (Mean) ± SD | RQ |
---|---|---|---|---|---|---|---|
L04AA06 | Mycophenolic acid | D. magna | 48 h, EC50 | [32] | >100 | 97.08 ± 7.84 | 9.71 × 104 |
L01XX05 | Hydroxycarbamide | D. magna | Acute toxicity, 48 h, EC50 | [33] | >100 | 38.42 ± 3.20 | 3.84 × 104 |
L01BC06 | Capecitabine | D. magna | LC50, 48 h | [34] | 224 | 6.40 ± 0.39 | 2.86 × 105 |
D. magna | Reproduction 48 h, EC50 | [1] | 850 | 7.53 × 106 | |||
L02BB03 | Bicalutamide | D. magna | 24 h (static), EC50 | (AstraZeneca, 2006) | 1 | 4.22 ± 0.66 | 4.22 × 103 |
B. sunfish | 96 h (static), LC50 | 4 | 1.06 × 103 | ||||
L01XE01 | Imatinib | D. magna | 48 h, LC50 | [34] | 11.97 | 2.58 ± 0.08 | 2.16 × 104 |
H02AB07 | Prednisone | D.magna | 48 h, EC50 | [35] | 108.1 | 2.02 ± 0.33 | 1.87 × 105 |
L04AA13 | Leflunomide | D. magna | 48 h, EC50 | [36] | >100 | 1.78 ± 0.13 | 1.78 × 105 |
D.rerio | 48 h, LC50 | [32] | 17 | 1.05 × 104 | |||
L01EX03 | Pazopanib | nd | 1.06 ± 0.21 | ||||
L02BX03 | Abiraterone | nd | 0.97 ± 0.30 | ||||
L04AX01 | Azathioprine | D.magna | 48 h, EC50 | [37] | >100 | 0.57 ± 0.04 | 5.68 × 106 |
L01CD01 | Paclitaxel | D.magna | 48 h, EC50 | [38] | 0.74 | 0.57 ± 0.04 | 7.68 × 104 |
G03HA01 | Cyproterone | D.magna | 48 h, EC50 | [37] | 2.4 | 0.56 ± 0.06 | 2.35 × 104 |
L02AB01 | Megestrol | D.magna | 48 h, LC50 | [39] | 5 | 0.52 ± 0.04 | 1.04 × 104 |
L01FA01 | Rituximab | nd | 0.52 ± 0.08 | ||||
L01EA03 | Nilotinib | nd | 0.50 ± 0.05 | ||||
L01XC03 | Trastuzumab | D.magna | 48 h, EC50 | [36] | 369 | 0.46 ± 0.05 | 1.25 × 106 |
B. sunfish | 96 h, LC50 | [36] | 10 | 4.60 × 105 | |||
L01BA04 | Pemetrexed | D.magna | 48 h, EC50 | [37] | 462 | 0.43 ± 0.01 | 9.31 × 107 |
Fish (unknown) | 96 h, LC50 | [37] | 1099.6 | 3.91 × 107 | |||
L01BB02 | Mercaptopurine | D.magna | 48 h, EC50 | [40] | 55 | 0.40 ± 0.00 | 7.27 × 106 |
L01AA06 | Ifosfamide | D.magna | 49 h, EC50 | [41] | 1795 | 0.38 ± 0.02 | 2.09 × 107 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dominguez-García, P.; Gibert, M.; Lacorte, S.; Gómez-Canela, C. Long-Term Calculation of Predicted Environmental Concentrations to Assess the Risk of Anticancer Drugs in Environmental Waters. Molecules 2022, 27, 3203. https://doi.org/10.3390/molecules27103203
Dominguez-García P, Gibert M, Lacorte S, Gómez-Canela C. Long-Term Calculation of Predicted Environmental Concentrations to Assess the Risk of Anticancer Drugs in Environmental Waters. Molecules. 2022; 27(10):3203. https://doi.org/10.3390/molecules27103203
Chicago/Turabian StyleDominguez-García, Pol, Marta Gibert, Sílvia Lacorte, and Cristian Gómez-Canela. 2022. "Long-Term Calculation of Predicted Environmental Concentrations to Assess the Risk of Anticancer Drugs in Environmental Waters" Molecules 27, no. 10: 3203. https://doi.org/10.3390/molecules27103203
APA StyleDominguez-García, P., Gibert, M., Lacorte, S., & Gómez-Canela, C. (2022). Long-Term Calculation of Predicted Environmental Concentrations to Assess the Risk of Anticancer Drugs in Environmental Waters. Molecules, 27(10), 3203. https://doi.org/10.3390/molecules27103203