Antibacterial Effects of Commiphora gileadensis Methanolic Extract on Wound Healing
Abstract
:1. Introduction
2. Materials and Methods
2.1. CG Collection
2.2. Preparation of CG Methanolic Extract
2.3. Sample Characterization Using Ultraperformance Liquid Chromatography Coupled with Mass Spectrometer (UPLC–MS)
2.4. Study Design
2.5. Excision Wound Model
2.6. Bacterial Inoculation
2.7. Treatment Applications
2.8. Wound Contraction Percentage
2.9. Histopathological Study
- Complete healing: there was a complete re-epithelization, a moderate granulation tissue formation, a presence of collagen fiber, and mild infiltration of polymorph leukocytes;
- Incomplete healing: characterized by incomplete re-epithelization, a mild formation of granulation tissue, a presence of collagen fibers, and mild infiltration of polymorph leukocytes;
2.10. Microbiological Test
2.11. Statistical Analysis
3. Results
3.1. LC–MS of CG-Methanolic Extracts
3.2. Wound Healing
3.3. Histopathological Changes
3.4. Colony-Forming Unit (CFU) Count
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Appendix A
References
- Abbas, A.K.; Lichtman, A.H.; Pillai, S. Basic Immunology E-Book: Functions and Disorders of the Immune System; Elsevier Health Sciences: Amsterdam, The Netherlands, 2019; ISBN 0323639097. [Google Scholar]
- Kondo, T.; Ishida, Y. Molecular pathology of wound healing. Forensic Sci. Int. 2010, 203, 93–98. [Google Scholar] [CrossRef]
- Velnar, T.; Bailey, T.; Smrkolj, V. The wound healing process: An overview of the cellular and molecular mechanisms. J. Int. Med. Res. 2009, 37, 1528–1542. [Google Scholar] [CrossRef]
- Mohil, R.S. Classification of wounds. In Principles and Practice in Wound Care; JP Medical Ltd.: Tokyo, Japan, 2012. [Google Scholar]
- Monaco, J.L.; Lawrence, W.T. Acute wound healing: An overview. Clin. Plast. Surg. 2003, 30, 1–12. [Google Scholar] [CrossRef]
- Heras, K.L.; Igartua, M.; Santos-Vizcaino, E.; Hernandez, R.M. Chronic wounds: Current status, available strategies and emerging therapeutic solutions. J. Control. Release 2020, 328, 532–550. [Google Scholar] [CrossRef]
- Young, A.; McNaught, C.E. The physiology of wound healing. Surgery 2011, 29, 475–479. [Google Scholar] [CrossRef]
- Gurtner, G.C.; Werner, S.; Barrandon, Y.; Longaker, M.T. Wound repair and regeneration. Nature 2008, 453, 314–321. [Google Scholar] [CrossRef]
- Labler, L.; Mica, L.; Härter, L.; Trentz, O.; Keel, M. Influence of VAC-therapy on cytokines and growth factors in traumatic wounds. Zent. Chir. 2006, 131, S62–S67. [Google Scholar] [CrossRef]
- Pazyar, N.; Yaghoobi, R.; Rafiee, E.; Mehrabian, A.; Feily, A. Skin wound healing and phytomedicine: A Review. Ski. Pharmacol. Physiol. 2014, 27, 303–310. [Google Scholar] [CrossRef]
- Pottoo, F.H.; Abu-Izneid, T.; Ibrahim, A.M.; Javed, M.N.; AlHajri, N.; Hamrouni, A.M. Immune system response during viral infections: Immunomodulators, cytokine storm (CS) and immunotherapeutics in COVID-19. Saudi Pharm. J. 2021, 29, 173–187. [Google Scholar] [CrossRef]
- Barrientos, S.; Stojadinovic, O.; Golinko, M.S.; Brem, H.; Tomic-Canic, M. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008, 16, 585–601. [Google Scholar] [CrossRef]
- Chuncharunee, A.; Waikakul, S.; Wongkajornsilp, A.; Chongkolwatana, V.; Chuncharunee, L.; Sirimontaporn, A.; Rungruang, T.; Sreekanth, G.P. Invalid freeze-dried platelet gel promotes wound healing. Saudi Pharm. J. 2019, 27, 33–40. [Google Scholar] [CrossRef]
- Hoffbrand, V.; Moss, P.A.H. Hoffbrand’s Essential Haematology; John Wiley & Sons: Hoboken, NJ, USA, 2015; Volume 38, ISBN 1118408675. [Google Scholar]
- Van der Veer, W.M.; Van Egmond, M.; Niessen, F.B.; Beelen, R.H. Macrophages in skin injury and repair. Immunobiology 2011, 216, 753–762. [Google Scholar]
- Zubair, M.; Ahmad, J. Role of growth factors and cytokines in diabetic foot ulcer healing: A detailed review. Rev. Endocr. Metab. Disord. 2019, 20, 207–217. [Google Scholar] [CrossRef]
- Vatansever, H.S.; Uluer, E.T.; Aydede, H.; Ozbilgin, M.K. Analysis of transferred keratinocyte-like cells derived from mouse embryonic stem cells on experimental surgical skin wounds of mouse. Acta Histochem. 2013, 115, 32–41. [Google Scholar] [CrossRef]
- Sylvia, C.J. The role of neutrophil apoptosis in influencing tissue repair. J. Wound Care 2003, 12, 13–16. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, V.; Cotran, R.S.; Robbins, S.L.; Çevikbaş, U. Temel Patoloji; Nobel: Delhi, India, 1995; ISBN 9754200440. [Google Scholar]
- Khan, B.A.; Ullah, S.; Khan, M.K.; Alshahrani, S.M.; Braga, V.A. Formulation and evaluation of ocimum basilicum-based emulgel for wound healing using animal model. Saudi Pharm. J. 2020, 28, 1842–1850. [Google Scholar] [CrossRef]
- Opalenik, S.R.; Davidson, J.M. Fibroblast differentiation of bone marrow-derived cells during wound repair. FASEB J. 2005, 19, 1561–1563. [Google Scholar] [CrossRef]
- Punjataewakupt, A.; Napavichayanun, S.; Aramwit, P. The downside of antimicrobial agents for wound healing. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 39–54. [Google Scholar] [CrossRef]
- Lipsky, B.A.; Hoey, C. Topical antimicrobial therapy for treating chronic wounds. Clin. Infect. Dis. 2009, 49, 1541–1549. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, N.; Wong, S.K.; Mohamed, I.N.; Mohamed, N.; Chin, K.-Y.; Ima-Nirwana, S.; Shuid, A.N. Wound healing properties of selected natural products. Int. J. Environ. Res. Public Health 2018, 15, 2360. [Google Scholar] [CrossRef] [Green Version]
- Alqethami, A.; Hawkins, J.A.; Teixidor-Toneu, I. Medicinal plants used by women in Mecca: Urban, muslim and gendered knowledge. J. Ethnobiol. Ethnomed. 2017, 13, 1–24. [Google Scholar]
- Tekwu, E.M.; Pieme, A.C.; Beng, V.P. Investigations of antimicrobial activity of some Cameroonian medicinal plant extracts against bacteria and yeast with gastrointestinal relevance. J. Ethnopharmacol. 2012, 142, 265–273. [Google Scholar] [CrossRef]
- Al-Howiriny, T.A.; Al-Yahya, M.A.; Al-Said, M.S.; El-Tahir, K.E.H.; Rafatullah, S. Studies on the pharmacological activities of an ethanol extract of balessan (commiphora opobalsamum). Pak. J. Biol. Sci. 2004, 7, 1933–1936. [Google Scholar] [CrossRef]
- Al-sieni, A.I.I. The antibacterial activity of traditionally used salvadora persica L. (miswak) and commiphora gileadensis (palsam) in Saudi Arabia. Afr. J. Tradit. Complement. Altern. Med. 2013, 11, 23–27. [Google Scholar] [CrossRef] [Green Version]
- Fiorito, S.; Epifano, F.; Taddeo, V.A.; Genovese, S.; Preziuso, F. A Survey of the anti-microbial properties of naturally occurring prenyloxyphenylpropanoids and related compounds. Curr. Top. Med. Chem. 2018, 18, 2097–2101. [Google Scholar] [CrossRef]
- Al-Mahbashi, H.M.; El-Shaibany, A.; Saad, F.A. Evaluation of acute toxicity and antimicrobial effects of the bark extract of bisham (commiphora gileadensis L.). J. Chem. Pharm. Res. 2015, 7, 810–814. [Google Scholar]
- Al-Hazmi, A.S.; Albeshi, B.M.; Alsofyani, E.M.; Alherthi, M.N.; Aljuaid, M.M.; Alfifi, O.A.; Alshaer, R.S.; Alsaadi, R.S.; Alomery, A.M.; Almehmadi, M.M. Research article in vitro and in vivo antibacterial effect of commiphora gileadensis methanolic extract against methicillin-resistant staphylococcus aureus (MRSA) and pseudomonas aeruginosa. Pak. J. Biol. Sci. 2020, 23, 1676–1680. [Google Scholar] [CrossRef]
- Nunes, S.D.O.; Oliveira, B.F.R.; Giambiagi-deMarval, M.; Laport, M.S. Antimicrobial and antibiofilm activities of marine sponge-associated bacteria against multidrug-resistant staphylococcus spp. isolated from canine skin. Microb. Pathog. 2021, 152, 104612. [Google Scholar] [CrossRef]
- Tajbakhsh, E.; Khamesipour, A.; Hosseini, S.R.; Kosari, N.; Shantiae, S.; Khamesipour, F. The effects of medicinal herbs and marine natural products on wound healing of cutaneous leishmaniasis: A systematic review. Microb. Pathog. 2021, 161, 105235. [Google Scholar] [CrossRef]
- Aldairi, A.F.; Alyamani, R.A.; Al-Hazmi, A.; Halawani, I.F.; Alsubaihi, A.A.; Idris, S.; Fallatah, N.A.; Gassas, A.; Almalki, A.A.; Qasem, A.; et al. Antioxidant and antithrombotic effects of green mussels (perna canaliculus) in rats. J. Food Biochem. 2021, 49, e13865. [Google Scholar] [CrossRef]
- Sun, Y.; Tosa, M.; Takada, H.; Ogawa, R. Photodynamic therapy delays cutaneous wound healing in mice. J. Nippon Med. Sch. 2020, 87, 110–117. [Google Scholar] [CrossRef]
- Ragàs, X.; Dai, T.; Tegos, G.P.; Agut, M.; Nonell, S.; Hamblin, M.R. Photodynamic inactivation of acinetobacter baumannii using phenothiazinium dyes: In vitro and in vivo studies. Lasers Surg. Med. 2010, 42, 384–390. [Google Scholar] [CrossRef] [Green Version]
- Al-Watban, F.A.H.; Zhang, X.Y. The comparison of effects between pulsed and CW lasers on wound healing. J. Clin. Laser Med. Surg. 2004, 22, 15–18. [Google Scholar] [CrossRef]
- Elangbam, C.; Nyska, A.; Mahler, B.; Maronpot, R. Heart trimming protocol of the laboratory rat. Toxicol. Pathol. 2005, 33, 742. [Google Scholar] [CrossRef] [Green Version]
- Morawietz, G.; Ruehl-Fehlert, C.; Kittel, B.; Bube, A.; Keane, K.; Halm, S.; Heuser, A.; Hellmann, J. Revised guides for organ sampling and trimming in rats and mice–part 3: A joint publication of the RITA) and NACAD) Groups. Exp. Toxicol. Pathol. 2004, 55, 433–449. [Google Scholar] [CrossRef]
- Li, Y.; Li, N.; Yu, X.; Huang, K.; Zheng, T.; Cheng, X.; Zeng, S.; Liu, X. Hematoxylin and eosin staining of intact tissues via delipidation and ultrasound. Sci. Rep. 2018, 8, 12259. [Google Scholar] [CrossRef]
- Funjan, M.M.; Rasheed, F.F.; Nazar, A. Effects of green laser therapy on healing of infected wound in mice. Iraqi J. Community Med. 2017, 30, 101–108. [Google Scholar]
- Pastar, I.; Stojadinovic, O.; Yin, N.C.; Ramirez, H.; Nusbaum, A.G.; Sawaya, A.; Patel, S.B.; Khalid, L.; Isseroff, R.R.; Tomic-Canic, M. Epithelialization in wound healing: A comprehensive review. Adv. Wound Care 2014, 3, 445–464. [Google Scholar] [CrossRef] [Green Version]
- Soleimani, H.; Amini, A.; Taheri, S.; Sajadi, E.; Shafikhani, S.; Schuger, L.A.; Reddy, V.B.; Ghoreishi, S.K.; Pouriran, R.; Chien, S.; et al. The effect of combined photobiomodulation and curcumin on skin wound healing in type I diabetes in rats. J. Photochem. Photobiol. B Biol. 2018, 181, 23–30. [Google Scholar] [CrossRef]
- Nagori, B.P.; Solanki, R. Role of Medicinal Plants in Wound Healing. Res. J. Med. Plant 2011, 5, 392–405. [Google Scholar] [CrossRef] [Green Version]
- Abdul-Ghani, A.S.; Amin, R. Effect of aqueous extract of commiphora opobalsamum on blood pressure and heart rate in rats. J. Ethnopharmacol. 1997, 57, 219–222. [Google Scholar] [CrossRef]
- Becam, J.; Walter, T.; Burgert, A.; Schlegel, J.; Sauer, M.; Seibel, J.P.D.; Schubert-Unkmeir, A. Antibacterial activity of ceramide and ceramide analogs against pathogenic Neisseria. Sci. Rep. 2017, 7, 17627. [Google Scholar] [CrossRef]
- Nocedo-Mena, D.; Arrasate, S.; Garza-González, E.; Rivas-Galindo, V.M.; Romo-Mancillas, A.; Munteanu, C.R.; Sotomayor, N.; Lete, E.; Barbolla, I.; Martín, C.A.; et al. Molecular Docking, SAR Analysis and Biophysical Approaches in the Study of the Antibacterial Activity of Ceramides Isolated from Cissus incisa. Bioorg. Chem. 2021, 109, 104745. [Google Scholar] [CrossRef]
- Munvera, A.; Nyemb, J.N.; Alfred Ngenge, T.; Mafo, M.A.F.; Nuzhat, S.; Nkengfack, A.E. First report of isolation of antibacterial ceramides from the leaves of euclinia longiflora salisb. Nat. Prod. Commun. 2021, 16, 1934578X211048628. [Google Scholar] [CrossRef]
- Sychrová, A.; Koláriková, I.; Žemlička, M.; Šmejkal, K. Natural compounds with dual antimicrobial and anti-inflammatory effects. Phytochem. Rev. 2020, 19, 1471–1502. [Google Scholar] [CrossRef]
- Zeng, Q.; Xie, H.; Song, H.; Nie, F.; Wang, J.; Chen, D.; Wang, F. In vivo wound healing activity of abrus cantoniensis extract. Evid.-Based Complement. Altern. Med. 2016, 2016, 6568528. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, A.; Sidamo, T.; Asres, K.; Engidawork, E. In vivo wound healing activity and phytochemical screening of the crude extract and various fractions of kalanchoe petitiana A. Rich (crassulaceae) leaves in mice. J. Ethnopharmacol. 2013, 145, 638–646. [Google Scholar] [CrossRef]
- Hossain, M.A.; AL-Raqmi, K.A.S.; Al-Mijizy, Z.H.; Weli, A.M.; Al-Riyami, Q. Study of total phenol, flavonoids contents and phytochemical screening of various leaves crude extracts of locally grown thymus vulgaris. Asian Pac. J. Trop. Biomed. 2013, 3, 705–710. [Google Scholar] [CrossRef] [Green Version]
- Ugochukwu, S.C.; Uche, A.; Ifeanyi, O. Preliminary phytochemical screening of different solvent extracts of stem bark and roots of Dennetia tripetala G. Baker. Asian J. Plant Sci. Res. 2013, 3, 10–13. [Google Scholar]
- Mulisa, E.; Asres, K.; Engidawork, E. Evaluation of wound healing and anti-inflammatory activity of the rhizomes of rumex abyssinicus J. (Polygonaceae) in mice. BMC Complement. Altern. Med. 2015, 15, 341. [Google Scholar] [CrossRef] [Green Version]
Class | % |
---|---|
Ceramide (Cer) | 69.15 |
Hexosylceramide (Hex1Cer) | 18.19 |
Phosphatidylethanolamine (PE) | 7.64 |
Dimethylphosphatidylethanolamine (dMePE) | 2.19 |
Phosphatidic acid (PA) | 0.97 |
Phosphatidylinositol (PI) | 0.63 |
Cyclic phosphatidic acid (cPA) | 0.30 |
Lysodimethylphosphatidylethanolamine (LdMePE) | 0.30 |
Ceramide phosphate (CerP) | 0.15 |
Lysophosphatidic acid (LPA) | 0.10 |
Phosphatidylglycerol (PG) | 0.08 |
Phosphatidylmethanol (PMe) | 0.04 |
Lysophosphatidylinositol (LPI) | 0.04 |
Dilysocardiolipin (DLCL) | 0.03 |
Lysophosphatidylcholine (LPC) | 0.03 |
(O-acyl)-1-hydroxy fatty acid (OAHFA) | 0.03 |
Phosphatidylethanol (PEt) | 0.02 |
Sphingosine phosphate (SPHP) | 0.01 |
Monolysocardiolipin (MLCL) | 0.01 |
Digalactosylmonoacylglycerol(DGMG) | 0.01 |
Fatty acid (FA) | 0.01 |
Phosphatidylcholine (PC) | 0.01 |
Lysophosphatidylethanol (LPEt) | 0.01 |
Phosphatidylserine (PS) | 0.01 |
Lysophosphatidylglycerol (LPG) | 0.01 |
Phosphatidylinositol-P (PIP) | 0.01 |
Lysosphingomyelin (LSM) | 0.01 |
Monogalactosyldiacylglycerol (MGDG) | 0.01 |
Phosphatidylinositol-P2 (PIP-2) | 0.00 |
Total | 100.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhazmi, A.; Aldairi, A.F.; Alghamdi, A.; Alomery, A.; Mujalli, A.; Obaid, A.A.; Farrash, W.F.; Allahyani, M.; Halawani, I.; Aljuaid, A.; et al. Antibacterial Effects of Commiphora gileadensis Methanolic Extract on Wound Healing. Molecules 2022, 27, 3320. https://doi.org/10.3390/molecules27103320
Alhazmi A, Aldairi AF, Alghamdi A, Alomery A, Mujalli A, Obaid AA, Farrash WF, Allahyani M, Halawani I, Aljuaid A, et al. Antibacterial Effects of Commiphora gileadensis Methanolic Extract on Wound Healing. Molecules. 2022; 27(10):3320. https://doi.org/10.3390/molecules27103320
Chicago/Turabian StyleAlhazmi, Ayman, Abdullah F. Aldairi, Ahmad Alghamdi, Anas Alomery, Abdulrahman Mujalli, Ahmad A. Obaid, Wesam F. Farrash, Mamdouh Allahyani, Ibrahim Halawani, Abdulelah Aljuaid, and et al. 2022. "Antibacterial Effects of Commiphora gileadensis Methanolic Extract on Wound Healing" Molecules 27, no. 10: 3320. https://doi.org/10.3390/molecules27103320
APA StyleAlhazmi, A., Aldairi, A. F., Alghamdi, A., Alomery, A., Mujalli, A., Obaid, A. A., Farrash, W. F., Allahyani, M., Halawani, I., Aljuaid, A., Alharbi, S. A., Almehmadi, M., Alharbi, M. S., Khan, A. A., Jastaniah, M. A., & Alghamdi, A. (2022). Antibacterial Effects of Commiphora gileadensis Methanolic Extract on Wound Healing. Molecules, 27(10), 3320. https://doi.org/10.3390/molecules27103320