Discovery of Quinazoline-2,4(1H,3H)-Dione Derivatives as Potential Antibacterial Agent: Design, Synthesis, and Their Antibacterial Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Antibacterial Activity
3. Experimental
3.1. Diethyl 2,2′-(2,4-Dioxoquinazoline-1,3(2H,4H)-diyl)diacetate (2)
3.2. 2,2′-(2,4-Dioxoquinazoline-1,3(2H,4H)-diyl)di(acetohydrazide) (3)
3.3. 2,2′-(2,4-Dioxoquinazoline-1,3(2H,4H)-diyl)diacetonitrile (4)
3.4. 2,2′-(2,4-Dioxoquinazoline-1,3(2H,4H)-diyl)diacetic acid (5)
3.5. Dimethyl 2,2′-(2,4-Dioxoquinazoline-1,3(2H,4H)-diyl)diacetate (6)
3.6. 1,3-Bis((5-mercapto-1,3,4-oxadiazol-2-yl)methyl)quinazoline-2,4(1H,3H)-dione (7)
3.7. General Procedure for the Synthesis of 8a and 8b
3.7.1. 1,3-Bis((5-(benzylthio)-1,3,4-oxadiazol-2-yl)methyl)quinazoline-2,4(1H,3H)-dione (8a)
3.7.2. 1,3-Bis((5-(methylthio)-1,3,4-oxadiazol-2-yl)methyl)quinazoline-2,4(1H,3H)-dione (8b)
3.8. General Procedure for the Synthesis of 9a and 9b
3.8.1. Tetraethyl 2,2′-(((2,2′-(2,4-Dioxoquinazoline-1,3(2H,4H)-diyl)bis(acetyl))bis(hydrazine-2,1-diyl))bis(methanylylidene))dimalonate (9a)
3.8.2. Ethyl-2-cyano-3-(2-(2-(1-(2-(2-(-2-cyano-3-ethoxy-3-oxoprop-1-en-1-yl)hydrazinyl)-2-oxoethyl)-2,4-dioxo-1,4-dihydroquinazolin-3(2H)-yl)acetyl)hydrazinyl)acrylate (9b)
3.9. General Procedure for the Synthesis of Compounds 10a, 10b, 10c, 11a, 11b, and 11c
3.9.1. 2,2′-(2,4-Dioxoquinazoline-1,3(2H,4H)-diyl)bis(N′-(-benzylidene)acetohydrazide) (10a)
3.9.2. 2,2′-(2,4-Dioxoquinazoline-1,3(2H,4H)-diyl)bis(N′-(-2 hydroxybenzylidene)acetohydrazide) (10b)
3.9.3. 2,2′-(2,4-Dioxoquinazoline-1,3(2H,4H)-diyl)bis(N′-(-4-methoxybenzylidene)acetohydrazide) (10c)
3.9.4. 2,2′-(2,4-Dioxoquinazoline-1,3(2H,4H)-diyl)bis(N′-cyclopentylideneacetohydrazide) (11a)
3.9.5. 2,2′-(2,4-Dioxoquinazoline-1,3(2H,4H)-diyl)bis(N′-cyclohexylideneacetohydrazide) (11b)
3.9.6. 2,2′-(2,4-Dioxoquinazoline-1,3(2H,4H)-diyl)bis(N′-cycloheptylideneacetohydrazide) (11c)
3.10. General Procedure for the Synthesis of Compounds 12a and 12b
3.10.1. 2,2′-(2,2′-(2,4-Dioxoquinazoline-1,3(2H,4H)-diyl)bis(acetyl))bis(N-phenylhydrazine-1-carboxamide) (12a)
3.10.2. 2,2′-(2,2′-(2,4-Dioxoquinazoline-1,3(2H,4H)-diyl)bis(acetyl))bis(N-phenylhydrazine-1-carbothioamide) (12b)
3.11. 1,3-bis((5-Mercapto-4-phenyl-4H-1,2,4-triazol-3-yl)methyl)quinazoline-2,4(1H,3H)-dione (13)
3.12. 1,3-Bis((5-(phenylamino)-1,3,4-oxadiazol-2-yl)methyl)quinazoline-2,4(1H,3H)-dione (14a)
3.13. 1,3-Bis((5-(phenylamino)-1,3,4-thiadiazol-2-yl)methyl)quinazoline-2,4(1H,3H)-dione (14b)
3.14. General Procedure for the Synthesis of Compounds 15 and 16
3.14.1. N′-(-4-Amino-3-phenyloxazol-2(3H)-ylidene)-2-(1-(2-(2-(-4-amino-3-phenyloxazol-2(3H)-ylidene)hydrazinyl)-2-oxoethyl)-2,4-dioxo-1,4-dihydroquinazolin-3(2H)-yl)acetohydrazide (15)
3.14.2. 2-(2,4-Dioxo-1-(2-oxo-2-(2-(-4-oxo-3-phenyloxazolidin-2-ylidene)hydrazinyl)ethyl)-1,4-dihydroquinazolin-3(2H)-yl)-N′-(-4-oxo-3-phenyloxazolidin-2-ylidene)acetohydrazide (16)
4. Biological Methods
Antibacterial Assay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Khan, A.; Ibrar, N.; Abbas, A.; Saeed. Recent Advances in The Structural Library of Functionalized Quinazoline and Quinazolinone Scaffolds: Synthetic Approaches and Multifarious Applications. Eur. J. Med. Chem. 2014, 76, 193–244. [Google Scholar] [CrossRef]
- Zaranappa; Vagdevi, H.M.; Jayanna, N.D. Synthesis, Characterization and Evaluation of Antibacterial Activity of Some 3- Substitutedphenylquinazoline-2,4-diones. Pharma Chem. 2012, 4, 1754–1758. [Google Scholar]
- German, N.; Malik, M.; Rosen, J.D.; Drlica, K.; Kerns, R.J. Use of Gyrase Resistance Mutants to Guide Selection of 8-methoxyquinazoline-2,4-diones. Antimicrob. Agents Chemother. 2008, 52, 3915–3921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huband, M.D.; Cohen, M.; Zurack, M.; Hanna, D.L.; Skerlos, L.; Sulavik, M.C.; Gibson, G.W.; Gage, J.W.; Ellsworth, E.; Stier, M.; et al. In Vitro and In Vivo Activities of PD 0305970 and PD 0326448, New Bacterial Gyrase/Topoisomerase Inhibitors with Potent Antibacterial Activities Versus Multidrug-Resistant Gram-Positive and Fastidious Organism Groups. Antimicrob. Agents Chemother. 2007, 51, 1191–1201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malik, M.; Maritks, K.R.; Mustaev, A.; Zhao, X.; Chavda, K.; Kerns, R.J.; Drlica, K. Fluoroquinolone and Quinazolinedione Activities against Wild-Type and Gyrase Mutant Strains of Mycobacterium Smegmatis. Antimicrob. Agents Chemother. 2011, 55, 2335–2343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oppegard, L.M.; Streck, K.R.; Rosen, J.D.; Schwanz, H.; Drlica, K.; Kerns, R.J.; Hiasa, H. Comparison of In Vitro Activities of Fluoroquinolone-Like 2,4- and 1,3-diones. Antimicrob. Agents Chemother. 2010, 54, 3011–3014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malik, M.; Hoatam, G.; Chavda, K.; Kerns, R.J.; Drlica, K. Novel Approach for Comparing the Abilities of Quinolones to Restrict The Emergence of Resistant Mutants During Quinolone Exposure. Antimicrob. Agents Chemother. 2010, 54, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.S.; Gould, K.; Fisher, L.M. Probing the Differential Interactions of Quinazolinedione PD 0305970 and Quinolones with Gyrase and Topoisomerase IV. Antimicrob. Agents Chemother. 2009, 53, 3822–3831. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.S.; Fisher, L.M. Probing the Differential Interactions of Quinazolinedione PD 0305970 and Quinolones with Gyrase and Topoisomerase IV. Antimicrob. Agents Chemother. 1998, 42, 2810–2816. [Google Scholar] [CrossRef] [Green Version]
- Strahilevitz, J.; Hooper, D.C. Dual Targeting of Topoisomerase IV and Gyrase to Reduce Mutant Selection: Direct Testing of the Paradigm by Using WCK-1734, A 167 New Fluoroquinolone, and Ciprofloxacin. Antimicrob. Agents Chemother. 2005, 49, 1949–1956. [Google Scholar] [CrossRef] [Green Version]
- Okumura, R.; Hirata, T.; Onodera, Y.; Hoshino, K.; Otani, T.; Yamamoto, T.J. Dual-Targeting Properties of the 3-aminopyrrolidyl Quinolones, DC-159a and Sitafloxacin, against DNA Gyrase and Topoisomerase IV: Contribution to Reducing In Vitro Emergence of Quinolone-Resistant Streptococcus Pneumoniae. Antimicrob. Chemother. 2008, 62, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.A.; Mohamed, A.; Younes, A.M.M.; Taha, M.M.; Bakr, A.; Abdel, H. Synthesis and Reactions of 3-aminotetrachloroquinazolin-2,4-dione. Eur. J. Chem. 2011, 2, 514–518. [Google Scholar] [CrossRef]
- Clark, R.L.; Clements, C.J.; Barrett, M.P.; Mackay, S.P.; Rathnam, R.P.; Owusu-Dapaah, G.; Spencer, J.; Huggan, J.K. Identification and Development of the 1,4-benzodiazepin-2-one and Quinazoline2,4-dione Scaffolds as Submicromolar Inhibitors of HAT. Bioorg. Med. Chem. 2012, 20, 6019–6033. [Google Scholar] [CrossRef] [PubMed]
- Ji, Q.G.; Yang, D.; Deng, Q.; Ge, Z.Q.; Yuan, L.J. Design, Synthesis, and Evaluation of Novel 1-methyl-3-substituted Quinazoline-2,4-dione Derivatives as Antimicrobial Agents. Med. Chem. Res. 2013, 23, 2169–2177. [Google Scholar] [CrossRef]
- Hassan, M.A.; Younes, A.M.M.; Taha, M.M.; Abdel-Monsef, A. Synthesis and Reactions of 3-(2-chloromethyl-carbonylamino)-tetrachloroquinazolin-2,4-dione. Org. Chem. Int. 2012, 2, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Malancona, S.; Donghi, M.; Ferrara, M.; Martin Hernando, J.I.; Pompei, M.; Pesci, S.; Ontoria, J.M.; Koch, U.; Rowley, M.; Summa, V. Allosteric Inhibitors of Hepatitis C Virus NS5B Polymerase Thumb Domain Site II: Structure-based Design and Synthesis of New Templates. Bioorg. Med. Chem. 2010, 18, 2836–2848. [Google Scholar] [CrossRef]
- Kuran, B.; Krawiecka, M.; Kossakowski, J.; Pindel, Ł.; Młynarczyk, G.; Cieślak, M.; Kaźmierczak-Barańska, J. Synthesis and Biological Activity of a Novel Series of 6,7-dimethoxyquinazoline-2,4(1H,3H)-dione Derivatives. Acta Pol. Pharm. 2012, 69, 145–148. [Google Scholar]
- Combrink, K.D.; Gulgeze, H.B.; Thuring, J.W.; Yu, K.L.; Civiello, R.L.; Zhang, Y.; Pearce, B.C.; Yin, Z.; Langley, D.R.; Kadow, K.F.; et al. Respiratory Syncytial Virus Fusion Inhibitors. Part 6: An Examination of The Effect of Structural Variation of The Benzimidazol-2-one Heterocycle Moiety. Bioorg. Med. Chem. Lett. 2007, 17, 4784–4790. [Google Scholar] [CrossRef]
- Betti, M.; Genesio, E.; Panico, A.; Coccone, S.S.; Wiedenau, P. Process Development and Scale-Up for The Preparation of The 1- methyl-quinazoline-2,4-dione Wnt Inhibitor SEN461. Org. Process Res. Dev. 2013, 17, 1042–1051. [Google Scholar] [CrossRef]
- El-Deeb, I.M.; Bayoumi, S.M.; El-Sherbeny, M.; Abdel-Aziz, M.A. Synthesis and Antitumor Evaluation of Novel Cyclic Arylsulfonylureas: ADME-T and Pharmacophore Prediction. Eur. J. Med. Chem. 2010, 45, 2516–2530. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Xie, X.; Liu, G. Quinazoline-2,4(1H, 3H)-diones Inhibit The growth of Multiple Human Tumor Cell Lines. Mol. Divers. 2013, 17, 197–219. [Google Scholar] [CrossRef] [PubMed]
- McDonald, A.; Bergnes, G.; Morgans, D.J. Compounds, Compositions and Methods. US Patent WO/2004/064741, 5 August 2004. 2, 62–26 (A2). [Google Scholar]
- Choo, H.P.; Kim, M.; Lee, S.K.; Kim, S.W.; Chung, I.K. Solidphase Combinatorial Synthesis and Cytotoxicity of 3-aryl-2,4-quinazolindiones. Bioorg. Med. Chem. 2002, 10, 517–523. [Google Scholar] [CrossRef]
- Richter, S.; Gioffreda, B. Synthesis, Molecular Modelling and Biological Evaluation of 4-amino-2(1H)-quinazolinone and 2,4(1H,3H)-quinazolidone Derivatives as Antitumor Agents. Arch. Pharm. 2011, 344, 810–820. [Google Scholar] [CrossRef]
- Hashimoto, Y. Structural Development of Biological Response Modifiers Based on Retinoids and Thalidomide. Mini Rev. Med. Chem. 2002, 2, 543–551. [Google Scholar] [CrossRef]
- Jin, H.Z.; Du, J.L.; Zhang, W.D.; Yan, S.K.; Chen, H.S.; Lee, J.H.; Lee, J.J. A New Quinazolinedione Alkaloid from the Fruits of Evodia Officinalis. Fitoterapia 2008, 79, 317–318. [Google Scholar] [CrossRef] [PubMed]
- Kakuta, H.; Tanatani, A.; Nagasawa, K.; Hashimoto, Y. Specific Nonpeptide Inhibitors of Puromycin-Sensitive Aminopeptidase with a 2,4(1H,3H)-quinazolinedione Skeleton. Chem. Pharm. Bull. 2003, 51, 1273–1282. [Google Scholar] [CrossRef] [Green Version]
- Lane, K.T.; Beese, L.S. Thematic Review Series: Lipid Posttranslational Modifications. Structural Biology of Protein Farnesyltransferase and Geranylgeranyltransferase Type I. J. Lipid Res. 2006, 47, 681–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Appels, N.M.; Beijnen, J.H.; Schellens, J.H. Development of Farnesyl Transferase Inhibitors: A Review. Oncologist 2005, 10, 565–578. [Google Scholar] [CrossRef] [Green Version]
- Tizot, A.; Tucker, G.C.; Pierré, A.; Hickman, J.; Goldstein, S. Controlled Exploration of Structural Databases: The Case of Farnesyl Transferase Inhibitors. Med. Chem. 2009, 5, 208–215. [Google Scholar] [CrossRef]
- Leysen, J.E.; Awouters, F.; Kennis, L.; Laduron, P.M.; Vandenberk, J.; Janssen, P.A.J. Receptor Binding Profile of R41468, a Novel Antagonist at 5-HT2 Receptor. Life Sci. 1981, 28, 1015–1022. [Google Scholar] [CrossRef]
- Carrico, D.; Blaskovich, M.; Bucher, C.J.; Sebti, S.M.; Hamilton, A.D. Design, Synthesis, and Evaluation of Potent and Selective Benzoyleneurea-Based Inhibitors of Protein Geranylgeranyltransferase I. Bioorg. Med. Chem. 2005, 13, 677–688. [Google Scholar] [CrossRef] [PubMed]
- Liverton, N.J.; Armstrong, D.J.; Claremon, D.; Remy, D.C.; Baldwin, J.J.; Lynch, R.J.; Zhang, G.; Gould, R.J. Nonpeptide Glycoprotein IIb/IIIa Inhibitors: Substituted Quinazolinediones and Quinazolinones as Potent Fibrinogen Receptor Antagonists. Bioorg. Med. Chem. Lett. 1998, 8, 483–486. [Google Scholar] [CrossRef]
- Hedner, T.; Persson, B.; Berglund, G. Ketanserin. A Novel 5- hydroxytryptamine Antagonist: Monotherapy in Essential Hypertension. Br. J. Clin. Pharmacol. 1983, 16, 121–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agdevi, H.M.; Rajanna, M.; Gowdarshivannanavar, B.C. Synthesis and Antioxidant Activity of 3-substituted Schiff Bases of Quinazoline-2,4-diones. Int. J. Chem. Tech. Res. 2012, 4, 1527–1533. [Google Scholar]
- Prashanth, M.K.; Madaiah, M.; Revanasiddappa, H.D.; Veeresh, B. Synthesis, Anticonvulsant, Antioxidant and Binding Interaction of Novel N-substituted Methylquinazoline-2,4(1H,3H)-dione Derivatives to Bovine Serum Albumin: A Structure-Activity Relationship Study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 110, 324–332. [Google Scholar] [CrossRef] [Green Version]
- Koller, M.; Lingenhoehl, K.; Schmutz, M.; Vranesic, I.T.; Kallen, J.; Auberson, Y.P.; Carcache, D.; Mattes, H.; Ofner, S.; Orain, D.; et al. Quinazolinedione Sulfonamides: A Novel Class of Competitive AMPA Receptor Antagonists with Oral Activity. Bioorg. Med. Chem. Lett. 2011, 21, 3358–3361. [Google Scholar] [CrossRef]
- Orain, D.; Ofner, S.; Koller, M.; Carcache, D.A.; Froestl, W.; Allgeier, H.; Rasetti, V.; Nozulak, J.; Mattes, H.; Soldermann, N.; et al. 6-Amino Quinazolinedione Sulfonamides as Orally Active Competitive AMPA Receptor Antagonists. Bioorg. Med. Chem. Lett. 2012, 22, 996–999. [Google Scholar] [CrossRef]
- Handrika, P.M.; Rao, A.R.R.; Narsaiah, B.; Raju, M.B. Quinazoline Derıvatives with Potent Anti-Inflammatory and Anti-Allergic Activities. Int. J. Chem. Sci. 2008, 6, 1119–1146. [Google Scholar]
- Redondo, M.; Zarruk, J.G.; Ceballos, P.; Pérez, D.I.; Pérez, C.; Perez-Castillo, A.; Moro, M.; Brea, J.; Val, C.; Cadavid, M.I.; et al. Neuroprotective Efficacy of Quinazoline Type Phosphodiesterase-7 Inhibitors in Cellular Cultures and Experimental Stroke Model. Eur. J. Med. Chem. 2012, 47, 175–185. [Google Scholar] [CrossRef]
- Lee, B.H.; Choi, M.J.; Jo, M.N.; Seo, H.J.; Nah, S.Y.; Cho, Y.S.; Nam, G.; Pae, A.N.; Rhim, H.; Choo, H. Quinazolindione Derivatives as Potent 5-HT3A Receptor Antagonists. Bioorg. Med. Chem. 2009, 17, 4793–4796. [Google Scholar] [CrossRef]
- Rzasa, R.M.; Kaller, M.R.; Liu, G.; Magal, E.; Nguyen, T.T.; Osslund, T.D.; Powers, D.; Santora, V.J.; Viswanadhan, V.N.; Wang, H.L.; et al. Structureactivity Relationships of 3,4-dihydro-1H-quinazolin-2-one Derivatives as Potential CDK5 Inhibitors. Bioorg. Med. Chem. 2007, 15, 6574–6595. [Google Scholar] [CrossRef] [PubMed]
- Linder, J.; Huang, M.E.; Steinman, R.; Gonzales; Stafford, R. Fluoroquinolone Prescribing in The United States: 1995 to 2002. Am. J. Med. 2005, 118, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Frazee, B.W.; Lynn, J.; Charlebois, E.D.; Lambert, L.; Lowery, D.; Perdreau-Remington, F. High prevalence of methicillin-resistant Staphylococcus aureus in emergency department skin and soft tissue infections. Ann. Emerg. Med. 2005, 45, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Fridkin, S.K.; Hageman, J.C.; Morrison, M.; Sanza, L.T.; Como-Sabetti, K.; Jernigan, J.A.; Harriman, K.; Harrison, L.H.; Lynfield, R.; Farley, M.M. Active Bacterial Core Surveillance Program of the Emerging Infections Program. Engl. J. Med. 2005, 352, 1436–1444. [Google Scholar] [CrossRef] [PubMed]
- Moran, G.J.; Amii, R.N.; Abrahamian, F.M.; Talan, D.A. Methicillin-resistant Staphylococcus aureus in community-acquired skin infections. Emerg. Infect. Dis. 2005, 11, 928–930. [Google Scholar] [CrossRef] [Green Version]
- Oppegard, L.M.; Schwanz, H.A.; Towle, T.R.; Kerns, R.J.; Hiasa, H. Fluoroquinolones Stimulate The DNA Cleavage Activity of Topoisomerase IV by Promoting The Binding of Mg(2+) to The Second Metal Binding Site. Biochim. Biophys. Acta 1860, 3, 569–575. [Google Scholar]
- El-Essawy, F.A.; Boshta, N.M.; Alotaibi, M.A.; Elsayed, M.S.; Tarabees, R.; Saleh, E.A. Construction of 1,3-disubstituted 4-oxo-1,4-dihydroquinolines as A Potential Antibacterial Agents. Res. Chem. Intermed. 2016, 42, 8157–8174. [Google Scholar] [CrossRef]
- Li, P.; Zhan, C.; Zhang, S.; Ding, X.; Guo, F.; He, S.; Yao, J. Alkali Metal Cations Control over Nucleophilic Substitutions on Aromatic Fused Pyrimidine-2,4-[1H,3H]-diones: Towards New PNA Monomers. Tetrahedron 2012, 68, 8908–8915. [Google Scholar] [CrossRef]
- Ali, S.I.; Mohamed, A.A.; Sameeh, M.Y.; Darwesh, O.M.; Abd El-Razik, T.M. Gamma-Irradiation Affects Volatile Oil Constituents, Fatty Acid Composition and Antimicrobial Activity of Fennel (Foeniculum vulgare) Seeds Extract. Pharm. Biol. Chem. Sci. 2016, 7, 524–532. [Google Scholar]
- Darwesh, O.M.; Barakat, K.M.; Mattar, M.Z.; Sabae, S.Z.; Hassan, S.H. Production of Antimicrobial Blue Green Pigment Pyocyanin by Marine Pseudomonas Aeruginosa. Biointerface Appl. Chem. 2019, 9, 4334–4339. [Google Scholar]
- Kheiralla, Z.H.; Hewedy, M.A.; Mohammed, H.R.; Darwesh, O.M. Isolation of Pigment Producing Actinomycetes from Rhizosphere Soil and Application of It in Textiles Dyeing. Pharm. Biol. Chem. Sci. 2016, 7, 2128–2136. [Google Scholar]
- Abdelhameed, R.M.; El-Sayed, H.A.; El-Shahat, M.; El-Sayed, A.A.; Darwesh, O.M. Novel Triazolothiadiazole and Triazolothiadiazine Derivatives Containing Pyridine Moiety: Design, Synthesis, Bactericidal and Fungicidal Activities. Curr. Bioact. Compd. 2018, 14, 169–179. [Google Scholar] [CrossRef]
- Mohamed, A.A.; Ali, S.I.; Darwesh, O.M.; El-Hallouty, S.M.; Sameeh, M.Y. Chemical Compositions, Potential Cytotoxic and Antimicrobial Activities of Nitraria Retusa Methanolic Extract Sub-fractions. Int. J. Toxicol. Pharmacol. Res. 2015, 7, 204–212. [Google Scholar]
- Sultan, Y.Y.; Ali, M.A.; Darwesh, O.M.; Embaby, M.A.; Marrez, D.A. Influence of Nitrogen Source in Culture Media on Antimicrobial Activity of Microcoleus lacustris and Oscillatoria rubescens. Res. J. Pharm. Biol. Chem. Sci. 2016, 7, 1444–1452. [Google Scholar]
- Hassanein, H.H.; Ebraheem, E.; El Ghandour, S. Synthesis of some quinazolinones of potential anticonvulsant activity. Al-Azhar J. Pharm. Sci. 1998, 22, 35–47. [Google Scholar]
- Süsse, M.; Johne, S. Chinazolincarbonsäuren, 10. Mitt. Synthese von 1-Methyl-2,4-dioxo-chinazolin-3-yl-essigsäure, 2,4-Dioxo-chinazolin-1-yl-essigsäuren, 2,4-Dioxo-1,3-chinazolindiessigsäuren und deren Estern. Chem. Mon. 1987, 118, 71–79. [Google Scholar] [CrossRef]
- Darwesh, O.M.; Elshahawy, I.E. Silver Nanoparticles Inactivate Sclerotial Formation in Controlling White Rot Disease in Onion and Garlic Caused by The Soil Borne Fungus Stromatinia Cepivora. Eur. J. Plant Pathol. 2021, 160, 917–934. [Google Scholar] [CrossRef]
Sample | S. aureus | L. monocytogenes | E. coli | S. typhi | C. albicans |
---|---|---|---|---|---|
MICs mg/mL, (IZ mm) | MICs mg/mL, (IZ mm) | MICs mg/mL, (IZ mm) | MICs mg/mL, (IZ mm) | MICs mg/mL, (IZ mm) | |
Control: DMSO | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
3 | >100 | >100 | >100 | >100 | 80 (11) |
7 | >100 | >100 | >100 | >100 | >100 |
8a | >100 | >100 | >100 | >100 | >100 |
8b | >100 | >100 | >100 | >100 | >100 |
9a | >100 | >100 | >100 | >100 | >100 |
9b | >100 | >100 | >100 | >100 | 80 (11) |
10a | >100 | >100 | >100 | >100 | >100 |
10b | >100 | >100 | >100 | >100 | >100 |
10c | >100 | >100 | >100 | >100 | >100 |
11a | >100 | >100 | >100 | >100 | >100 |
11b | >100 | >100 | >100 | >100 | >100 |
11c | >100 | >100 | >100 | >100 | >100 |
12b | >100 | >100 | >100 | >100 | >100 |
13 | 90 (9) | >100 | 65 (15) | >100 | 80 (11) |
14a | 75 (12) | >100 | >100 | >100 | 75 (12) |
14b | 70 (13) | >100 | >100 | >100 | 90 (9) |
15 | 80 (11) | >100 | 75 (12) | >100 | 77 (10) |
16 | >100 | >100 | >100 | >100 | >100 |
Ampicillin | (25) | (20) | (16) | (19) | (9) |
Vancomycin | (14) | (15) | (15) | (17) | (15) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boshta, N.M.; El-Essawy, F.A.; Alshammari, M.B.; Noreldein, S.G.; Darwesh, O.M. Discovery of Quinazoline-2,4(1H,3H)-Dione Derivatives as Potential Antibacterial Agent: Design, Synthesis, and Their Antibacterial Activity. Molecules 2022, 27, 3853. https://doi.org/10.3390/molecules27123853
Boshta NM, El-Essawy FA, Alshammari MB, Noreldein SG, Darwesh OM. Discovery of Quinazoline-2,4(1H,3H)-Dione Derivatives as Potential Antibacterial Agent: Design, Synthesis, and Their Antibacterial Activity. Molecules. 2022; 27(12):3853. https://doi.org/10.3390/molecules27123853
Chicago/Turabian StyleBoshta, Nader M., Farag A. El-Essawy, Mohammed B. Alshammari, Safaa G. Noreldein, and Osama M. Darwesh. 2022. "Discovery of Quinazoline-2,4(1H,3H)-Dione Derivatives as Potential Antibacterial Agent: Design, Synthesis, and Their Antibacterial Activity" Molecules 27, no. 12: 3853. https://doi.org/10.3390/molecules27123853
APA StyleBoshta, N. M., El-Essawy, F. A., Alshammari, M. B., Noreldein, S. G., & Darwesh, O. M. (2022). Discovery of Quinazoline-2,4(1H,3H)-Dione Derivatives as Potential Antibacterial Agent: Design, Synthesis, and Their Antibacterial Activity. Molecules, 27(12), 3853. https://doi.org/10.3390/molecules27123853