Weak Polyelectrolytes as Nanoarchitectonic Design Tools for Functional Materials: A Review of Recent Achievements
Abstract
:1. Context
- -
- In the initial part, organic and hybrid thin films obtained from weak polyelectrolyte brushes and electrodeposited coatings are described, including those based on natural polyelectrolytes (e.g., chitosan, alginate, hyaluronic acid). The cohesion of such systems relies on covalent, hydrophobic and H-bonding interactions, most often leading to coatings containing one weak polyelectrolyte at a time. Basic synthesis approaches for these films are discussed as well as their applications, with an emphasis on their response to post-assembly pH changes in terms of swelling, adhesion, and cargo encapsulation and release.
- -
- The next two sections describe systems based on polyelectrolyte complexes, including those formed from the electrostatic complexation of weak polyanions and polycations [34]. Their assembly in aqueous media, without aggressive chemicals, allows for the use of more environmentally friendly routes to obtain surface coatings (films and layer-by-layer capsules), vectors, and functional gels. The resulting systems usually include several polyelectrolytes at the same time, and their cohesion is based on reversible interactions. The fundamentals of these films, gels, and colloids are discussed with respect to their response to pH and salt stimuli both during and after assembly. Emphasis is placed on recently proposed processing strategies to transform electrostatic complexes into gels and membranes. The applications of these systems are reviewed with a focus on nanovectors, and a subsection is devoted to systems that have been identified as relevant to pharmaceutical needs.
- -
- The final part addresses the growing significance of block copolymers (BCP) containing weak polyelectrolyte blocks for nanostructuring surfaces, colloids, and membranes. Accordingly, their directed self-assembly into microphase-separated films and their micellization behavior are discussed as a function of complexation, pH, and salt stimuli. Emerging applications, including sensors, nanolithography, and vectorization, are discussed.
2. Weak Polyelectrolytes Layers for Stimuli-Responsive Surfaces
2.1. Brushes of Weak Polyelectrolytes
2.2. Electrodeposited Weak Polyelectrolytes Films
Electrodeposition Principle | Polyelectrolyte Type and Typical Conditions (vs. Ag/AgCl) | Applications | Reference |
---|---|---|---|
Electrocoupling by click reaction | P AA or PAH grafted with alkyne and azide (−0.3 V, 0.6 mM CuSO4, H2O) | pH sensors, triggered release | [60,70] |
Controlled dimerization | Dimerization of alkylcarbazoles (+1.0 V/+1.2 V, acetonitrile) | Photovoltaics | [87] |
Electropolymerization | PANI (1.0 M HNO3 aqueous, 2 mA cm−2) PANI (0.5 M H2SO4 aqueous, CV −0.6 V/+1.5 V) Polycarbazoles (+1.3 V, aqueous or acetonitrile) Polydopamine (0.1 M phosphate buffer saline, CV −0.5 V/+0.5 V) | Capacitors, Capacitor sensors, Opto-electronic and electrochemical Sensors, biocoatings | [61,78] [76] [88] |
Electrochemically induced precipitation | Chitin (+1.2 V with Fe2+ ions) CHI (+1.5 V with Cu(s)) CHI (+1 to +3 V) Collagen (pH 3.5; 0.1 M H2O2, 8 mA/cm2) ALG (oxidation of oxides, 1.7–4.4 mA/cm2) PAH (+0.6 V, with MoO42−) | Drug release Sensor Drug delivery, biocoatings Biomaterials and actuators Wound treatment Implant coating | [89] [63] [90] [91] [69,71] [68] |
Electrochemical co-deposition | HA + Polydopamine (+1 V in PBS buffer) | Antifouling | [92] |
Complexation by pH-induced shift of PAH protonation | PAH/PAA (−0.5 V, 0.12 M H2O2) PAA/protected PAH and polyampholytes (H+ generation with 90 µA rate) | None reported | [65,66,67] |
3. Layer-by-Layer Films and Vectors from Weak Polyelectrolytes
3.1. Layer by Layer Films
3.2. Colloidal Systems Based on LbL Multilayers of Weak Polyelectrolytes
4. Gels and Vectors Based on Weak Polyelectrolytes Complexes
4.1. Gels Based on Weak Polyelectrolyte Complexes
4.2. Weak Polyelectrolyte Complexes for Pharmaceutical Vectorization
5. Block Copolymer Systems Based on Weak Polyelectrolytes
5.1. Directed Self-Assembly of BCPs for Nanopatterning
5.2. Colloidal Systems from Weak Polyelectrolytes BCP for Drug Delivery
5.3. Membranes from Weak Polyelectrolytes BCP for Filtration
BCP Polyelectrolyte | Chemical Structure | Applications | References |
---|---|---|---|
Poly(styrene)-b-poly(4-vinylpyridine) PS-b-P4VP | Pattern transfer filtration colloids | [210,238] | |
Poly(styrene)-b-poly(2-vinylpyridine) PS-b-P2VP | Etch masks, drug delivery filtration | [213,215,216] | |
Poly(styrene)-b-poly(acrylic acid) PS-b-PAA | Ultra-filtration Drug delivery NP synthesis | [233,239] | |
Poly(styrene)-b-poly(methacrylic acid) PS-b-PMAA | Filtration Pattern transfer drug delivery | [240] | |
Poly(ethylene oxide)-b-poly(2-vinylpyridine) PEO-b-P2VP | Membranes | [241] | |
Poly(ethylene glycol)-b-poly(2-(dimethylamino)ethyl methacrylate) PEG-b- PDMAEMA | Drug delivery | [242] | |
Poly(ethylene oxide)-b-poly(acrylic acid) PEO-b-PAA | Drug delivery vehicle | [243] | |
Poly(ethylene oxide)-b-poly(acrylic acid)-b-poly(styrene) PEO-b-PAA-b-PS | Controlled drug delivery | [244] | |
Poly(n-butyl acrylate)-b-poly(acrylic acid) PnBA-b-PAA | Nanoreactors NP synthesis | [245] | |
Poly(styrene)-b-poly(L-lysine) PS-b-PLL | DNA carrier Encapsulation | [246] | |
Poly(N-isopropylacrylamide)-b- poly(acrylic acid) PNIPAM-b-PAA | Encapsulation Drug delivery | [247] |
6. Closing Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALG | Alginic acid |
ATRP | Atom-Transfer-Radical-Polymerization |
BCP | Block copolymers |
CHI | Chitosan |
COPEC | Compacted complexes of Polyelectrolytes |
DNA | Deoxyribonucleic acid |
DIB | 1,4-diiodobutane |
HA | Hyaluronic acid |
LbL | Layer-by-Layer |
MeI | Methyl iodide |
NMP | Nitroxide-Mediated Polymerization |
NIPS | Non-solvent-induced phase separation |
P2VP | Poly(2-vinylpyridine) |
P4VP | Poly(4-vinylpyridine) |
PAA | Poly(acrylic acid) |
PAH | Poly(allylamine hydrochloride) |
PANI | Poly(aniline) |
PBS | Phosphate Buffer Saline |
PDADMAC | Poly(diallyldimethylammonium chloride) |
PDMA | Poly(N,N-dimethylacrylamide) |
PDMAEMA | Poly(2-(dimethylamino)ethyl methacrylate) |
PEG | Poly(ethylene glycol) |
PEG-b-PDMAEMA | Poly(ethylene glycol)-b-poly(2-(dimethylamino)ethyl methacrylate) |
PEI | Poly(ethyleneimine) |
PEO | Poly(ethylene oxide) |
PEO-b-P2VP | Poly(ethylene oxide)-b-poly(2-vinylpyridine) |
PEO-b-PAA | Poly(ethylene oxide)-b-poly(acrylic acid) |
PEO-b-PAA-b-PS | Poly(ethylene oxide)-b-poly(acrylic acid)-b-poly(styrene) |
PGA | Poly(glutamic acid) |
PLL | Poly(L-lysine) |
PMAA | Poly(methacrylic acid) |
PnBA | Poly(n-butyl acrylate) |
PnBA-b-PAA | Poly(n-butyl acrylate)-b-poly(acrylic acid) |
PNIPAM | Poly(N-isopropylacrylamide) |
PNIPAM-b-PAA | Poly(N-isopropylacrylamide)-b- poly(acrylic acid) |
PS-b-P2VP | Poly(styrene)-b-poly(2-vinylpyridine) |
PS-b-P4VP | Poly(styrene)-b-poly(4-vinylpyridine) |
PS-b-PAA | Poly(styrene)-b-poly(acrylic acid) |
PS-b-PLL | Poly(styrene)-b-poly(L-lysine) |
PS-b-PMAA | Poly(styrene)-b-poly(methacrylic acid) |
PSS | Poly(sodium 4-styrenesulfonate) |
RAFT | Reversible Addition-Fragmentation Chain Transfer |
References
- Ariga, K. Progress in Molecular Nanoarchitectonics and Materials Nanoarchitectonics. Molecules 2021, 26, 1621. [Google Scholar] [CrossRef] [PubMed]
- Aono, M.; Bando, Y.; Ariga, K. Nanoarchitectonics: Pioneering a New Paradigm for Nanotechnology in Materials Development. Adv. Mater. 2012, 24, 150–151. [Google Scholar] [CrossRef] [PubMed]
- Ariga, K. Nanoarchitectonics Revolution and Evolution: From Small Science to Big Technology. Small Sci. 2021, 1, 2000032. [Google Scholar] [CrossRef]
- Ariga, K.; Shrestha, L.K. Intelligent Nanoarchitectonics for Self-Assembling Systems. Adv. Intell. Syst. 2020, 2, 1900157. [Google Scholar] [CrossRef] [Green Version]
- Vranckx, C.; Lambricht, L.; Préat, V.; Cornu, O.; Dupont-Gillain, C.; vander Straeten, A. Layer-by-Layer Nanoarchitectonics Using Protein–Polyelectrolyte Complexes toward a Generalizable Tool for Protein Surface Immobilization. Langmuir 2022, 38, 5579–5589. [Google Scholar] [CrossRef] [PubMed]
- Rathee, V.S.; Sidky, H.; Sikora, B.J.; Whitmer, J.K. Explicit Ion Effects on the Charge and Conformation of Weak Polyelectrolytes. Polymers 2019, 11, 183. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Jackson, N.E.; Xu, X.; Morgenstern, Y.; Kaufman, Y.; Ruths, M.; de Pablo, J.J.; Tirrell, M. Multivalent Counterions Diminish the Lubricity of Polyelectrolyte Brushes. Science 2018, 360, 1434–1438. [Google Scholar] [CrossRef] [Green Version]
- Sciortino, F.; Mir, S.H.; Pakdel, A.; Oruganti, A.; Abe, H.; Witecka, A.; Shri, D.N.A.; Rydzek, G.; Ariga, K. Saloplastics as Multiresponsive Ion Exchange Reservoirs and Catalyst Supports. J. Mater. Chem. A 2020, 8, 17713–17724. [Google Scholar] [CrossRef]
- Neitzel, A.E.; De Hoe, G.X.; Tirrell, M.V. Expanding the Structural Diversity of Polyelectrolyte Complexes and Polyzwitterions. Curr. Opin. Solid State Mater. Sci. 2021, 25, 100897. [Google Scholar] [CrossRef]
- Wang, S.; Granick, S.; Zhao, J. Charge on a Weak Polyelectrolyte. J. Chem. Phys. 2008, 129, 241102. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Digby, Z.A.; Schlenoff, J.B. Precision Doping of Polyelectrolyte Complexes: Insight on the Role of Ions. Macromolecules 2020, 53, 5465–5474. [Google Scholar] [CrossRef]
- Digby, Z.A.; Yang, M.; Lteif, S.; Schlenoff, J.B. Salt Resistance as a Measure of the Strength of Polyelectrolyte Complexation. Macromolecules 2022, 55, 978–988. [Google Scholar] [CrossRef]
- Durmaz, E.N.; Willott, J.D.; Fatima, A.; de Vos, W.M. Weak Polyanion and Strong Polycation Complex Based Membranes: Linking Aqueous Phase Separation to Traditional Membrane Fabrication. Eur. Polym. J. 2020, 139, 110015. [Google Scholar] [CrossRef]
- Porcel, C.H.; Schlenoff, J.B. Compact Polyelectrolyte Complexes: “Saloplastic” Candidates for Biomaterials. Biomacromolecules 2009, 10, 2968–2975. [Google Scholar] [CrossRef] [Green Version]
- Geoghegan, M. Weak Polyelectrolyte Brushes. Soft Matter 2022, 18, 2500–2511. [Google Scholar] [CrossRef]
- Decher, G. Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites. Science 1997, 277, 1232–1237. [Google Scholar] [CrossRef]
- Dolce, C.; Mériguet, G. Ionization of Short Weak Polyelectrolytes: When Size Matters. Colloid Polym. Sci. 2017, 295, 279–287. [Google Scholar] [CrossRef] [Green Version]
- Landsgesell, J.; Holm, C.; Smiatek, J. Simulation of Weak Polyelectrolytes: A Comparison between the Constant PH and the Reaction Ensemble Method. Eur. Phys. J. Spec. Top. 2017, 226, 725–736. [Google Scholar] [CrossRef]
- Carnal, F.; Stoll, S. Chain Stiffness, Salt Valency, and Concentration Influences on Titration Curves of Polyelectrolytes: Monte Carlo Simulations. J. Chem. Phys. 2011, 134, 044909. [Google Scholar] [CrossRef]
- Brilmayer, R.; Kübelbeck, S.; Khalil, A.; Brodrecht, M.; Kunz, U.; Kleebe, H.-J.; Buntkowsky, G.; Baier, G.; Andrieu-Brunsen, A. Influence of Nanoconfinement on the PKa of Polyelectrolyte Functionalized Silica Mesopores. Adv. Mater. Interfaces 2020, 7, 1901914. [Google Scholar] [CrossRef]
- Terauchi, M.; Tamura, A.; Tonegawa, A.; Yamaguchi, S.; Yoda, T.; Yui, N. Polyelectrolyte Complexes between Polycarboxylates and BMP-2 for Enhancing Osteogenic Differentiation: Effect of Chemical Structure of Polycarboxylates. Polymers 2019, 11, 1327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swift, T.; Swanson, L.; Geoghegan, M.; Rimmer, S. The PH-Responsive Behaviour of Poly(Acrylic Acid) in Aqueous Solution Is Dependent on Molar Mass. Soft Matter 2016, 12, 2542–2549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cleland, R.L.; Wang, J.L.; Detweiler, D.M. Polyelectrolyte Properties of Sodium Hyaluronate. 2. Potentiometric Titration of Hyaluronic Acid. Macromolecules 1982, 15, 386–395. [Google Scholar] [CrossRef]
- López-García, M.; Martínez-Cabanas, M.; Vilariño, T.; Lodeiro, P.; Rodríguez-Barro, P.; Herrero, R.; Barriada, J.L. New Polymeric/Inorganic Hybrid Sorbents Based on Red Mud and Nanosized Magnetite for Large Scale Applications in As(V) Removal. Chem. Eng. J. 2017, 311, 117–125. [Google Scholar] [CrossRef]
- Mouslmani, M.; Rosenholm, J.M.; Prabhakar, N.; Peurla, M.; Baydoun, E.; Patra, D. Curcumin Associated Poly(Allylamine Hydrochloride)-Phosphate Self-Assembled Hierarchically Ordered Nanocapsules: Size Dependent Investigation on Release and DPPH Scavenging Activity of Curcumin. RSC Adv. 2015, 5, 18740–18750. [Google Scholar] [CrossRef]
- Wan, H.; Yang, S.C. Controlling the PKa for Protonic Doping of Polyaniline by Non-Covalent Complexation. MRS Online Proc. Libr. (OPL) 2006, 965, 1223. [Google Scholar] [CrossRef]
- von Harpe, A.; Petersen, H.; Li, Y.; Kissel, T. Characterization of Commercially Available and Synthesized Polyethylenimines for Gene Delivery. J. Control. Release 2000, 69, 309–322. [Google Scholar] [CrossRef]
- Franck-Lacaze, L.; Sistat, P.; Huguet, P. Determination of the PKa of Poly (4-Vinylpyridine)-Based Weak Anion Exchange Membranes for the Investigation of the Side Proton Leakage. J. Membr. Sci. 2009, 326, 650–658. [Google Scholar] [CrossRef]
- Perrin, D.D. Dissociation Constants of Organic Bases in Aqueous Solution; Butterworths: London, UK, 1965. [Google Scholar]
- Lee, H.; Son, S.H.; Sharma, R.; Won, Y.-Y. A Discussion of the PH-Dependent Protonation Behaviors of Poly(2-(Dimethylamino)Ethyl Methacrylate) (PDMAEMA) and Poly(Ethylenimine-Ran-2-Ethyl-2-Oxazoline) (P(EI-r-EOz)). J. Phys. Chem. B 2011, 115, 844–860. [Google Scholar] [CrossRef] [PubMed]
- Volodkin, D.; Ball, V.; Schaaf, P.; Voegel, J.-C.; Mohwald, H. Complexation of Phosphocholine Liposomes with Polylysine. Stabilization by Surface Coverage versus Aggregation. Biochim. Et Biophys. Acta (BBA)-Biomembr. 2007, 1768, 280–290. [Google Scholar] [CrossRef] [Green Version]
- Stamou, A.; Iatrou, H.; Tsitsilianis, C. NIPAm-Based Modification of Poly(L-Lysine): A PH-Dependent LCST-Type Thermo-Responsive Biodegradable Polymer. Polymers 2022, 14, 802. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, M.A.; Syeda, J.T.M.; Wasan, K.M.; Wasan, E.K. An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery. Pharmaceutics 2017, 9, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, J.; Schlenoff, J.B. Driving Forces for Oppositely Charged Polyion Association in Aqueous Solutions: Enthalpic, Entropic, but Not Electrostatic. J. Am. Chem. Soc. 2016, 138, 980–990. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Huang, X. Polymer Brushes: Efficient Synthesis and Applications. Acc. Chem. Res. 2018, 51, 2314–2323. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, M.R.; Cousin, F.; Geoghegan, M. Creation of Dense Polymer Brush Layers by the Controlled Deposition of an Amphiphilic Responsive Comb Polymer. Polymer 2009, 50, 4829–4836. [Google Scholar] [CrossRef] [Green Version]
- Jones, R.A.L.; Richards, R.W. Polymers at Surfaces and Interfaces; Cambridge University Press: Cambridge, UK, 1999; ISBN 0521479657. [Google Scholar]
- Datsyuk, V.; Billon, L.; Guerret-Piécourt, C.; Dagréou, S.; Passade-Boupatt, N.; Bourrigaud, S.; Guerret, O.; Couvreur, L. In Situ Nitroxide-Mediated Polymerized Poly(Acrylic Acid) as a Stabilizer/Compatibilizer Carbon Nanotube/Polymer Composites. J. Nanomater. 2007, 2007, e74769. [Google Scholar] [CrossRef]
- Glasing, J.; Bouchard, J.; Jessop, P.G.; Champagne, P.; Cunningham, M.F. Grafting Well-Defined CO2-Responsive Polymers to Cellulose Nanocrystals via Nitroxide-Mediated Polymerisation: Effect of Graft Density and Molecular Weight on Dispersion Behaviour. Polym. Chem. 2017, 8, 6000–6012. [Google Scholar] [CrossRef]
- Bhat, R.R.; Tomlinson, M.R.; Genzer, J. Assembly of Nanoparticles Using Surface-Grafted Orthogonal Polymer Gradients. Macromol. Rapid Commun. 2004, 25, 270–274. [Google Scholar] [CrossRef]
- Ryan, A.J.; Crook, C.J.; Howse, J.R.; Topham, P.; Jones, R.A.L.; Geoghegan, M.; Parnell, A.J.; Ruiz-Pérez, L.; Martin, S.J.; Cadby, A.; et al. Responsive Brushes and Gels as Components of Soft Nanotechnology. Faraday Discuss. 2005, 128, 55–74. [Google Scholar] [CrossRef]
- Wang, B.; Ye, Z.; Tang, Y.; Han, Y.; Lin, Q.; Liu, H.; Chen, H.; Nan, K. Fabrication of Nonfouling, Bactericidal, and Bacteria Corpse Release Multifunctional Surface through Surface-Initiated RAFT Polymerization. IJN 2016, 12, 111–125. [Google Scholar] [CrossRef] [Green Version]
- Cho, M.K.; Seo, H.J.; Lee, J.H.; Cho, W.K.; Son, K. Polymer Brush Growth by Oxygen-Initiated RAFT Polymerization on Various Substrates. Polym. Chem. 2021, 12, 7023–7030. [Google Scholar] [CrossRef]
- Zhulina, E.B.; Birshtein, T.M.; Borisov, O.V. Theory of Ionizable Polymer Brushes. Macromolecules 1995, 28, 1491–1499. [Google Scholar] [CrossRef]
- Zhang, J.; Cai, H.; Tang, L.; Liu, G. Tuning the PH Response of Weak Polyelectrolyte Brushes with Specific Anion Effects. Langmuir 2018, 34, 12419–12427. [Google Scholar] [CrossRef] [PubMed]
- Dunderdale, G.J.; Fairclough, J.P.A. Coupling PH-Responsive Polymer Brushes to Electricity: Switching Thickness and Creating Waves of Swelling or Collapse. Langmuir 2013, 29, 3628–3635. [Google Scholar] [CrossRef]
- Schüwer, N.; Klok, H.-A. Tuning the PH Sensitivity of Poly(Methacrylic Acid) Brushes. Langmuir 2011, 27, 4789–4796. [Google Scholar] [CrossRef]
- Ferrand-Drake del Castillo, G.; Hailes, R.L.N.; Dahlin, A. Large Changes in Protonation of Weak Polyelectrolyte Brushes with Salt Concentration—Implications for Protein Immobilization. J. Phys. Chem. Lett. 2020, 11, 5212–5218. [Google Scholar] [CrossRef]
- Zhang, Z.; Tomlinson, M.R.; Golestanian, R.; Geoghegan, M. The Interfacial Behaviour of Single Poly(N,N-Dimethylacrylamide) Chains as a Function of PH. Nanotechnology 2008, 19, 035505. [Google Scholar] [CrossRef]
- Sudre, G.; Olanier, L.; Tran, Y.; Hourdet, D.; Creton, C. Reversible Adhesion between a Hydrogel and a Polymer Brush. Soft Matter 2012, 8, 8184–8193. [Google Scholar] [CrossRef] [Green Version]
- La Spina, R.; Tomlinson, M.R.; Ruiz-Pérez, L.; Chiche, A.; Langridge, S.; Geoghegan, M. Controlling Network–Brush Interactions to Achieve Switchable Adhesion. Angew. Chem. Int. Ed. 2007, 46, 6460–6463. [Google Scholar] [CrossRef]
- Ferrand-Drake del Castillo, G.; Koenig, M.; Müller, M.; Eichhorn, K.-J.; Stamm, M.; Uhlmann, P.; Dahlin, A. Enzyme Immobilization in Polyelectrolyte Brushes: High Loading and Enhanced Activity Compared to Monolayers. Langmuir 2019, 35, 3479–3489. [Google Scholar] [CrossRef]
- Takasu, K.; Kushiro, K.; Hayashi, K.; Iwasaki, Y.; Inoue, S.; Tamechika, E.; Takai, M. Polymer Brush Biointerfaces for Highly Sensitive Biosensors That Preserve the Structure and Function of Immobilized Proteins. Sens. Actuators B Chem. 2015, 216, 428–433. [Google Scholar] [CrossRef]
- Koh, E.; Taek Lee, Y. Development of Humidity and PH Responsive Ligand Brush Porous Nanocapsules for Self-Controlled Antibacterial Properties without Cytotoxicity. Appl. Surf. Sci. 2021, 562, 150133. [Google Scholar] [CrossRef]
- Yadav, V.; Jaimes-Lizcano, Y.A.; Dewangan, N.K.; Park, N.; Li, T.-H.; Robertson, M.L.; Conrad, J.C. Tuning Bacterial Attachment and Detachment via the Thickness and Dispersity of a PH-Responsive Polymer Brush. ACS Appl. Mater. Interfaces 2017, 9, 44900–44910. [Google Scholar] [CrossRef] [PubMed]
- Kusumo, A.; Bombalski, L.; Lin, Q.; Matyjaszewski, K.; Schneider, J.W.; Tilton, R.D. High Capacity, Charge-Selective Protein Uptake by Polyelectrolyte Brushes. Langmuir 2007, 23, 4448–4454. [Google Scholar] [CrossRef]
- Atif, M.; Chen, C.; Irfan, M.; Mumtaz, F.; He, K.; Zhang, M.; Chen, L.; Wang, Y. Poly(2-Methyl-2-Oxazoline) and Poly(4-Vinyl Pyridine) Based Mixed Brushes with Switchable Ability toward Protein Adsorption. Eur. Polym. J. 2019, 120, 109199. [Google Scholar] [CrossRef]
- Kobayashi, M.; Terayama, Y.; Yamaguchi, H.; Terada, M.; Murakami, D.; Ishihara, K.; Takahara, A. Wettability and Antifouling Behavior on the Surfaces of Superhydrophilic Polymer Brushes. Langmuir 2012, 28, 7212–7222. [Google Scholar] [CrossRef]
- Rydzek, G.; Ji, Q.; Li, M.; Schaaf, P.; Hill, J.P.; Boulmedais, F.; Ariga, K. Electrochemical Nanoarchitectonics and Layer-by-Layer Assembly: From Basics to Future. Nano Today 2015, 10, 138–167. [Google Scholar] [CrossRef] [Green Version]
- Rydzek, G.; Polavarapu, P.; Rios, C.; Tisserant, J.-N.; Voegel, J.-C.; Senger, B.; Lavalle, P.; Frisch, B.; Schaaf, P.; Boulmedais, F.; et al. Morphogen-Driven Self-Construction of Covalent Films Built from Polyelectrolytes and Homobifunctional Spacers: Buildup and PH Response. Soft Matter 2012, 8, 10336–10343. [Google Scholar] [CrossRef]
- Song, Y.; Guo, Z.; Hu, Z.; Wang, J.; Jiao, S. Electrochemical Self-Assembly of Nano-Polyaniline Film by Forced Convection and Its Capacitive Performance. RSC Adv. 2017, 7, 3879–3887. [Google Scholar] [CrossRef] [Green Version]
- Sciortino, F.; Rydzek, G.; Grasset, F.; Kahn, M.L.; Hill, J.P.; Chevance, S.; Gauffre, F.; Ariga, K. Electro-Click Construction of Hybrid Nanocapsule Films with Triggered Delivery Properties. Phys. Chem. Chem. Phys. 2018, 20, 2761–2770. [Google Scholar] [CrossRef]
- Zou, Y.; Zhong, Y.; Li, H.; Ding, F.; Shi, X. Electrodeposition of Polysaccharide and Protein Hydrogels for Biomedical Applications. Curr. Med. Chem. 2020, 27, 2610–2630. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, B.; Gray, K.M.; Cheng, Y.; Kim, E.; Rubloff, G.W.; Bentley, W.E.; Wang, Q.; Payne, G.F. Electrodeposition of a Weak Polyelectrolyte Hydrogel: Remarkable Effects of Salt on Kinetics, Structure and Properties. Soft Matter 2013, 9, 2703–2710. [Google Scholar] [CrossRef]
- Dochter, A.; Garnier, T.; Pardieu, E.; Chau, N.T.T.; Maerten, C.; Senger, B.; Schaaf, P.; Jierry, L.; Boulmedais, F. Film Self-Assembly of Oppositely Charged Macromolecules Triggered by Electrochemistry through a Morphogenic Approach. Langmuir 2015, 31, 10208–10214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garnier, T.; Dochter, A.; Chau, N.T.T.; Schaaf, P.; Jierry, L.; Boulmedais, F. Surface Confined Self-Assembly of Polyampholytes Generated from Charge-Shifting Polymers. Chem. Commun. 2015, 51, 14092–14095. [Google Scholar] [CrossRef] [Green Version]
- Sadman, K.; Wang, Q.; Chen, S.H.; Delgado, D.E.; Shull, K.R. PH-Controlled Electrochemical Deposition of Polyelectrolyte Complex Films. Langmuir 2017, 33, 1834–1844. [Google Scholar] [CrossRef]
- Martin, E.J.; Sadman, K.; Shull, K.R. Anodic Electrodeposition of a Cationic Polyelectrolyte in the Presence of Multivalent Anions. Langmuir 2016, 32, 7747–7756. [Google Scholar] [CrossRef]
- Liu, X.; Liu, H.; Qu, X.; Lei, M.; Zhang, C.; Hong, H.; Payne, G.F.; Liu, C. Electrical Signals Triggered Controllable Formation of Calcium-Alginate Film for Wound Treatment. J. Mater. Sci. Mater. Med. 2017, 28, 146. [Google Scholar] [CrossRef]
- Rydzek, G.; Jierry, L.; Parat, A.; Thomann, J.-S.; Voegel, J.-C.; Senger, B.; Hemmerle, J.; Ponche, A.; Frisch, B.; Schaaf, P.; et al. Electrochemically Triggered Assembly of Films: A One-Pot Morphogen-Driven Buildup. Angew. Chem.-Int. Ed. 2011, 50, 4374–4377. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Liu, X.; Lei, M.; Sun, J.; Qu, X.; Liu, C. Continuous and Controllable Electro-Fabrication of Antimicrobial Copper-Alginate Dressing for Infected Wounds Treatment. J. Mater. Sci. Mater. Med. 2021, 32, 143. [Google Scholar] [CrossRef]
- Dwivedi, G.; Munjal, G.; Bhaskarwar, A.N.; Chaudhary, A. Dye-Sensitized Solar Cells with Polyaniline: A Review. Inorg. Chem. Commun. 2022, 135, 109087. [Google Scholar] [CrossRef]
- Kumar, A.; Ibraheem, S.; Ali, S.; Maiyalagan, T.; Javed, M.S.; Gupta, R.K.; Saad, A.; Yasin, G. Polypyrrole and Polyaniline-Based Membranes for Fuel Cell Devices: A Review. Surf. Interfaces 2022, 29, 101738. [Google Scholar] [CrossRef]
- Holze, R. Conjugated Molecules and Polymers in Secondary Batteries: A Perspective. Molecules 2022, 27, 546. [Google Scholar] [CrossRef] [PubMed]
- Ramanavicius, S.; Samukaite-Bubniene, U.; Ratautaite, V.; Bechelany, M.; Ramanavicius, A. Electrochemical Molecularly Imprinted Polymer Based Sensors for Pharmaceutical and Biomedical Applications (Review). J. Pharm. Biomed. Anal. 2022, 215, 114739. [Google Scholar] [CrossRef] [PubMed]
- Bekkar, F.; Bettahar, F.; Moreno, I.; Meghabar, R.; Hamadouche, M.; Hernáez, E.; Vilas-Vilela, J.L.; Ruiz-Rubio, L. Polycarbazole and Its Derivatives: Synthesis and Applications. A Review of the Last 10 Years. Polymers 2020, 12, 2227. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Ballester, N.M.; Rydzek, G.; Pakdel, A.; Oruganti, A.; Hasegawa, K.; Mitome, M.; Golberg, D.; Hill, J.P.; Abe, H.; Ariga, K. Nanostructured Polymeric Yolk–Shell Capsules: A Versatile Tool for Hierarchical Nanocatalyst Design. J. Mater. Chem. A 2016, 4, 9850–9857. [Google Scholar] [CrossRef] [Green Version]
- Rydzek, G.; Terentyeva, T.G.; Pakdel, A.; Golberg, D.; Hill, J.P.; Ariga, K. Simultaneous Electropolymerization and Electro-Click Functionalization for Highly Versatile Surface Platforms. Acs Nano 2014, 8, 5240–5248. [Google Scholar] [CrossRef]
- Behzadi Pour, G.; Nazarpour Fard, H.; Fekri Aval, L.; Esmaili, P. Polyvinylpyridine-Based Electrodes: Sensors and Electrochemical Applications. Ionics 2020, 26, 549–563. [Google Scholar] [CrossRef]
- Ball, V. Physicochemical Perspective on “Polydopamine” and “Poly(Catecholamine)” Films for Their Applications in Biomaterial Coatings (Review). Biointerphases 2014, 9, 030801. [Google Scholar] [CrossRef]
- Lin, J.; Daboss, S.; Blaimer, D.; Kranz, C. Micro-Structured Polydopamine Films via Pulsed Electrochemical Deposition. Nanomaterials 2019, 9, 242. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Ishihara, S.; Akada, M.; Liao, M.; Sang, L.; Hill, J.P.; Krishnan, V.; Ma, Y.; Ariga, K. Electrochemical-Coupling Layer-by-Layer (ECC-LbL) Assembly. J. Am. Chem. Soc. 2011, 133, 7348–7351. [Google Scholar] [CrossRef]
- Li, M. C3−C3′ and C6−C6′ Oxidative Couplings of Carbazoles. Chem.—A Eur. J. 2019, 25, 1142–1151. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Lu, Y.; Zhang, J.; Wang, J.; Wang, Y.; Li, M.; Chen, Q. Tuning Optical Limiting of Heterosized AuNPs and Fullerene by Countable Electrochemical Assembly. ACS Omega 2018, 3, 12495–12500. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Zhang, J.; Sang, L.; Shrestha, L.K.; Zhang, Z.; Lu, P.; Li, F.; Li, M.; Ariga, K. Electrochemically Organized Isolated Fullerene-Rich Thin Films with Optical Limiting Properties. ACS Appl. Mater. Interfaces 2016, 8, 24295–24299. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, M. Controlled Electropolymerization Based on Self-Dimerizations of Monomers. Curr. Opin. Electrochem. 2022, 33, 100952. [Google Scholar] [CrossRef]
- Gu, C.; Zhang, Z.; Sun, S.; Pan, Y.; Zhong, C.; Lv, Y.; Li, M.; Ariga, K.; Huang, F.; Ma, Y. In Situ Electrochemical Deposition and Doping of C60 Films Applied to High-Performance Inverted Organic Photovoltaics. Adv. Mater. 2012, 24, 5727–5731. [Google Scholar] [CrossRef]
- Kund, J.; Daboss, S.; D’Alvise, T.M.; Harvey, S.; Synatschke, C.V.; Weil, T.; Kranz, C. Physicochemical and Electrochemical Characterization of Electropolymerized Polydopamine Films: Influence of the Deposition Process. Nanomaterials 2021, 11, 1964. [Google Scholar] [CrossRef]
- Ding, F.; Shi, X.; Jiang, Z.; Liu, L.; Cai, J.; Li, Z.; Chen, S.; Du, Y. Electrochemically Stimulated Drug Release from Dual Stimuli Responsive Chitin Hydrogel. J. Mater. Chem. B 2013, 1, 1729–1737. [Google Scholar] [CrossRef]
- Geng, Z.; Wang, X.; Guo, X.; Zhang, Z.; Chen, Y.; Wang, Y. Electrodeposition of Chitosan Based on Coordination with Metal Ions in Situ-Generated by Electrochemical Oxidation. J. Mater. Chem. B 2016, 4, 3331–3338. [Google Scholar] [CrossRef]
- Lei, M.; Qu, X.; Wan, H.; Jin, D.; Wang, S.; Zhao, Z.; Yin, M.; Payne, G.F.; Liu, C. Electro-Assembly of a Dynamically Adaptive Molten Fibril State for Collagen. Sci. Adv. 2022, 8, eabl7506. [Google Scholar] [CrossRef]
- Kim, S.; Lee, S.; Park, J.; Lee, J.Y. Electrochemical Co-Deposition of Polydopamine/Hyaluronic Acid for Anti-Biofouling Bioelectrodes. Front. Chem. 2019, 7, 262. [Google Scholar] [CrossRef] [Green Version]
- Yuan, W.; Weng, G.-M.; Lipton, J.; Li, C.M.; Van Tassel, P.R.; Taylor, A.D. Weak Polyelectrolyte-Based Multilayers via Layer-by-Layer Assembly: Approaches, Properties, and Applications. Adv. Colloid Interface Sci. 2020, 282, 102200. [Google Scholar] [CrossRef] [PubMed]
- Ariga, K.; Yamauchi, Y.; Rydzek, G.; Ji, Q.; Yonamine, Y.; Wu, K.C.-W.; Hill, J.P. Layer-by-Layer Nanoarchitectonics: Invention, Innovation, and Evolution. Chem. Lett. 2014, 43, 36–68. [Google Scholar] [CrossRef]
- Bataglioli, R.A.; Rocha Neto, J.B.M.; Leão, B.S.; Germiniani, L.G.L.; Taketa, T.B.; Beppu, M.M. Interplay of the Assembly Conditions on Drug Transport Mechanisms in Polyelectrolyte Multilayer Films. Langmuir 2020, 36, 12532–12544. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.H.; Schroder, A.; Kerdjoudj, H.; Njel, C.; Senger, B.; Ball, V.; Meyer, F.; Boulmedais, F. Effect of the Buffer on the Buildup and Stability of Tannic Acid/Collagen Multilayer Films Applied as Antibacterial Coatings. ACS Appl. Mater. Interfaces 2020, 12, 22601–22612. [Google Scholar] [CrossRef] [PubMed]
- dos Santos de Macedo, B.; de Almeida, T.; da Costa Cruz, R.; Netto, A.D.P.; da Silva, L.; Berret, J.-F.; Vitorazi, L. Effect of PH on the Complex Coacervation and on the Formation of Layers of Sodium Alginate and PDADMAC. Langmuir 2020, 36, 2510–2523. [Google Scholar] [CrossRef]
- Tanchak, O.M.; Barrett, C.J. Swelling Dynamics of Multilayer Films of Weak Polyelectrolytes. Chem. Mater. 2004, 16, 2734–2739. [Google Scholar] [CrossRef]
- Bütergerds, D.; Cramer, C.; Schönhoff, M. PH-Dependent Growth Laws and Viscoelastic Parameters of Poly-l-Lysine/Hyaluronic Acid Multilayers. Adv. Mater. Interfaces 2017, 4, 1600592. [Google Scholar] [CrossRef]
- Pavoor, P.V.; Bellare, A.; Strom, A.; Yang, D.; Cohen, R.E. Mechanical Characterization of Polyelectrolyte Multilayers Using Quasi-Static Nanoindentation. Macromolecules 2004, 37, 4865–4871. [Google Scholar] [CrossRef]
- Kharlampieva, E.; Kozlovskaya, V.; Sukhishvili, S.A. Layer-by-Layer Hydrogen-Bonded Polymer Films: From Fundamentals to Applications. Adv. Mater. 2009, 21, 3053–3065. [Google Scholar] [CrossRef]
- Silva, J.M.; Caridade, S.G.; Costa, R.R.; Alves, N.M.; Groth, T.; Picart, C.; Reis, R.L.; Mano, J.F. PH Responsiveness of Multilayered Films and Membranes Made of Polysaccharides. Langmuir 2015, 31, 11318–11328. [Google Scholar] [CrossRef] [Green Version]
- Guan, Y.; Zhang, Y. Dynamically Bonded Layer-by-Layer Films: Dynamic Properties and Applications. J. Appl. Polym. Sci. 2014, 131, 40918. [Google Scholar] [CrossRef]
- Burke, S.E.; Barrett, C.J. PH-Responsive Properties of Multilayered Poly(l-Lysine)/Hyaluronic Acid Surfaces. Biomacromolecules 2003, 4, 1773–1783. [Google Scholar] [CrossRef] [PubMed]
- Mjahed, H.; Voegel, J.-C.; Senger, B.; Chassepot, A.; Rameau, A.; Ball, V.; Schaaf, P.; Boulmedais, F. Hole Formation Induced by Ionic Strength Increase in Exponentially Growing Multilayer Films. Soft Matter 2009, 5, 2269–2276. [Google Scholar] [CrossRef]
- Sung, C.; Heo, Y. Porous Layer-by-Layer Films Assembled Using Polyelectrolyte Blend to Control Wetting Properties. Polymers 2021, 13, 2116. [Google Scholar] [CrossRef]
- Zhu, G.H.; Cho, S.-H.; Zhang, H.; Zhao, M.; Zacharia, N.S. Slippery Liquid-Infused Porous Surfaces (SLIPS) Using Layer-by-Layer Polyelectrolyte Assembly in Organic Solvent. Langmuir 2018, 34, 4722–4731. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, Q.; Yuan, J. Porous Polyelectrolytes: The Interplay of Charge and Pores for New Functionalities. Angew. Chem. Int. Ed. 2018, 57, 6754–6773. [Google Scholar] [CrossRef]
- Ma, T.; Gaigalas, P.; Lepoitevin, M.; Plikusiene, I.; Bechelany, M.; Janot, J.-M.; Balanzat, E.; Balme, S. Impact of Polyelectrolyte Multilayers on the Ionic Current Rectification of Conical Nanopores. Langmuir 2018, 34, 3405–3412. [Google Scholar] [CrossRef]
- Schlicke, J.; Hoffmann, K.; Lorenz, M.; Schönhoff, M.; Cramer, C. Ionic Conductivity Enhancement of Polyelectrolyte Multilayers by Variation of Charge Balance. J. Phys. Chem. C 2020, 124, 16773–16783. [Google Scholar] [CrossRef]
- Chandra, P.N.; Mohan, M.K. Transport Studies of Ionic Solutes through Chitosan/Chondroitin Sulfate A (CHI/CS) Polyelectrolyte Multilayer Membranes. Nano Ex. 2020, 1, 020004. [Google Scholar] [CrossRef]
- Tsuge, Y.; Moriya, T.; Shiratori, S. Porous Transition of Polyelectrolyte Film through Reaction-Induced Phase Separation Caused by Interaction with Specific Metal Ions. Langmuir 2016, 32, 7219–7227. [Google Scholar] [CrossRef]
- Tsuge, Y.; Moriyama, Y.; Tokura, Y.; Shiratori, S. Silver Ion Polyelectrolyte Container as a Sensitive Quartz Crystal Microbalance Gas Detector. Anal. Chem. 2016, 88, 10744–10750. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.-X.; Li, Q.-S.; Zhao, Z.-K.; Zhang, D.; Chen, X.-C. Quenching the Macroporous Collapse of Polyelectrolyte Multilayer Films for Repeated Drug Loading. ACS Omega 2022, 7, 13853–13860. [Google Scholar] [CrossRef] [PubMed]
- Raman, N.; Marchillo, K.; Lee, M.-R.; López, A.D.L.R.; Andes, D.R.; Palecek, S.P.; Lynn, D.M. Intraluminal Release of an Antifungal β-Peptide Enhances the Antifungal and Anti-Biofilm Activities of Multilayer-Coated Catheters in a Rat Model of Venous Catheter Infection. ACS Biomater. Sci. Eng. 2016, 2, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Jaklenec, A.; Anselmo, A.C.; Hong, J.; Vegas, A.J.; Kozminsky, M.; Langer, R.; Hammond, P.T.; Anderson, D.G. High Throughput Layer-by-Layer Films for Extracting Film Forming Parameters and Modulating Film Interactions with Cells. ACS Appl. Mater. Interfaces 2016, 8, 2255–2261. [Google Scholar] [CrossRef]
- Panda, P.K.; Yang, J.-M.; Chang, Y.-H. Preparation and Characterization of Ferulic Acid-Modified Water Soluble Chitosan and Poly (γ-Glutamic Acid) Polyelectrolyte Films through Layer-by-Layer Assembly towards Protein Adsorption. Int. J. Biol. Macromol. 2021, 171, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Piccinini, E.; Bliem, C.; Reiner-Rozman, C.; Battaglini, F.; Azzaroni, O.; Knoll, W. Enzyme-Polyelectrolyte Multilayer Assemblies on Reduced Graphene Oxide Field-Effect Transistors for Biosensing Applications. Biosens. Bioelectron. 2017, 92, 661–667. [Google Scholar] [CrossRef] [Green Version]
- Abtahi, S.M.; Ilyas, S.; Joannis Cassan, C.; Albasi, C.; De Vos, W.M. Micropollutants Removal from Secondary-Treated Municipal Wastewater Using Weak Polyelectrolyte Multilayer Based Nanofiltration Membranes. J. Membr. Sci. 2018, 548, 654–666. [Google Scholar] [CrossRef] [Green Version]
- Ilyas, S.; Joseph, N.; Szymczyk, A.; Volodin, A.; Nijmeijer, K.; de Vos, W.M.; Vankelecom, I.F.J. Weak Polyelectrolyte Multilayers as Tunable Membranes for Solvent Resistant Nanofiltration. J. Membr. Sci. 2016, 514, 322–331. [Google Scholar] [CrossRef]
- Björnmalm, M.; Cui, J.; Bertleff-Zieschang, N.; Song, D.; Faria, M.; Rahim, M.A.; Caruso, F. Nanoengineering Particles through Template Assembly. Chem. Mater. 2017, 29, 289–306. [Google Scholar] [CrossRef] [Green Version]
- Sharma, V.; Sundaramurthy, A. Reusable Hollow Polymer Microreactors Incorporated with Anisotropic Nanoparticles for Catalysis Application. ACS Omega 2019, 4, 628–636. [Google Scholar] [CrossRef]
- Seitz, S.; Ajiro, H. Self-Assembling Weak Polyelectrolytes for the Layer-by-Layer Encapsulation of Paraffin-Type Phase Change Material Icosane. Sol. Energy Mater. Sol. Cells 2019, 190, 57–64. [Google Scholar] [CrossRef]
- Piccinino, D.; Capecchi, E.; Botta, L.; Bizzarri, B.M.; Bollella, P.; Antiochia, R.; Saladino, R. Layer-by-Layer Preparation of Microcapsules and Nanocapsules of Mixed Polyphenols with High Antioxidant and UV-Shielding Properties. Biomacromolecules 2018, 19, 3883–3893. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Zhang, Y.; Li, Y.; Gao, Z.; Chen, F.; Sun, K.; An, P.; Sun, C.; Jiang, Y.; Sun, B. A Novel PH-Responsive Hollow Mesoporous Silica Nanoparticle (HMSN) System Encapsulating Doxorubicin (DOX) and Glucose Oxidase (GOX) for Potential Cancer Treatment. J. Mater. Chem. B 2019, 7, 3291–3302. [Google Scholar] [CrossRef]
- Zhou, J.; Pishko, M.V.; Lutkenhaus, J.L. Thermoresponsive Layer-by-Layer Assemblies for Nanoparticle-Based Drug Delivery. Langmuir 2014, 30, 5903–5910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozlovskaya, V.; Chen, J.; Zavgorodnya, O.; Hasan, M.B.; Kharlampieva, E. Multilayer Hydrogel Capsules of Interpenetrated Network for Encapsulation of Small Molecules. Langmuir 2018, 34, 11832–11842. [Google Scholar] [CrossRef] [PubMed]
- Tarakanchikova, Y.V.; Muslimov, A.R.; Zyuzin, M.V.; Nazarenko, I.; Timin, A.S.; Sukhorukov, G.B.; Lepik, K.V. Layer-by-Layer-Assembled Capsule Size Affects the Efficiency of Packaging and Delivery of Different Genetic Cargo. Part. Part. Syst. Charact. 2021, 38, 2000228. [Google Scholar] [CrossRef]
- Kazemi-Andalib, F.; Mohammadikish, M.; Divsalar, A.; Sahebi, U. Hollow Microcapsule with PH-Sensitive Chitosan/Polymer Shell for in Vitro Delivery of Curcumin and Gemcitabine. Eur. Polym. J. 2022, 162, 110887. [Google Scholar] [CrossRef]
- Shen, H.; Li, F.; Wang, D.; Yang, Z.; Yao, C.; Ye, Y.; Wang, X. Chitosan–Alginate BSA-Gel-Capsules for Local Chemotherapy against Drug-Resistant Breast Cancer. Drug Des. Dev. Ther. 2018, 12, 921–934. [Google Scholar] [CrossRef] [Green Version]
- Zakeri, A.; Kouhbanani, M.A.J.; Beheshtkhoo, N.; Beigi, V.; Mousavi, S.M.; Hashemi, S.A.R.; Karimi Zade, A.; Amani, A.M.; Savardashtaki, A.; Mirzaei, E.; et al. Polyethylenimine-Based Nanocarriers in Co-Delivery of Drug and Gene: A Developing Horizon. Nano Rev. Exp. 2018, 9, 1488497. [Google Scholar] [CrossRef] [Green Version]
- Mirvakili, S.M.; Langer, R. Wireless On-Demand Drug Delivery. Nat. Electron. 2021, 4, 464–477. [Google Scholar] [CrossRef]
- Sharma, V.; Vijay, J.; Ganesh, M.R.; Sundaramurthy, A. Multilayer Capsules Encapsulating Nimbin and Doxorubicin for Cancer Chemo-Photothermal Therapy. Int. J. Pharm. 2020, 582, 119350. [Google Scholar] [CrossRef] [PubMed]
- Lengert, E.; Parakhonskiy, B.; Khalenkow, D.; Zečić, A.; Vangheel, M.; Moreno, J.M.M.; Braeckman, B.P.; Skirtach, A.G. Laser-Induced Remote Release in Vivo in C. Elegans from Novel Silver Nanoparticles-Alginate Hydrogel Shells. Nanoscale 2018, 10, 17249–17256. [Google Scholar] [CrossRef] [PubMed]
- Borodina, T.; Yurina, D.; Sokovikov, A.; Karimov, D.; Bukreeva, T.; Khaydukov, E.; Shchukin, D. A Microwave-Triggered Opening of the Multifunctional Polyelectrolyte Capsules with Nanodiamonds in the Shell Composition. Polymer 2021, 212, 123299. [Google Scholar] [CrossRef]
- Brkovic, N.; Zhang, L.; Peters, J.N.; Kleine-Doepke, S.; Parak, W.J.; Zhu, D. Quantitative Assessment of Endosomal Escape of Various Endocytosed Polymer-Encapsulated Molecular Cargos upon Photothermal Heating. Small 2020, 16, 2003639. [Google Scholar] [CrossRef]
- Field, R.D.; Jakus, M.A.; Chen, X.; Human, K.; Zhao, X.; Chitnis, P.V.; Sia, S.K. Ultrasound-Responsive Aqueous Two-Phase Microcapsules for On-Demand Drug Release. Angew. Chem. 2022, e202116515. [Google Scholar] [CrossRef]
- Luo, D.; Poston, R.N.; Gould, D.J.; Sukhorukov, G.B. Magnetically Targetable Microcapsules Display Subtle Changes in Permeability and Drug Release in Response to a Biologically Compatible Low Frequency Alternating Magnetic Field. Mater. Sci. Eng. C 2019, 94, 647–655. [Google Scholar] [CrossRef]
- Cristofolini, L.; Szczepanowicz, K.; Orsi, D.; Rimoldi, T.; Albertini, F.; Warszynski, P. Hybrid Polyelectrolyte/Fe3O4 Nanocapsules for Hyperthermia Applications. ACS Appl. Mater. Interfaces 2016, 8, 25043–25050. [Google Scholar] [CrossRef]
- Al Thaher, Y. Tailored Gentamicin Release from Silica Nanocarriers Coated with Polyelectrolyte Multilayers. Colloids Surf. A Physicochem. Eng. Asp. 2021, 614, 126210. [Google Scholar] [CrossRef]
- Zyuzin, M.V.; Cassani, M.; Barthel, M.J.; Gavilan, H.; Silvestri, N.; Escudero, A.; Scarpellini, A.; Lucchesi, F.; Teran, F.J.; Parak, W.J.; et al. Confining Iron Oxide Nanocubes inside Submicrometric Cavities as a Key Strategy To Preserve Magnetic Heat Losses in an Intracellular Environment. ACS Appl. Mater. Interfaces 2019, 11, 41957–41971. [Google Scholar] [CrossRef]
- Lim, W.Q.; Phua, S.Z.F.; Zhao, Y. Redox-Responsive Polymeric Nanocomplex for Delivery of Cytotoxic Protein and Chemotherapeutics. ACS Appl. Mater. Interfaces 2019, 11, 31638–31648. [Google Scholar] [CrossRef]
- Bucatariu, F.; Ghiorghita, C.-A.; Dragan, E.S. Cross-Linked Multilayer Films Deposited onto Silica Microparticles with Tunable Selectivity for Anionic Dyes. Colloids Surf. A Physicochem. Eng. Asp. 2018, 537, 53–60. [Google Scholar] [CrossRef]
- Lyu, D.; Chen, S.; Guo, W. Liposome Crosslinked Polyacrylamide/DNA Hydrogel: A Smart Controlled-Release System for Small Molecular Payloads. Small 2018, 14, 1704039. [Google Scholar] [CrossRef] [PubMed]
- Svenskaya, Y.; Garello, F.; Lengert, E.; Kozlova, A.; Verkhovskii, R.; Bitonto, V.; Ruggiero, M.R.; German, S.; Gorin, D.; Terreno, E. Biodegradable Polyelectrolyte/Magnetite Capsules for MR Imaging and Magnetic Targeting of Tumors. Nanotheranostics 2021, 5, 362–377. [Google Scholar] [CrossRef] [PubMed]
- Novoselova, M.V.; German, S.V.; Abakumova, T.O.; Perevoschikov, S.V.; Sergeeva, O.V.; Nesterchuk, M.V.; Efimova, O.I.; Petrov, K.S.; Chernyshev, V.S.; Zatsepin, T.S.; et al. Multifunctional Nanostructured Drug Delivery Carriers for Cancer Therapy: Multimodal Imaging and Ultrasound-Induced Drug Release. Colloids Surf. B Biointerfaces 2021, 200, 111576. [Google Scholar] [CrossRef] [PubMed]
- Zharkov, M.N.; Brodovskaya, E.P.; Kulikov, O.A.; Gromova, E.V.; Ageev, V.P.; Atanova, A.V.; Kozyreva, Z.V.; Tishin, A.M.; Pyatakov, A.P.; Pyataev, N.A.; et al. Enhanced Cytotoxicity Caused by AC Magnetic Field for Polymer Microcapsules Containing Packed Magnetic Nanoparticles. Colloids Surf. B Biointerfaces 2021, 199, 111548. [Google Scholar] [CrossRef]
- Boehnke, N.; Correa, S.; Hao, L.; Wang, W.; Straehla, J.P.; Bhatia, S.N.; Hammond, P.T. Theranostic Layer-by-Layer Nanoparticles for Simultaneous Tumor Detection and Gene Silencing. Angew. Chem. Int. Ed. 2020, 59, 2776–2783. [Google Scholar] [CrossRef]
- Prikhozhdenko, E.S.; Gusliakova, O.I.; Kulikov, O.A.; Mayorova, O.A.; Shushunova, N.A.; Abdurashitov, A.S.; Bratashov, D.N.; Pyataev, N.A.; Tuchin, V.V.; Gorin, D.A.; et al. Target Delivery of Drug Carriers in Mice Kidney Glomeruli via Renal Artery. Balance between Efficiency and Safety. J. Control. Release 2021, 329, 175–190. [Google Scholar] [CrossRef]
- Timin, A.S.; Muslimov, A.R.; Lepik, K.V.; Epifanovskaya, O.S.; Shakirova, A.I.; Mock, U.; Riecken, K.; Okilova, M.V.; Sergeev, V.S.; Afanasyev, B.V.; et al. Efficient Gene Editing via Non-Viral Delivery of CRISPR–Cas9 System Using Polymeric and Hybrid Microcarriers. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 97–108. [Google Scholar] [CrossRef]
- Szczęch, M.; Łopuszyńska, N.; Tomal, W.; Jasiński, K.; Węglarz, W.P.; Warszyński, P.; Szczepanowicz, K. Nafion-Based Nanocarriers for Fluorine Magnetic Resonance Imaging. Langmuir 2020, 36, 9534–9539. [Google Scholar] [CrossRef]
- Wanasingha, N.; Dorishetty, P.; Dutta, N.K.; Choudhury, N.R. Polyelectrolyte Gels: Fundamentals, Fabrication and Applications. Gels 2021, 7, 148. [Google Scholar] [CrossRef]
- Papagiannopoulos, A. Current Research on Polyelectrolyte Nanostructures: From Molecular Interactions to Biomedical Applications. Macromol 2021, 1, 155–172. [Google Scholar] [CrossRef]
- Guastaferro, M.; Reverchon, E.; Baldino, L. Agarose, Alginate and Chitosan Nanostructured Aerogels for Pharmaceutical Applications: A Short Review. Front. Bioeng. Biotechnol. 2021, 9, 688477. [Google Scholar] [CrossRef] [PubMed]
- Murugesan, S.; Scheibel, T. Chitosan-Based Nanocomposites for Medical Applications. J. Polym. Sci. 2021, 59, 1610–1642. [Google Scholar] [CrossRef]
- Hariyadi, D.M.; Islam, N. Current Status of Alginate in Drug Delivery. Adv. Pharmacol. Pharm. Sci. 2020, 2020, e8886095. [Google Scholar] [CrossRef] [PubMed]
- Reisch, A.; Roger, E.; Phoeung, T.; Antheaume, C.; Orthlieb, C.; Boulmedais, F.; Lavalle, P.; Schlenoff, J.B.; Frisch, B.; Schaaf, P. On the Benefits of Rubbing Salt in the Cut: Self-Healing of Saloplastic PAA/PAH Compact Polyelectrolyte Complexes. Adv. Mater. 2014, 26, 2547–2551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rydzek, G.; Pakdel, A.; Witecka, A.; Awang Shri, D.N.; Gaudière, F.; Nicolosi, V.; Mokarian-Tabari, P.; Schaaf, P.; Boulmedais, F.; Ariga, K. PH-Responsive Saloplastics Based on Weak Polyelectrolytes: From Molecular Processes to Material Scale Properties. Macromolecules 2018, 51, 4424–4434. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.; Li, W.; Sun, J. Superstrong Water-Based Supramolecular Adhesives Derived from Poly(Vinyl Alcohol)/Poly(Acrylic Acid) Complexes. ACS Mater. Lett. 2021, 3, 875–882. [Google Scholar] [CrossRef]
- Costa, R.R.; Costa, A.M.S.; Caridade, S.G.; Mano, J.F. Compact Saloplastic Membranes of Natural Polysaccharides for Soft Tissue Engineering. Chem. Mater. 2015, 27, 7490–7502. [Google Scholar] [CrossRef]
- Harrison, T.D.; Salmon, A.J.; de Bruyn, J.R.; Ragogna, P.J.; Gillies, E.R. Phosphonium versus Ammonium Compact Polyelectrolyte Complex Networks with Alginate—Comparing Their Properties and Cargo Encapsulation. Langmuir 2020, 36, 8253–8264. [Google Scholar] [CrossRef]
- Phoeung, T.; Spanedda, M.V.; Roger, E.; Heurtault, B.; Fournel, S.; Reisch, A.; Mutschler, A.; Perrin-Schmitt, F.; Hemmerlé, J.; Collin, D.; et al. Alginate/Chitosan Compact Polyelectrolyte Complexes: A Cell and Bacterial Repellent Material. Chem. Mater. 2017, 29, 10418–10425. [Google Scholar] [CrossRef]
- Hardy, A.; Seguin, C.; Brion, A.; Lavalle, P.; Schaaf, P.; Fournel, S.; Bourel-Bonnet, L.; Frisch, B.; De Giorgi, M. β-Cyclodextrin-Functionalized Chitosan/Alginate Compact Polyelectrolyte Complexes (CoPECs) as Functional Biomaterials with Anti-Inflammatory Properties. ACS Appl. Mater. Interfaces 2018, 10, 29347–29356. [Google Scholar] [CrossRef] [PubMed]
- Tirado, P.; Reisch, A.; Roger, E.; Boulmedais, F.; Jierry, L.; Lavalle, P.; Voegel, J.-C.; Schaaf, P.; Schlenoff, J.B.; Frisch, B. Catalytic Saloplastics: Alkaline Phosphatase Immobilized and Stabilized in Compacted Polyelectrolyte Complexes. Adv. Funct. Mater. 2013, 23, 4785–4792. [Google Scholar] [CrossRef]
- Baig, M.I.; Pejman, M.; Willott, J.D.; Tiraferri, A.; de Vos, W.M. Polyelectrolyte Complex Hollow Fiber Membranes Prepared via Aqueous Phase Separation. ACS Appl. Polym. Mater. 2022, 4, 1010–1020. [Google Scholar] [CrossRef] [PubMed]
- Baig, M.I.; Durmaz, E.N.; Willott, J.D.; de Vos, W.M. Sustainable Membrane Production through Polyelectrolyte Complexation Induced Aqueous Phase Separation. Adv. Funct. Mater. 2020, 30, 1907344. [Google Scholar] [CrossRef]
- Lima, A.C.; Reis, R.L.; Ferreira, H.; Neves, N.M. Glutathione Reductase-Sensitive Polymeric Micelles for Controlled Drug Delivery on Arthritic Diseases. ACS Biomater. Sci. Eng. 2021, 7, 3229–3241. [Google Scholar] [CrossRef]
- Gkionis, L.; Aojula, H.; Harris, L.K.; Tirella, A. Microfluidic-Assisted Fabrication of Phosphatidylcholine-Based Liposomes for Controlled Drug Delivery of Chemotherapeutics. Int. J. Pharm. 2021, 604, 120711. [Google Scholar] [CrossRef]
- Rijpkema, S.J.; Toebes, B.J.; Maas, M.N.; Kler, N.R.M.; Wilson, D.A. Designing Molecular Building Blocks for Functional Polymersomes. Isr. J. Chem. 2019, 59, 928–944. [Google Scholar] [CrossRef]
- Li, Q.; Li, X.; Zhao, C. Strategies to Obtain Encapsulation and Controlled Release of Small Hydrophilic Molecules. Front. Bioeng. Biotechnol. 2020, 8, 437. [Google Scholar] [CrossRef]
- Berger, J.; Reist, M.; Mayer, J.M.; Felt, O.; Gurny, R. Structure and Interactions in Chitosan Hydrogels Formed by Complexation or Aggregation for Biomedical Applications. Eur. J. Pharm. Biopharm. 2004, 57, 35–52. [Google Scholar] [CrossRef]
- Maciel, V.B.V.; Yoshida, C.M.P.; Pereira, S.M.S.S.; Goycoolea, F.M.; Franco, T.T. Electrostatic Self-Assembled Chitosan-Pectin Nano- and Microparticles for Insulin Delivery. Molecules 2017, 22, 1707. [Google Scholar] [CrossRef]
- Al-Zebari, N.; Best, S.M.; Cameron, R.E. Effects of Reaction PH on Self-Crosslinked Chitosan-Carrageenan Polyelectrolyte Complex Gels and Sponges. J. Phys. Mater. 2018, 2, 015003. [Google Scholar] [CrossRef]
- Anirudhan, T.S.; Chithra Sekhar, V.; Shainy, F.; Thomas, J.P. Effect of Dual Stimuli Responsive Dextran/Nanocellulose Polyelectrolyte Complexes for Chemophotothermal Synergistic Cancer Therapy. Int. J. Biol. Macromol. 2019, 135, 776–789. [Google Scholar] [CrossRef]
- Harrison, T.D.; Yunyaeva, O.; Borecki, A.; Hopkins, C.C.; de Bruyn, J.R.; Ragogna, P.J.; Gillies, E.R. Phosphonium Polyelectrolyte Complexes for the Encapsulation and Slow Release of Ionic Cargo. Biomacromolecules 2020, 21, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Lal, N.; Dubey, J.; Gaur, P.; Verma, N.; Verma, A. Chitosan Based in Situ Forming Polyelectrolyte Complexes: A Potential Sustained Drug Delivery Polymeric Carrier for High Dose Drugs. Mater. Sci. Eng. C 2017, 79, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Wang, Y.; Zhang, L.; Xu, M. Formation of Self-Assembled Polyelectrolyte Complex Hydrogel Derived from Salecan and Chitosan for Sustained Release of Vitamin C. Carbohydr. Polym. 2020, 234, 115920. [Google Scholar] [CrossRef]
- Hu, X.; Wang, Y.; Zhang, L.; Xu, M.; Dong, W.; Zhang, J. Redox/PH Dual Stimuli-Responsive Degradable Salecan-g-SS-Poly(IA-Co-HEMA) Hydrogel for Release of Doxorubicin. Carbohydr. Polym. 2017, 155, 242–251. [Google Scholar] [CrossRef]
- Chen, T.; Li, S.; Zhu, W.; Liang, Z.; Zeng, Q. Self-Assembly PH-Sensitive Chitosan/Alginate Coated Polyelectrolyte Complexes for Oral Delivery of Insulin. J. Microencapsul. 2019, 36, 96–107. [Google Scholar] [CrossRef]
- Wu, D.; Li, Y.; Zhu, L.; Zhang, W.; Xu, S.; Yang, Y.; Yan, Q.; Yang, G. A Biocompatible Superparamagnetic Chitosan-Based Nanoplatform Enabling Targeted SN-38 Delivery for Colorectal Cancer Therapy. Carbohydr. Polym. 2021, 274, 118641. [Google Scholar] [CrossRef]
- Dul, M.; Paluch, K.J.; Kelly, H.; Healy, A.M.; Sasse, A.; Tajber, L. Self-Assembled Carrageenan/Protamine Polyelectrolyte Nanoplexes—Investigation of Critical Parameters Governing Their Formation and Characteristics. Carbohydr. Polym. 2015, 123, 339–349. [Google Scholar] [CrossRef] [Green Version]
- Montero, N.; Alhajj, M.J.; Sierra, M.; Oñate-Garzon, J.; Yarce, C.J.; Salamanca, C.H. Development of Polyelectrolyte Complex Nanoparticles-PECNs Loaded with Ampicillin by Means of Polyelectrolyte Complexation and Ultra-High Pressure Homogenization (UHPH). Polymers 2020, 12, 1168. [Google Scholar] [CrossRef]
- Pereda, J.; Ferragut, V.; Quevedo, J.M.; Guamis, B.; Trujillo, A.J. Effects of Ultra-High Pressure Homogenization on Microbial and Physicochemical Shelf Life of Milk. J. Dairy Sci. 2007, 90, 1081–1093. [Google Scholar] [CrossRef]
- Mühlebach, S. Regulatory Challenges of Nanomedicines and Their Follow-on Versions: A Generic or Similar Approach? Adv. Drug Deliv. Rev. 2018, 131, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Tinkle, S.; McNeil, S.E.; Mühlebach, S.; Bawa, R.; Borchard, G.; Barenholz, Y.C.; Tamarkin, L.; Desai, N. Nanomedicines: Addressing the Scientific and Regulatory Gap: Nanomedicines. Ann. N. Y. Acad. Sci. 2014, 1313, 35–56. [Google Scholar] [CrossRef] [PubMed]
- Soares, S.; Sousa, J.; Pais, A.; Vitorino, C. Nanomedicine: Principles, Properties, and Regulatory Issues. Front. Chem. 2018, 6, 360. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Vimal, A.; Kumar, A. Why Chitosan? From Properties to Perspective of Mucosal Drug Delivery. Int. J. Biol. Macromol. 2016, 91, 615–622. [Google Scholar] [CrossRef]
- Santos-Carballal, B.; Fernández Fernández, E.; Goycoolea, F. Chitosan in Non-Viral Gene Delivery: Role of Structure, Characterization Methods, and Insights in Cancer and Rare Diseases Therapies. Polymers 2018, 10, 444. [Google Scholar] [CrossRef] [Green Version]
- Butt, A.M.; Amin, M.C.I.M.; Katas, H.; Abdul Murad, N.A.; Jamal, R.; Kesharwani, P. Doxorubicin and SiRNA Codelivery via Chitosan-Coated PH-Responsive Mixed Micellar Polyplexes for Enhanced Cancer Therapy in Multidrug-Resistant Tumors. Mol. Pharm. 2016, 13, 4179–4190. [Google Scholar] [CrossRef]
- Wu, D.; Ensinas, A.; Verrier, B.; Primard, C.; Cuvillier, A.; Champier, G.; Paul, S.; Delair, T. Zinc-Stabilized Colloidal Polyelectrolyte Complexes of Chitosan/Hyaluronan: A Tool for the Inhibition of HIV-1 Infection. J. Mater. Chem. B 2016, 4, 5455–5463. [Google Scholar] [CrossRef]
- Arora, S. Amoxicillin Loaded Chitosan–Alginate Polyelectrolyte Complex Nanoparticles as Mucopenetrating Delivery System for H. Pylori. Sci. Pharm. 2011, 79, 673–694. [Google Scholar] [CrossRef] [Green Version]
- Caetano, G.F.; Frade, M.A.C.; Andrade, T.A.M.; Leite, M.N.; Bueno, C.Z.; Moraes, Â.M.; Ribeiro-Paes, J.T. Chitosan-Alginate Membranes Accelerate Wound Healing: Chitosan-Alginate membranes accelerate wound healing. J. Biomed. Mater. Res. J. Biomed. Mater. Res. 2015, 103, 1013–1022. [Google Scholar] [CrossRef]
- Luppi, B.; Bigucci, F.; Abruzzo, A.; Corace, G.; Cerchiara, T.; Zecchi, V. Freeze-Dried Chitosan/Pectin Nasal Inserts for Antipsychotic Drug Delivery. Eur. J. Pharm. Biopharm. 2010, 75, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Yao, K.D.; Tu, H.; Cheng, F.; Zhang, J.W.; Liu, J. PH-Sensitivity of the Swelling of a Chitosan-Pectin Polyelectrolyte Complex. Angew. Makromol. Chem. 1997, 245, 63–72. [Google Scholar] [CrossRef]
- Dubey, V.; Mohan, P.; Dangi, J.S.; Kesavan, K. Brinzolamide Loaded Chitosan-Pectin Mucoadhesive Nanocapsules for Management of Glaucoma: Formulation, Characterization and Pharmacodynamic Study. Int. J. Biol. Macromol. 2020, 152, 1224–1232. [Google Scholar] [CrossRef] [PubMed]
- Lefnaoui, S.; Moulai-Mostefa, N. Polyelectrolyte Complex Based on Carboxymethyl-Kappa-Carrageenan and Eudragit RL 30D as Prospective Carriers for Sustained Drug Delivery. Chem. Eng. Res. Des. 2015, 97, 165–174. [Google Scholar] [CrossRef]
- Carneiro, T.N.; Novaes, D.S.; Rabelo, R.B.; Celebi, B.; Chevallier, P.; Mantovani, D.; Beppu, M.M.; Vieira, R.S. BSA and Fibrinogen Adsorption on Chitosan/κ-Carrageenan Polyelectrolyte Complexes: BSA and Fibrinogen Adsorption on Chitosan/к-Carrageenan Polyelectrolyte Complexes. Macromol. Biosci. 2013, 13, 1072–1083. [Google Scholar] [CrossRef]
- Bigucci, F.; Mercolini, L.; Musenga, A.; Sorrenti, M.; Catenacci, L.; Zecchi, V.; Luppi, B. Novel Mucoadhesive Nasal Inserts Based on Chitosan/Hyaluronate Polyelectrolyte Complexes for Peptide and Protein Delivery. J. Pharm. Pharmacol. 2009, 61, 151–157. [Google Scholar] [CrossRef]
- Baghaei, M.; Tekie, F.S.M.; Khoshayand, M.R.; Varshochian, R.; Hajiramezanali, M.; Kachousangi, M.J.; Dinarvand, R.; Atyabi, F. Optimization of Chitosan-Based Polyelectrolyte Nanoparticles for Gene Delivery, Using Design of Experiment: In Vitro and in Vivo Study. Mater. Sci. Eng. C 2021, 118, 111036. [Google Scholar] [CrossRef]
- Quadrado, R.F.N.; Fajardo, A.R. Microparticles Based on Carboxymethyl Starch/Chitosan Polyelectrolyte Complex as Vehicles for Drug Delivery Systems. Arab. J. Chem. 2020, 13, 2183–2194. [Google Scholar] [CrossRef]
- Assaad, E.; Wang, Y.J.; Zhu, X.X.; Mateescu, M.A. Polyelectrolyte Complex of Carboxymethyl Starch and Chitosan as Drug Carrier for Oral Administration. Carbohydr. Polym. 2011, 84, 1399–1407. [Google Scholar] [CrossRef]
- Folchman-Wagner, Z.; Zaro, J.; Shen, W.-C. Characterization of Polyelectrolyte Complex Formation Between Anionic and Cationic Poly(Amino Acids) and Their Potential Applications in PH-Dependent Drug Delivery. Molecules 2017, 22, 1089. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, A.P.; Gonçalves, R.M.; Antunes, J.C.; Pinto, M.L.; Pinto, A.T.; Castro, F.; Monteiro, C.; Barbosa, M.A.; Oliveira, M.J. An Interferon-γ-Delivery System Based on Chitosan/Poly(γ-Glutamic Acid) Polyelectrolyte Complexes Modulates Macrophage-Derived Stimulation of Cancer Cell Invasion in Vitro. Acta Biomater. 2015, 23, 157–171. [Google Scholar] [CrossRef] [PubMed]
- Cohen Stuart, M.A.; Hofs, B.; Voets, I.K.; de Keizer, A. Assembly of Polyelectrolyte-Containing Block Copolymers in Aqueous Media. Curr. Opin. Colloid Interface Sci. 2005, 10, 30–36. [Google Scholar] [CrossRef]
- Hofman, A.H.; Fokkinka, R.; Kamperman, M. A Mild and Quantitative Route towards Well-Defined Strong Anionic/Hydrophobic Diblock Copolymers: Synthesis and Aqueous Self-Assembly. Polym. Chem. 2019, 10, 6109–6115. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Gopinadhan, M.; Osuji, C.O. Directed Self-Assembly of Block Copolymers: A Tutorial Review of Strategies for Enabling Nanotechnology with Soft Matter. Soft Matter 2014, 10, 3867–3889. [Google Scholar] [CrossRef]
- Zhang, Z.; Rahman, M.M.; Bajer, B.; Scharnagl, N.; Abetz, V. Highly Selective Isoporous Block Copolymer Membranes with Tunable Polyelectrolyte Brushes in Soft Nanochannels. J. Membr. Sci. 2022, 646, 120266. [Google Scholar] [CrossRef]
- Dzamukova, M.R.; Naumenko, E.A.; Rozhina, E.V.; Trifonov, A.A.; Fakhrullin, R.F. Cell Surface Engineering with Polyelectrolyte-Stabilized Magnetic Nanoparticles: A Facile Approach for Fabrication of Artificial Multicellular Tissue-Mimicking Clusters. Nano Res. 2015, 8, 2515–2532. [Google Scholar] [CrossRef] [Green Version]
- Sciortino, F.; Sanchez-Ballester, N.M.; Mir, S.H.; Rydzek, G. Functional Elastomeric Copolymer Membranes Designed by Nanoarchitectonics Approach for Methylene Blue Removal. J. Inorg. Organomet. Polym. Mater. 2021, 31, 1967–1977. [Google Scholar] [CrossRef]
- Ji, S.; Wan, L.; Liu, C.-C.; Nealey, P.F. Directed Self-Assembly of Block Copolymers on Chemical Patterns: A Platform for Nanofabrication. Prog. Polym. Sci. 2016, 54, 76–127. [Google Scholar] [CrossRef]
- Epps, T.H., III; O’Reilly, R.K. Block Copolymers: Controlling Nanostructure to Generate Functional Materials—Synthesis, Characterization, and Engineering. Chem. Sci. 2016, 7, 1674–1689. [Google Scholar] [CrossRef] [Green Version]
- Mokarian-Tabari, P.; Cummins, C.; Rasappa, S.; Simao, C.; Sotomayor Torres, C.M.; Holmes, J.D.; Morris, M.A. Study of the Kinetics and Mechanism of Rapid Self-Assembly in Block Copolymer Thin Films during Solvo-Microwave Annealing. Langmuir 2014, 30, 10728–10739. [Google Scholar] [CrossRef]
- Akinoglu, G.E.; Mir, S.H.; Gatensby, R.; Rydzek, G.; Mokarian-Tabari, P. Block Copolymer Derived Vertically Coupled Plasmonic Arrays for Surface-Enhanced Raman Spectroscopy. ACS Appl. Mater. Interfaces 2020, 12, 23410–23416. [Google Scholar] [CrossRef] [PubMed]
- Cummins, C.; Ghoshal, T.; Holmes, J.D.; Morris, M.A. Strategies for Inorganic Incorporation Using Neat Block Copolymer Thin Films for Etch Mask Function and Nanotechnological Application. Adv. Mater. 2016, 28, 5586–5618. [Google Scholar] [CrossRef] [PubMed]
- Mir, S.H.; Rydzek, G.; Nagahara, L.A.; Khosla, A.; Mokarian-Tabari, P. Review—Recent Advances in Block-Copolymer Nanostructured Subwavelength Antireflective Surfaces. J. Electrochem. Soc. 2019, 167, 037502. [Google Scholar] [CrossRef]
- Kennemur, J.G. Poly(Vinylpyridine) Segments in Block Copolymers: Synthesis, Self-Assembly, and Versatility. Macromolecules 2019, 52, 1354–1370. [Google Scholar] [CrossRef] [Green Version]
- Mokarian-Tabari, P.; Senthamaraikannan, R.; Glynn, C.; Collins, T.W.; Cummins, C.; Nugent, D.; O’Dwyer, C.; Morris, M.A. Large Block Copolymer Self-Assembly for Fabrication of Subwavelength Nanostructures for Applications in Optics. Nano Lett. 2017, 17, 2973–2978. [Google Scholar] [CrossRef]
- Mir, S.H.; Jennings, B.D.; Akinoglu, G.E.; Selkirk, A.; Gatensby, R.; Mokarian-Tabari, P. Enhanced Dye Degradation through Multi-Particle Confinement in a Porous Silicon Substrate: A Highly Efficient, Low Band Gap Photocatalyst. Adv. Opt. Mater. 2021, 9, 2002238. [Google Scholar] [CrossRef]
- Huang, C.; Zhu, Y.; Man, X. Block Copolymer Thin Films. Phys. Rep. 2021, 932, 1–36. [Google Scholar] [CrossRef]
- Li, J.; Guo, S.; Wang, M.; Ye, L.; Yao, F. Poly(Lactic Acid)/Poly(Ethylene Glycol) Block Copolymer Based Shell or Core Cross-Linked Micelles for Controlled Release of Hydrophobic Drug. RSC Adv. 2015, 5, 19484–19492. [Google Scholar] [CrossRef]
- Liu, J.; Bu, W.; Pan, L.; Shi, J. NIR-Triggered Anticancer Drug Delivery by Upconverting Nanoparticles with Integrated Azobenzene-Modified Mesoporous Silica. Angew. Chem. Int. Ed. 2013, 52, 4375–4379. [Google Scholar] [CrossRef]
- Elter, J.K.; Quader, S.; Eichhorn, J.; Gottschaldt, M.; Kataoka, K.; Schacher, F.H. Core-Crosslinked Fluorescent Worm-Like Micelles for Glucose-Mediated Drug Delivery. Biomacromolecules 2021, 22, 1458–1471. [Google Scholar] [CrossRef]
- Han, H.S.; Choi, K.Y.; Ko, H.; Jeon, J.; Saravanakumar, G.; Suh, Y.D.; Lee, D.S.; Park, J.H. Bioreducible Core-Crosslinked Hyaluronic Acid Micelle for Targeted Cancer Therapy. J. Control. Release 2015, 200, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.-F.; Shum, H.C. Hypromellose-Graft-Chitosan and Its Polyelectrolyte Complex as Novel Systems for Sustained Drug Delivery. ACS Appl. Mater. Interfaces 2015, 7, 10501–10510. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, Z.; Bratek, A.; Szeląg, E.; Bastrzyk, A.; Michna, A.; Barbasz, J. Colloid Particle Deposition on Heterogeneous Surfaces Produced by Polyelectrolyte Adsorption. Colloids Surf. A Physicochem. Eng. Asp. 2009, 343, 111–117. [Google Scholar] [CrossRef]
- Deane, O.J.; Jennings, J.; Neal, T.J.; Musa, O.M.; Fernyhough, A.; Armes, S.P. Synthesis and Aqueous Solution Properties of Shape-Shifting Stimulus-Responsive Diblock Copolymer Nano-Objects. Chem. Mater. 2021, 33, 7767–7779. [Google Scholar] [CrossRef]
- Willet, N.; Gohy, J.-F.; Auvray, L.; Varshney, S.; Jérôme, R.; Leyh, B. Core−Shell−Corona Micelles by PS-b-P2VP-b-PEO Copolymers: Focus on the Water-Induced Micellization Process. Langmuir 2008, 24, 3009–3015. [Google Scholar] [CrossRef]
- Gröschel, A.H.; Müller, A.H.E. Self-Assembly Concepts for Multicompartment Nanostructures. Nanoscale 2015, 7, 11841–11876. [Google Scholar] [CrossRef] [Green Version]
- Van Butsele, K.; Cajot, S.; Van Vlierberghe, S.; Dubruel, P.; Passirani, C.; Benoit, J.-P.; Jérôme, R.; Jérôme, C. PH-Responsive Flower-Type Micelles Formed by a Biotinylated Poly(2-Vinylpyridine)-Block-Poly(Ethylene Oxide)-Block-Poly(ε-Caprolactone) Triblock Copolymer. Adv. Funct. Mater. 2009, 19, 1416–1425. [Google Scholar] [CrossRef]
- Phimphachanh, A.; Chamieh, J.; Leclercq, L.; Harrisson, S.; Destarac, M.; Lacroix-Desmazes, P.; Gérardin, C.; In, M.; Cottet, H. Characterization of Diblock Copolymers by Capillary Electrophoresis: From Electrophoretic Mobility Distribution to Distribution of Composition. Macromolecules 2020, 53, 334–345. [Google Scholar] [CrossRef]
- Molina, E.; Warnant, J.; Mathonnat, M.; Bathfield, M.; In, M.; Laurencin, D.; Jérôme, C.; Lacroix-Desmazes, P.; Marcotte, N.; Gérardin, C. Drug–Polymer Electrostatic Complexes as New Structuring Agents for the Formation of Drug-Loaded Ordered Mesoporous Silica. Langmuir 2015, 31, 12839–12844. [Google Scholar] [CrossRef]
- Molina, E.; Mathonnat, M.; Richard, J.; Lacroix-Desmazes, P.; In, M.; Dieudonné, P.; Cacciaguerra, T.; Gérardin, C.; Marcotte, N. PH-Mediated Control over the Mesostructure of Ordered Mesoporous Materials Templated by Polyion Complex Micelles. Beilstein J. Nanotechnol. 2019, 10, 144–156. [Google Scholar] [CrossRef]
- Yu, H.; Qiu, X.; Moreno, N.; Ma, Z.; Calo, V.M.; Nunes, S.P.; Peinemann, K.-V. Self-Assembled Asymmetric Block Copolymer Membranes: Bridging the Gap from Ultra- to Nanofiltration. Angew. Chem. Int. Ed. 2015, 54, 13937–13941. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sargent, J.L.; Boudouris, B.W.; Phillip, W.A. Nanoporous Membranes Generated from Self-Assembled Block Polymer Precursors: Quo Vadis? J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Wiesner, U. Tailoring Pore Size of Graded Mesoporous Block Copolymer Membranes: Moving from Ultrafiltration toward Nanofiltration. Macromolecules 2015, 48, 6153–6159. [Google Scholar] [CrossRef]
- Schacher, F.; Rudolph, T.; Wieberger, F.; Ulbricht, M.; Müller, A.H.E. Double Stimuli-Responsive Ultrafiltration Membranes from Polystyrene-Block-Poly(N,N-Dimethylaminoethyl Methacrylate) Diblock Copolymers. ACS Appl. Mater. Interfaces 2009, 1, 1492–1503. [Google Scholar] [CrossRef]
- Kaner, P.; Bengani-Lutz, P.; Sadeghi, I.; Asatekin, A. Responsive Filtration Membranes by Polymer Self-Assembly. Technology 2016, 04, 217–228. [Google Scholar] [CrossRef] [Green Version]
- Nghiem, T.-L.; Löbling, T.I.; Gröschel, A.H. Supracolloidal Chains of Patchy Micelles in Water. Polym. Chem. 2018, 9, 1583–1592. [Google Scholar] [CrossRef]
- Guennouni, Z.; Cousin, F.; Fauré, M.-C.; Perrin, P.; Limagne, D.; Konovalov, O.; Goldmann, M. Self-Organization of Polystyrene-b-Polyacrylic Acid (PS-b-PAA) Monolayer at the Air/Water Interface: A Process Driven by the Release of the Solvent Spreading. Langmuir 2016, 32, 1971–1980. [Google Scholar] [CrossRef]
- Matějíček, P.; Podhájecká, K.; Humpolíčková, J.; Uhlík, F.; Jelínek, K.; Limpouchová, Z.; Procházka, K.; Špírková, M. Polyelectrolyte Behavior of Polystyrene-Block-Poly(Methacrylic Acid) Micelles in Aqueous Solutions at Low Ionic Strength. Macromolecules 2004, 37, 10141–10154. [Google Scholar] [CrossRef]
- Li, X.; Wang, G.; Zhang, Q.; Liu, Y.; Sun, T.; Liu, S. Dissipative Self-Assembly of a Dual-Responsive Block Copolymer Driven by a Chemical Oscillator. J. Colloid Interface Sci. 2022, 615, 732–739. [Google Scholar] [CrossRef]
- Välimäki, S.; Khakalo, A.; Ora, A.; Johansson, L.-S.; Rojas, O.J.; Kostiainen, M.A. Effect of PEG–PDMAEMA Block Copolymer Architecture on Polyelectrolyte Complex Formation with Heparin. Biomacromolecules 2016, 17, 2891–2900. [Google Scholar] [CrossRef]
- Shin, S.H.R.; McAninch, P.T.; Henderson, I.M.; Gomez, A.; Greene, A.C.; Carnes, E.C.; Paxton, W.F. Self-Assembly/Disassembly of Giant Double-Hydrophilic Polymersomes at Biologically-Relevant PH. Chem. Commun. 2018, 54, 9043–9046. [Google Scholar] [CrossRef] [PubMed]
- Barthel, M.J.; Schacher, F.H.; Schubert, U.S. Poly(Ethylene Oxide) (PEO)-Based ABC Triblock Terpolymers—Synthetic Complexity vs. Application Benefits. Polym. Chem. 2014, 5, 2647–2662. [Google Scholar] [CrossRef]
- Colombani, O.; Ruppel, M.; Schubert, F.; Zettl, H.; Pergushov, D.V.; Müller, A.H.E. Synthesis of Poly(n-Butyl Acrylate)-Block-Poly(Acrylic Acid) Diblock Copolymers by ATRP and Their Micellization in Water. Macromolecules 2007, 40, 4338–4350. [Google Scholar] [CrossRef]
- Castelletto, V.; Hamley, I.W.; Kerstens, S.L.H.; Deacon, S.; Thomas, C.D.; Lübbert, A.; Klok, H.-A. Spontaneous Condensation in DNA-Polystyrene- b-Poly(l-Lysine) Polyelectrolyte Block Copolymer Mixtures. Eur. Phys. J. E 2006, 20, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Schilli, C.M.; Zhang, M.; Rizzardo, E.; Thang, S.H.; Chong, Y.K.; Edwards, K.; Karlsson, G.; Müller, A.H.E. A New Double-Responsive Block Copolymer Synthesized via RAFT Polymerization: Poly(N-Isopropylacrylamide)-Block-Poly(Acrylic Acid). Macromolecules 2004, 37, 7861–7866. [Google Scholar] [CrossRef]
Type | Polyelectrolyte | First pKa/pKaH of Monomer | pKa/pKaH of Polymer * | Reference |
---|---|---|---|---|
Synthetic polyanions | Poly(acrylic acid) (PAA) Poly(methacrylic acid) (PMAA) | 4.2 4.7 | 4.5–6.6 up to 6.8 | [21,22] [21] |
Natural polyanions | Poly(glutamic acid) (PGA) Hyaluronic acid (HA) Alginic acid (ALG) | 2.1 ≈3.0 3.5–4.6 | 6.1 | [21] [23] [24] |
Synthetic polycations | Poly(allylamine hydrochloride) (PAH) Poly(aniline) (PANI) Poly(ethyleneimine) (PEI) Poly(2-vinylpyridine) (P2VP) Poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) Poly(L-lysine) (PLL) | 9.7 4.6 8.0 5–5.6 8.4 10.5 | 8.6 5.5 8.2–9.9 3.5–4.5 ≈7.5 10–10.5 | [25] [26] [27] [28,29] [20,30] [31,32] |
Natural polycations | Chitosan (CHI) | 7.5 | ~6.5 | [33] |
Target Application | Brushes Type | Reference |
---|---|---|
Reversible adhesion | PDMAEMA/PMAA | [51] |
poly(N,N-dimethylacrylamide)/PAA | [50] | |
Bio-adhesion | PMAA | [54] |
PAA | [55] | |
Cargo immobilization/release | PAA/PMAA | [48] |
PDMAEMA | [56] | |
PDMAEMA/PAA | [52] | |
Antifouling | P4VP | [57] |
PMAA | [58] |
Target Application | Multilayer Type | References |
---|---|---|
Cargo encapsulation and release | PAH/PAA | [95] |
PEI/PAA CHI/HA and PLL/PGA | [114] [115] | |
Tunable bio-interface | PAH/PAA CHI/PGA | [116] [117] |
Slippery liquid-infused porous surface | (PEI/PAH)/PAA PEI/Nafion | [106] [107] |
Methylmercaptan gas sensor Urea sensor | (PAH-Ag+)/PAA | [113] |
PEI/Urease/reduced graphene oxide | [118] | |
Ionic conductivity Ionic current rectification Ion selective ultrafiltration Micropollutant filtration Solvent resistant nanofiltration membrane | PDADMA/PAA PLL/PAA and PEI/PAA | [110] [109] |
CHI/Chondroitin sulfate PAH/PAA PAH/PAA | [111] [119] [120] |
Applications | Weak Polyelectrolyte Used | Chemical Structures | References |
---|---|---|---|
PAH | Drug delivery, imaging | [140,141] | |
PEI | Drug delivery, gene delivery | [142,143] | |
PMAA and PAA | Drug delivery, cancer therapy | [128,134,144] | |
Poly(N-isopropylacrylamide) (PNIPAM) | Drug delivery | [144] | |
Poly-L-Arginine | Hyperthermia, imaging, drug delivery, gene silencing/editing | [145,146,147,148,149,150] | |
PLL | Hyperthermia, imaging | [139,151] |
Polyelectrolyte Complex | Processing | Target Applications | References |
---|---|---|---|
PAH/PAA | Compacted by ultracentrifugation | Catalysis support | [164] |
CHI/ALG | Compacted by ultracentrifugation | Biomaterials and biomedical applications | [162] |
β-Cyclodextrin-CHI/ALG | [163] | ||
poly[triethyl(4-vinylbenzyl)ammonium/ALG | [161] | ||
PAH/PMAA | Compacted by centrifugation | Sorption of transition metal ions Catalysis support | [158] [8] |
Poly(vinyl alcohol)/PAA | Injection | Adhesives | [159] |
CHI/ALG | Sedimentation | Tissue engineering | [160] |
PEI/PSS | Aqueous phase Separation | Filtration membranes | [165] |
PDADMAC/PAA | [13] | ||
PAH/PSS | [166] |
Polyelectrolyte | Chemical Structure | Applications | References |
---|---|---|---|
CHI | R = H or COCH3 | Oral drug delivery Mucosal delivery Gene delivery Cancer therapy Anti HVI therapy | [179] [187] [188] [189] [190] |
ALG | Drug delivery Mucoadhesive | [191,192] | |
Pectin | Mucoadhesive, i.e., nasal inserts, ocular delivery Oral drug delivery | [193] [194] [195] | |
Carrageenan | Drug delivery Selective protein adsorption | [196] [197] | |
HA | Vectors for protein, peptide, and gene delivery | [198,199] | |
Carboxymethyl starch | Oral drug delivery Protein carrier | [200] [201] | |
PGA | Drug delivery Biomolecule carrier | [202] [203] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchez-Ballester, N.M.; Sciortino, F.; Mir, S.H.; Rydzek, G. Weak Polyelectrolytes as Nanoarchitectonic Design Tools for Functional Materials: A Review of Recent Achievements. Molecules 2022, 27, 3263. https://doi.org/10.3390/molecules27103263
Sanchez-Ballester NM, Sciortino F, Mir SH, Rydzek G. Weak Polyelectrolytes as Nanoarchitectonic Design Tools for Functional Materials: A Review of Recent Achievements. Molecules. 2022; 27(10):3263. https://doi.org/10.3390/molecules27103263
Chicago/Turabian StyleSanchez-Ballester, Noelia M., Flavien Sciortino, Sajjad Husain Mir, and Gaulthier Rydzek. 2022. "Weak Polyelectrolytes as Nanoarchitectonic Design Tools for Functional Materials: A Review of Recent Achievements" Molecules 27, no. 10: 3263. https://doi.org/10.3390/molecules27103263
APA StyleSanchez-Ballester, N. M., Sciortino, F., Mir, S. H., & Rydzek, G. (2022). Weak Polyelectrolytes as Nanoarchitectonic Design Tools for Functional Materials: A Review of Recent Achievements. Molecules, 27(10), 3263. https://doi.org/10.3390/molecules27103263