Cancer-Related Somatic Mutations in Transmembrane Helices Alter Adenosine A1 Receptor Pharmacology
Abstract
:1. Introduction
2. Results
2.1. Data Mining
2.2. Constitutive Activity of Mutant hA1ARs
2.3. Agonist-Induced Receptor Activation of Mutant hA1ARs
2.4. Ligand Binding on Wild Type and Mutant hA1ARs
2.5. [35S]GTPγS Functional Assay on Wild Type and Mutant hA1ARs
2.6. Structural Mapping and Bioinformatics Analysis of Mutations
3. Discussion
3.1. Mutations Located at the Top Part of the Receptor
3.2. Mutations Located on Conserved Residues
3.3. Mutations Located on Residues Pointing towards the Membrane
3.4. Potential Role for hA1AR Mutations in Cancer
4. Materials and Methods
4.1. Data Mining
4.2. Materials
4.3. Generation of hA1AR Mutations
4.4. Transformation in MMY24 S. Cerevisiae Strain
4.5. Liquid Growth Assay
4.6. Cell Culture, Transient Transfection, and Membrane Preparation
4.7. Enzyme-Linked Immunosorbent Assay
4.8. Radioligand Displacement Assay
4.9. [35S]GTPγS Binding Assay
4.10. Modelling
4.11. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Fredriksson, R.; Lagerström, M.C.; Lundin, L.-G.; Schiöth, H.B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 2003, 63, 1256–1272. [Google Scholar] [CrossRef] [Green Version]
- Vassilatis, D.K.; Hohmann, J.G.; Zeng, H.; Li, F.; Ranchalis, J.E.; Mortrud, M.T.; Brown, A.; Rodriguez, S.S.; Weller, J.R.; Wright, A.C.; et al. The G protein-coupled receptor repertoires of human and mouse. Proc. Natl. Acad. Sci. USA 2003, 100, 4903–4908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagerström, M.C.; Schiöth, H.B. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat. Rev. Drug Discov. 2008, 7, 339–357. [Google Scholar] [CrossRef] [PubMed]
- Pierce, K.L.; Premont, R.T.; Lefkowitz, R.J. Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol. 2002, 3, 639–650. [Google Scholar] [CrossRef] [PubMed]
- Kan, Z.; Jaiswal, B.S.; Stinson, J.; Janakiraman, V.; Bhatt, D.; Stern, H.M.; Yue, P.; Haverty, P.M.; Bourgon, R.; Zheng, J.; et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 2010, 466, 869–873. [Google Scholar] [CrossRef] [Green Version]
- Lappano, R.; Maggiolini, M. GPCRs and cancer. Acta Pharmacol. Sin. 2012, 33, 351–362. [Google Scholar] [CrossRef] [Green Version]
- Dorsam, R.T.; Gutkind, J.S. G-protein-coupled receptors and cancer. Nat. Rev. Cancer 2007, 7, 79–94. [Google Scholar] [CrossRef]
- Gonzalez, H.; Hagerling, C.; Werb, Z. Roles of the immune system in cancer: From tumor initiation to metastatic progression. Genes Dev. 2018, 32, 1267–1284. [Google Scholar] [CrossRef] [Green Version]
- Vijayan, D.; Young, A.; Teng, M.W.L.; Smyth, M.J. Targeting immunosuppressive adenosine in cancer. Nat. Rev. Cancer 2017, 17, 709–724. [Google Scholar] [CrossRef]
- Gessi, S.; Merighi, S.; Sacchetto, V.; Simioni, C.; Borea, P.A. Adenosine receptors and cancer. Biochim. Biophys. Acta 2011, 1808, 1400–1412. [Google Scholar] [CrossRef] [Green Version]
- Merighi, S.; Mirandola, P.; Varani, K.; Gessi, S.; Leung, E.; Baraldi, P.G.; Tabrizi, M.A.; Borea, P.A. A glance at adenosine receptors: Novel target for antitumor therapy. Pharmacol. Ther. 2003, 100, 31–48. [Google Scholar] [CrossRef]
- Sek, K.; Mølck, C.; Stewart, G.; Kats, L.; Darcy, P.; Beavis, P. Targeting Adenosine Receptor Signaling in Cancer Immunotherapy. Int. J. Mol. Sci. 2018, 19, 3837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merighi, S.; Varani, K.; Gessi, S.; Cattabriga, E.; Iannotta, V.; Ulouglu, C.; Leung, E.; Borea, P.A. Pharmacological and biochemical characterization of adenosine receptors in the human malignant melanoma A375 cell line. Br. J. Pharmacol. 2001, 134, 1215–1226. [Google Scholar] [CrossRef] [PubMed]
- Borea, P.A.; Gessi, S.; Merighi, S.; Vincenzi, F.; Varani, K. Pharmacology of Adenosine Receptors: The State of the Art. Physiol. Rev. 2018, 98, 1591–1625. [Google Scholar] [CrossRef]
- Zhou, Y.; Tong, L.; Chu, X.; Deng, F.; Tang, J.; Tang, Y.; Dai, Y. The Adenosine A1 Receptor Antagonist DPCPX Inhibits Tumor Progression via the ERK/JNK Pathway in Renal Cell Carcinoma. Cell. Physiol. Biochem. 2017, 43, 733–742. [Google Scholar] [CrossRef]
- Mirza, A.; Basso, A.; Black, S.; Malkowski, M.; Kwee, L.; Patcher, J.A.; Lachowicz, J.E.; Wang, Y.; Liu, S. RNA interference targeting of A1 receptor-overexpressing breast carcinoma cells leads to diminished rates of cell proliferation and induction of apoptosis. Cancer Biol. Ther. 2005, 4, 1355–1360. [Google Scholar] [CrossRef] [Green Version]
- Peeters, M.C.; Wisse, L.E.; Dinaj, A.; Vroling, B.; Vriend, G.; IJzerman, A.P. The role of the second and third extracellular loops of the adenosine A1 receptor in activation and allosteric modulation. Biochem. Pharmacol. 2012, 84, 76–87. [Google Scholar] [CrossRef]
- Peeters, M.C.; van Westen, G.J.P.; Li, Q.; IJzerman, A.P. Importance of the extracellular loops in G protein-coupled receptors for ligand recognition and receptor activation. Trends Pharmacol. Sci. 2011, 32, 35–42. [Google Scholar] [CrossRef]
- Jespers, W.; Schiedel, A.C.; Heitman, L.H.; Cooke, R.M.; Kleene, L.; van Westen, G.J.P.; Gloriam, D.E.; Müller, C.E.; Sotelo, E.; Gutiérrez-de-Terán, H. Structural mapping of adenosine receptor mutations: Ligand binding and signaling mechanisms. Trends Pharmacol. Sci. 2017, 39, 75–89. [Google Scholar] [CrossRef] [Green Version]
- Beukers, M.W.; van Oppenraaij, J.; van der Hoorn, P.P.W.; Blad, C.C.; den Dulk, H.; Brouwer, J.; IJzerman, A.P. Random Mutagenesis of the Human Adenosine A2B Receptor Followed by Growth Selection in Yeast. Identification of Constitutively Active and Gain of Function Mutations. Mol. Pharmacol. 2004, 65, 702–710. [Google Scholar] [CrossRef] [Green Version]
- Stewart, G.D.; Valant, C.; Dowell, S.J.; Mijaljica, D.; Devenish, R.J.; Scammells, P.J.; Sexton, P.M.; Christopoulos, A. Determination of adenosine A1 receptor agonist and antagonist pharmacology using Saccharomyces cerevisiae: Implications for ligand screening and functional selectivity. J. Pharmacol. Exp. Ther. 2009, 331, 277–286. [Google Scholar] [CrossRef] [Green Version]
- Ballesteros, J.A.; Weinstein, H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. In Methods in Neurosciences; Elsevier: Amsterdam, The Netherlands, 1995; Volume 25, pp. 366–428. ISBN 9780121852955. [Google Scholar]
- Draper-Joyce, C.J.; Khoshouei, M.; Thal, D.M.; Liang, Y.; Nguyen, A.T.N.; Furness, S.G.B.; Venugopal, H.; Baltos, J.; Plitzko, J.M.; Danev, R.; et al. Structure of the adenosine-bound human adenosine A1 receptor–Gi complex. Nature 2018, 558, 559–563. [Google Scholar] [CrossRef]
- Glukhova, A.; Thal, D.M.; Nguyen, A.T.; Vecchio, E.A.; Jörg, M.; Scammells, P.J.; May, L.T.; Sexton, P.M.; Christopoulos, A. Structure of the Adenosine A1 Receptor Reveals the Basis for Subtype Selectivity. Cell 2017, 168, 867–877.e13. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, A.T.N.; Baltos, J.-A.; Thomas, T.; Nguyen, T.D.; Muñoz, L.L.; Gregory, K.J.; White, P.J.; Sexton, P.M.; Christopoulos, A.; May, L.T. Extracellular Loop 2 of the Adenosine A1 Receptor Has a Key Role in Orthosteric Ligand Affinity and Agonist Efficacy. Mol. Pharmacol. 2016, 90, 703–714. [Google Scholar] [CrossRef] [Green Version]
- Bongers, B.J.; Gorostiola González, M.; Wang, X.; van Vlijmen, H.W.T.; Jespers, W.; Gutiérrez-de-Terán, H.; Ye, K.; IJzerman, A.P.; Heitman, L.H.; van Westen, G.J.P. Pan-cancer in silico analysis of somatic mutations in G-protein coupled receptors: The effect of evolutionary conservation and natural variance. bioRxiv 2021. [Google Scholar] [CrossRef]
- De Ligt, R.A.F.; Rivkees, S.A.; Lorenzen, A.; Leurs, R.; IJzerman, A.P. A “locked-on,” constitutively active mutant of the adenosine A1 receptor. Eur. J. Pharmacol. 2005, 510, 1–8. [Google Scholar] [CrossRef]
- Motulsky, H.J.; Neubig, R.R. Analyzing Binding Data. In Current Protocols in Neuroscience; Wiley: New York, NY, USA, 2010; Volume 52, ISBN 0471142301. [Google Scholar]
- Wang, X.; Jespers, W.; Bongers, B.J.; Habben Jansen, M.C.C.; Stangenberger, C.M.; Dilweg, M.A.; Gutiérrez-de-Terán, H.; IJzerman, A.P.; Heitman, L.H.; van Westen, G.J.P. Characterization of cancer-related somatic mutations in the adenosine A2B receptor. Eur. J. Pharmacol. 2020, 880, 173126. [Google Scholar] [CrossRef]
- Rivkees, S.A.; Barbhaiya, H.; IJzerman, A.P. Identification of the adenine binding site of the human A1 adenosine receptor. J. Biol. Chem. 1999, 274, 3617–3621. [Google Scholar] [CrossRef] [Green Version]
- Guo, D.; Pan, A.C.; Dror, R.O.; Mocking, T.; Liu, R.; Heitman, L.H.; Shaw, D.E.; IJzerman, A.P. Molecular basis of ligand dissociation from the adenosine A2A receptor. Mol. Pharmacol. 2016, 89, 485–491. [Google Scholar] [CrossRef] [Green Version]
- Chou, P.Y.; Fasman, G.D. Secondary structural prediction of proteins from their amino acid sequence. Trends Biochem. Sci. 1977, 2, 128–131. [Google Scholar] [CrossRef]
- Isberg, V.; Mordalski, S.; Munk, C.; Rataj, K.; Harpsøe, K.; Hauser, A.S.; Vroling, B.; Bojarski, A.J.; Vriend, G.; Gloriam, D.E. GPCRdb: An information system for G protein-coupled receptors. Nucleic. Acids Res. 2016, 44, D356–D364. [Google Scholar] [CrossRef] [Green Version]
- Howard, O.M.Z.; Shirakawa, A.K.; Turpin, J.A.; Maynard, A.; Tobin, G.J.; Carrington, M.; Oppenheim, J.J.; Dean, M. Naturally occurring CCR5 extracellular and transmembrane domain variants affect HIV-1 co-receptor and ligand binding function. J. Biol. Chem. 1999, 274, 16228–16234. [Google Scholar] [CrossRef] [Green Version]
- Katritch, V.; Fenalti, G.; Abola, E.E.; Roth, B.L.; Cherezov, V.; Stevens, R.C. Allosteric sodium in class A GPCR signaling. Trends Biochem. Sci. 2014, 39, 233–244. [Google Scholar] [CrossRef] [Green Version]
- Barbhaiya, H.; McClain, R.; IJzerman, A.; Rivkees, S.A. Site-directed mutagenesis of the human A1 adenosine receptor: Influences of acidic and hydroxy residues in the first four transmembrane domains on ligand binding. Mol. Pharmacol. 1996, 50, 1635–1642. [Google Scholar]
- White, K.L.; Eddy, M.T.; Gao, Z.-G.; Han, G.W.; Lian, T.; Deary, A.; Patel, N.; Jacobson, K.A.; Katritch, V.; Stevens, R.C. Structural Connection between Activation Microswitch and Allosteric Sodium Site in GPCR Signaling. Structure 2018, 26, 259–269.e5. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Chun, E.; Thompson, A.A.; Chubukov, P.; Xu, F.; Katritch, V.; Han, G.W.; Roth, C.B.; Heitman, L.H.; IJzerman, A.P.; et al. Structural basis for allosteric regulation of GPCRs by sodium ions. Science 2012, 337, 232–236. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Liapakis, G.; Xu, R.; Guarnieri, F.; Ballesteros, J.A.; Javitch, J.A. β2 adrenergic receptor activation: Modulation of the proline kink in transmembrane 6 by a rotamer toggle switch. J. Biol. Chem. 2002, 277, 40989–40996. [Google Scholar] [CrossRef] [Green Version]
- Park, P.S.H.; Lodowski, D.T.; Palczewski, K. Activation of G protein-coupled receptors: Beyond two-state models and tertiary conformational changes. Annu. Rev. Pharmacol. Toxicol. 2008, 48, 107–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paila, Y.D.; Tiwari, S.; Chattopadhyay, A. Are specific nonannular cholesterol binding sites present in G-protein coupled receptors? Biochim. Biophys. Acta-Biomembr. 2009, 1788, 295–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elkins, M.R.; Sergeyev, I.V.; Hong, M. Determining Cholesterol Binding to Membrane Proteins by Cholesterol 13C Labeling in Yeast and Dynamic Nuclear Polarization NMR. J. Am. Chem. Soc. 2018, 140, 15437–15449. [Google Scholar] [CrossRef] [PubMed]
- Nasrollahi-Shirazi, S.; Szöllösi, D.; Yang, Q.; Muratspahic, E.; El-kasaby, A.; Sucic, S.; Stockner, T.; Nanoff, C.; Freissmuth, M. Functional impact of the G279S substitution in the adenosine A1-receptor (A1R-G279S), a mutation associated with Parkinson’s disease. Mol. Pharmacol. 2020, 98, 250–266. [Google Scholar] [CrossRef]
- Bokoch, M.P.; Zou, Y.; Rasmussen, S.G.F.; Liu, C.W.; Nygaard, R.; Rosenbaum, D.M.; Fung, J.J.; Choi, H.-J.; Thian, F.S.; Kobilka, T.S.; et al. Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor. Nature 2010, 463, 108–112. [Google Scholar] [CrossRef] [Green Version]
- Gracia, E.; Moreno, E.; Cortés, A.; Lluís, C.; Mallol, J.; McCormick, P.J.; Canela, E.I.; Casadó, V. Homodimerization of adenosine A1 receptors in brain cortex explains the biphasic effects of caffeine. Neuropharmacology 2013, 71, 56–69. [Google Scholar] [CrossRef]
- Suzuki, T.; Namba, K.; Yamagishi, R.; Kaneko, H.; Haga, T.; Nakata, H. A highly conserved tryptophan residue in the fourth transmembrane domain of the A1 adenosine receptor is essential for ligand binding but not receptor homodimerization. J. Neurochem. 2009, 110, 1352–1362. [Google Scholar] [CrossRef]
- Rhee, M.H.; Nevo, I.; Bayewitch, M.L.; Zagoory, O.; Vogel, Z. Functional role of tryptophan residues in the fourth transmembrane domain of the CB2 cannabinoid receptor. J. Neurochem. 2000, 75, 2485–2491. [Google Scholar] [CrossRef] [Green Version]
- Saito, M.; Yaguchi, T.; Yasuda, Y.; Nakano, T.; Nishizaki, T. Adenosine suppresses CW2 human colonic cancer growth by inducing apoptosis via A1 adenosine receptors. Cancer Lett. 2010, 290, 211–215. [Google Scholar] [CrossRef]
- Lan, B.; Zhang, J.; Zhang, P.; Zhang, W.; Yang, S.; Lu, D.; Li, W.; Dai, Q. Metformin suppresses CRC growth by inducing apoptosis via ADORA1. Front. Biosci-Landmark 2017, 22, 248–257. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Kuang, X.; Zhang, Y.; Ye, Y.; Li, J.; Liang, L.; Xie, Z.; Weng, L.; Guo, J.; Li, H.; et al. ADORA1 Inhibition Promotes Tumor Immune Evasion by Regulating the ATF3-PD-L1 Axis. Cancer Cell 2020, 37, 324–339.e8. [Google Scholar] [CrossRef]
- Gimm, O.; Neuberg, D.S.; Marsh, D.J.; Dahia, P.L.M.; Hoang-Vu, C.; Raue, F.; Hinze, R.; Dralle, H.; Eng, C. Over-representation of a germline RET sequence variant in patients with sporadic medullary thyroid carcinoma and somatic RET codon 918 mutation. Oncogene 1999, 18, 1369–1373. [Google Scholar] [CrossRef] [Green Version]
- Monticelli, M.; Viscovo, M.; Riccio, G.; Andreotti, G.; Hay-Mele, B.; Cubellis, M.V. Passenger mutations as a target for the personalized therapy of cancer. PeerJ 2018, Preprints. [Google Scholar] [CrossRef]
- Weinstein, J.N.; Collisson, E.A.; Mills, G.B.; Shaw, K.R.M.; Ozenberger, B.A.; Ellrott, K.; Shmulevich, I.; Sander, C.; Stuart, J.M. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013, 45, 1113–1120. [Google Scholar] [CrossRef]
- UniProt: The universal protein knowledgebase. Nucleic Acids Res. 2017, 45, D158–D169. [CrossRef] [Green Version]
- Isberg, V.; de Graaf, C.; Bortolato, A.; Cherezov, V.; Katritch, V.; Marshall, F.H.; Mordalski, S.; Pin, J.-P.; Stevens, R.C.; Vriend, G.; et al. Generic GPCR residue numbers—Aligning topology maps while minding the gaps. Trends Pharmacol. Sci. 2015, 36, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Dowell, S.J.; Brown, A.J. Yeast Assays for G Protein-Coupled Receptors. In Methods in Molecular Biology (Clifton, N.J.); Filizola, M., Ed.; Springer: New York, NY, USA, 2009; Volume 552, pp. 213–229. ISBN 978-1-4939-2913-9. [Google Scholar]
- Longo, P.A.; Kavran, J.M.; Kim, M.S.; Leahy, D.J. Transient mammalian cell transfection with polyethylenimine (PEI). Methods Enzymol. 2013, 529, 227–240. [Google Scholar] [CrossRef] [Green Version]
- Heitman, L.H.; Göblyös, A.; Zweemer, A.M.; Bakker, R.; Mulder-Krieger, T.; van Veldhoven, J.P.D.; de Vries, H.; Brussee, J.; IJzerman, A.P. A Series of 2,4-Disubstituted Quinolines as a New Class of Allosteric Enhancers of the Adenosine A3 Receptor. J. Med. Chem. 2009, 52, 926–931. [Google Scholar] [CrossRef]
- Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985, 150, 76–85. [Google Scholar] [CrossRef]
- Schöneberg, T.; Liu, J.; Wess, J. Plasma Membrane Localization and Functional Rescue of Truncated Forms of a G Protein-coupled Receptor. J. Biol. Chem. 1995, 270, 18000–18006. [Google Scholar] [CrossRef] [Green Version]
- Esguerra, M.; Siretskiy, A.; Bello, X.; Sallander, J.; Gutiérrez-de-Terán, H. GPCR-ModSim: A comprehensive web based solution for modeling G-protein coupled receptors. Nucleic Acids Res. 2016, 44, W455–W462. [Google Scholar] [CrossRef]
- Cheng, Y.-C.; Prusoff, W.H. Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 percent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 1973, 22, 3099–3108. [Google Scholar] [CrossRef] [PubMed]
Mutations | Cancer Types | Occurrence |
---|---|---|
A20T1.43 | Colon adenocarcinoma | 1 |
A52V2.47 | Breast invasive carcinoma | 1 |
D55V2.50 | Breast invasive carcinoma | 1 |
D55G2.50 | Colon adenocarcinoma | 1 |
H78L3.23 | Lung adenocarcinoma | 1 |
P86L3.31 | Rectum adenocarcinoma | 1 |
R122Q4.40 | Colon adenocarcinoma | 1 |
L134F4.52 | Lung squamous cell carcinoma | 1 |
W188C5.46 | Colon adenocarcinoma | 1 |
S246T6.47 | Breast invasive carcinoma | 1 |
T257P6.58 | Lung adenocarcinoma | 1 |
S267I7.32 | Colon adenocarcinoma | 1 |
G279S7.44 | Colon adenocarcinoma | 1 |
Mutation | Basal a | pEC50 (−log M) | Emax a | Type b |
---|---|---|---|---|
Wild type | 1.00 ± 0.08 | 9.30 ± 0.08 | 4.83 ± 0.30 | - |
A20T1.43 | 0.68 ± 0.14 | 9.24 ± 0.08 | 4.23 ± 0.60 | CIM |
A52V2.47 | 0.24 ± 0.02 *** | 6.68 ± 0.09 **** | 1.86 ± 0.14 ** | CIM |
D55V2.50 | 0.24 ± 0.04 *** | ND | ND | LFM |
D55G2.50 | 0.50 ± 0.06 ** | ND | ND | LFM |
H78L3.23 | 4.48 ± 0.12 **** | ND | 4.15 ± 0.17 | CAM |
P86L3.31 | 0.28 ± 0.03 ** | ND | ND | LFM |
R122Q4.40 | 0.57 ± 0.22 | 9.04 ± 0.14 | 4.67 ± 0.22 | CIM |
L134F4.52 | 0.29 ± 0.04 ** | ND | ND | LFM |
W188C5.46 | 0.32 ± 0.02 ** | 8.21 ± 0.10 ** | 4.35 ± 0.10 | CIM |
S246T6.47 | 1.95 ± 0.27 * | 9.42 ± 0.33 | 4.81 ± 0.26 | CAM |
T257P6.58 | 0.24 ± 0.01 * | ND | ND | LFM |
S267I7.32 | 0.28 ± 0.01 * | ND | ND | LFM |
G279S7.44 | 0.33 ± 0.12 * | 9.27 ± 0.09 | 4.96 ± 0.38 | CIM |
[3H]DPCPX a | CPA | ||||
---|---|---|---|---|---|
Mutation | pKD | Bmax (pmol/mg) | pKi (High) | pKi (Low) | Fraction (High) |
Wild type | 8.36 ± 0.03 | 1.81 ± 0.14 | 9.24 ± 0.26 | 6.76 ± 0.05 | 0.15 ± 0.03 |
H78L3.23 | 8.46 ± 0.03 | 0.17 ± 0.01 ** | 8.97 ± 0.35 | 6.83 ± 0.09 | 0.33 ± 0.04 |
L134F4.52 | 8.06 ± 0.08 ** | 3.74 ± 0.65 ** | 8.38 ± 0.29 | 6.26 ± 0.11 ** | 0.34 ± 0.03 |
W188C5.46 | 8.42 ± 0.03 | 1.87 ± 0.12 | 8.02 ± 0.16 * | 6.15 ± 0.01 *** | 0.29 ± 0.01 |
S246T6.47 | 8.44 ± 0.05 | 0.11 ± 0.01 ** | 8.98 ± 0.16 | 7.19 ± 0.08 ** | 0.26 ± 0.03 |
G279S7.44 | 8.62 ± 0.06 * | 2.11 ± 0.07 | 8.74 ± 0.48 | 6.78 ± 0.06 | 0.17 ± 0.04 |
CPA | DPCPX | ||||
---|---|---|---|---|---|
Mutation | Basal a | pEC50 (−log M) | Emax a | pIC50 (−log M) | Imax b |
Wild type | 1.00 ± 0.09 | 8.98 ± 0.08 | 1.48 ± 0.13 | 8.09 ± 0.16 | 0.67 ± 0.05 |
H78L3.23 | 1.24 ± 0.10 | 9.09 ± 0.12 | 1.40 ± 0.10 | 8.19 ± 0.25 | 0.83 ± 0.03 |
L134F4.52 | 1.12 ± 0.17 | 9.08 ± 0.16 | 1.48 ± 0.24 | 8.14 ± 0.23 | 0.68 ± 0.01 |
W188C5.46 | 1.21 ± 0.06 | 8.28 ± 0.10 * | 1.94 ± 0.02 | 7.87± 0.25 | 0.74 ± 0.03 |
S246T6.47 | 1.08 ± 0.10 | 9.44 ± 0.22 | 1.21 ± 0.10 | 8.44 ± 0.10 | 0.70 ± 0.05 |
G279S7.44 | 1.17 ± 0.13 | 8.69 ± 0.10 | 1.57 ± 0.20 | 8.23 ± 0.06 | 0.65 ± 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Jespers, W.; Wolff, K.A.N.; Buytelaar, J.; IJzerman, A.P.; van Westen, G.J.P.; Heitman, L.H. Cancer-Related Somatic Mutations in Transmembrane Helices Alter Adenosine A1 Receptor Pharmacology. Molecules 2022, 27, 3742. https://doi.org/10.3390/molecules27123742
Wang X, Jespers W, Wolff KAN, Buytelaar J, IJzerman AP, van Westen GJP, Heitman LH. Cancer-Related Somatic Mutations in Transmembrane Helices Alter Adenosine A1 Receptor Pharmacology. Molecules. 2022; 27(12):3742. https://doi.org/10.3390/molecules27123742
Chicago/Turabian StyleWang, Xuesong, Willem Jespers, Kim A. N. Wolff, Jill Buytelaar, Adriaan P. IJzerman, Gerard J. P. van Westen, and Laura H. Heitman. 2022. "Cancer-Related Somatic Mutations in Transmembrane Helices Alter Adenosine A1 Receptor Pharmacology" Molecules 27, no. 12: 3742. https://doi.org/10.3390/molecules27123742
APA StyleWang, X., Jespers, W., Wolff, K. A. N., Buytelaar, J., IJzerman, A. P., van Westen, G. J. P., & Heitman, L. H. (2022). Cancer-Related Somatic Mutations in Transmembrane Helices Alter Adenosine A1 Receptor Pharmacology. Molecules, 27(12), 3742. https://doi.org/10.3390/molecules27123742