Screening of Contaminants of Emerging Concern in Surface Water and Wastewater Effluents, Assisted by the Persistency-Mobility-Toxicity Criteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Prioritization of CECs Based on PMT Criteria
- vPvM: all the sources indicate that these compounds are vP and vM. T was not investigated, since the fact of being vPvM indicate that they are already of concern (Figure S1)
- PMT: all the sources indicate that these compounds are P, M, and T.
- PM-Pot T: all sources indicates that these compounds are P and M and were classified as Pot T using the Cramer classification scheme.
- Potential PMT: non-concordant results were reported and a conclusion for P and/or M and/or T was obtained.
- Not PMT: all sources indicate that these compounds are either not P and/or not M and/or not T.
2.2. Samples
2.3. Screening Method
2.4. Data Analysis
3. Results and Discussion
3.1. Prioritization
3.2. Sample Preparation and Analytical Considerations
3.3. Screening Results
3.4. Overview on the Most Frequently Detected Contaminants
3.4.1. 1,3-Di-O-Tolylguanidine (DTG) and 1,3-Diphenylguanidine (DPG)
3.4.2. Dodecylbenzene Sulfonate (C12-LAS)
3.4.3. ε-Caprolactam
3.4.4. 4-Nitrophenol (4-NP), Methyl 4-Hydroxybenzoate (Methyl Paraben), and Tributoxyethyl Phosphate (TBEP)
3.4.5. Venlafaxine, o-Desmethylvenlafaxine, and Sulpiride
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Dulio, V.; Van Bavel, B.; Brorström-Lundén, E.; Harmsen, J.; Hollender, J.; Schlabach, M.; Slobodnik, J.; Thomas, K.; Koschorreck, J. Emerging pollutants in the EU: 10 years of NORMAN in support of environmental policies and regulations. Environ. Sci. Eur. 2018, 30, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Loos, R.; Locoro, G.; Comero, S.; Contini, S.; Schwesig, D.; Werres, F.; Balsaa, P.; Gans, O.; Weiss, S.; Blaha, L.; et al. Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water. Water Res. 2010, 44, 4115–4126. [Google Scholar] [CrossRef] [PubMed]
- Neuwald, I.; Muschket, M.; Zahn, D.; Berger, U.; Seiwert, B.; Meier, T.; Kuckelkorn, J.; Strobel, C.; Knepper, T.P.; Reemtsma, T. Filling the knowledge gap: A suspect screening study for 1310 potentially persistent and mobile chemicals with SFC- and HILIC-HRMS in two German river systems. Water Res. 2021, 204, 117645. [Google Scholar] [CrossRef] [PubMed]
- Schymanski, E.L.; Singer, H.P.; Longrée, P.; Loos, M.; Ruff, M.; Stravs, M.A.; Vidal, C.R.; Hollender, J. Strategies to Characterize Polar Organic Contamination in Wastewater: Exploring the Capability of High Resolution Mass Spectrometry. Environ. Sci. Technol. 2014, 48, 1811–1818. [Google Scholar] [CrossRef]
- Zahn, D.; Mucha, P.; Zilles, V.; Touffet, A.; Gallard, H.; Knepper, T.; Frömel, T. Identification of potentially mobile and persistent transformation products of REACH-registered chemicals and their occurrence in surface waters. Water Res. 2019, 150, 86–96. [Google Scholar] [CrossRef]
- Castro, V.; Quintana, J.B.; Carpinteiro, I.; Cobas, J.; Carro, N.; Cela, R.; Rodil, R. Combination of different chromatographic and sampling modes for high-resolution mass spectrometric screening of organic microcontaminants in water. Anal. Bioanal. Chem. 2021, 413, 5607–5618. [Google Scholar] [CrossRef]
- Gago-Ferrero, P.; Krettek, A.; Fischer, S.; Wiberg, K.; Ahrens, L. Suspect Screening and Regulatory Databases: A Powerful Combination To Identify Emerging Micropollutants. Environ. Sci. Technol. 2018, 52, 6881–6894. [Google Scholar] [CrossRef]
- Menger, F.; Ahrens, L.; Wiberg, K.; Gago-Ferrero, P. Suspect screening based on market data of polar halogenated micropollutants in river water affected by wastewater. J. Hazard. Mater. 2021, 401, 123377. [Google Scholar] [CrossRef]
- Hale, S.E.; Arp, H.P.H.; Schliebner, I.; Neumann, M. What’s in a Name: Persistent, Mobile, and Toxic (PMT) and Very Persistent and Very Mobile (vPvM) Substances. Environ. Sci. Technol. 2020, 54, 14790–14792. [Google Scholar] [CrossRef]
- Rüdel, H.; Körner, W.; Letzel, T.; Neumann, M.; Nödler, K.; Reemtsma, T. Persistent, mobile and toxic substances in the environment: A spotlight on current research and regulatory activities. Environ. Sci. Eur. 2020, 32, 1–11. [Google Scholar] [CrossRef]
- European Parliament. Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. Off. J. Eur Union 2006, 49, 1–849. [Google Scholar]
- Strempel, S.; Scheringer, M.; Ng, C.A.; Hungerbühler, K. Screening for PBT Chemicals among the “Existing” and “New” Chemicals of the EU. Environ. Sci. Technol. 2012, 46, 5680–5687. [Google Scholar] [CrossRef] [PubMed]
- Reemtsma, T.; Berger, U.; Arp, H.P.H.; Gallard, H.; Knepper, T.P.; Neumann, M.; Quintana, J.B.; de Voogt, P. Mind the Gap: Persistent and Mobile Organic Compounds—Water Contaminants That Slip Through. Environ. Sci. Technol. 2016, 50, 10308–10315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neumann, M.S.I. Protecting the Sources Of Our Drinking Water: The Criteria for Identifying Persistent, Mobile, and Toxic (PMT) Substances and Very Persistent, and Very Mobile (vPvM) Substances Under the EU Chemical Legislation REACH. UBA Texte 127/2019; German Environmental Agency (UBA): Dessau-Roßlau, Germany, 2019; ISSN 1862-4804. Available online: https://www.umweltbundesamt.de/en/publikationen/protecting-the-sources-of-our-drinking-water-the (accessed on 2 November 2021).
- Hale, S.E.; Arp, H.P.H.; Schliebner, I.; Neumann, M. Persistent, mobile and toxic (PMT) and very persistent and very mobile (vPvM) substances pose an equivalent level of concern to persistent, bioaccumulative and toxic (PBT) and very persistent and very bioaccumulative (vPvB) substances under REACH. Environ. Sci. Eur. 2020, 32, 155. [Google Scholar] [CrossRef]
- Arp, H.P.H.; Brown, T.N.; Berger, U.; Hale, S.E. Ranking REACH registered neutral, ionizable and ionic organic chemicals based on their aquatic persistency and mobility. Environ. Sci. Process. Impacts 2017, 19, 939–955. [Google Scholar] [CrossRef]
- Nödler, K.H.O.; Scheurer, M.; Storck, F.R.; Brauch, H.-J. Selektion von für die Wasserversorgung Relevanten Prioritären Stoffen und Erarbeitung Einer Stoffliste; Abschlussbericht W 201515; DVGW Deutscher Verein des Gas-und Wasserfaches e. V.: Bonn, Germany, 2018. [Google Scholar]
- Montes, R.; Aguirre, J.; Vidal, X.; Rodil, R.; Cela, R.; Quintana, J.B. Screening for Polar Chemicals in Water by Trifunctional Mixed-Mode Liquid Chromatography–High Resolution Mass Spectrometry. Environ. Sci. Technol. 2017, 51, 6250–6259. [Google Scholar] [CrossRef]
- Montes, R.; Rodil, R.; Cela, R.; Quintana, J.B. Determination of Persistent and Mobile Organic Contaminants (PMOCs) in Water by Mixed-Mode Liquid Chromatography–Tandem Mass Spectrometry. Anal. Chem. 2019, 91, 5176–5183. [Google Scholar] [CrossRef]
- Schulze, S.; Zahn, D.; Montes, R.; Rodil, R.; Quintana, J.B.; Knepper, T.P.; Reemtsma, T.; Berger, U. Occurrence of emerging persistent and mobile organic contaminants in European water samples. Water Res. 2019, 153, 80–90. [Google Scholar] [CrossRef]
- Zahn, D.; Neuwald, I.J.; Knepper, T.P. Analysis of mobile chemicals in the aquatic environment—Current capabilities, limitations and future perspectives. Anal. Bioanal. Chem. 2020, 412, 4763–4784. [Google Scholar] [CrossRef]
- Bieber, S.; Greco, G.; Grosse, S.; Letzel, T. RPLC-HILIC and SFC with Mass Spectrometry: Polarity-Extended Organic Molecule Screening in Environmental (Water) Samples. Anal. Chem. 2017, 89, 7907–7914. [Google Scholar] [CrossRef]
- Minkus, S.; Grosse, S.; Bieber, S.; Veloutsou, S.; Letzel, T. Optimized hidden target screening for very polar molecules in surface waters including a compound database inquiry. Anal. Bioanal. Chem. 2020, 412, 4953–4966. [Google Scholar] [CrossRef] [PubMed]
- European Council. Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending Directive 2000/60/EC of the European Parliament and of the Council. Off. J. Eur Union 2008, 348, 84–97. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32008L0105 (accessed on 2 November 2021).
- European Council. Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Off. J. Eur Union 2013, 226, 1–17. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32013L0039 (accessed on 2 November 2021).
- Commission Implementing Decision (EU) 2015/495 of 20 March 2015 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council (notified under document C(2015) 1756). Off. J. Eur Union 2015, 78, 40–42. Available online: http://data.europa.eu/eli/dec_impl/2015/495/oj (accessed on 2 November 2021).
- Commission Implementing Decision (EU) 2018/840 of 5 June 2018 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council and repealing Commission Implementing Decision (EU) 2015/495 (notified under document C(2018) 3362). Off. J. Eur Union 2018, 141, 9–12. Available online: http://data.europa.eu/eli/dec_impl/2018/840/oj (accessed on 2 November 2021).
- Office fédéral de l’environnement, Division Eaux (OFEV). Rapport Explificatif Concernant la Modification de l’ordonnance sur la Protection des Eaux. Référence/dossier: M473-0796. 2014. Available online: https://www.adcv.ch/files/1461223161-fehler-oeaux_rapport-expl_fr-5004.pdf (accessed on 8 November 2021).
- ECHA. Candidate List of Substances of Very High Concern for Authorisation. European Chemicals Agency (ECHA). 2019. Available online: https://echa.europa.eu/es/candidate-list-table (accessed on 3 June 2021).
- ECHA. List of Substances Included in Annex XIV of REACH (“Authorisation List”). European Chemicals Agency (ECHA). 2019. Available online: https://echa.europa.eu/es/authorisation-list (accessed on 3 June 2021).
- OSPAR. OSPAR List of Chemicals for Priority Action; OSPAR: London, UK, 2010; Available online: https://www.ospar.org/work-areas/hasec/hazardous-substances/priority-action (accessed on 3 June 2021).
- EPA. Chemical Substances Undergoing Prioritization. 2019. Available online: https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/prioritizing-existing-chemicals-risk-evaluation#final (accessed on 15 September 2021).
- NORMAN. Europe-wide Prioritisation of 966 NORMAN Substances as of 25 July 2016–Combined freshwater/marine water with Data from 2009–2016. 2017. Available online: https://www.norman-network.com/nds/prioritisation/ (accessed on 18 June 2021).
- Arp, H.P.H.; Hale, S.E. REACH: Improvement of Guidance and Methods for the Identification and Assessment of PMT/vPvM Substances. 2019. Available online: https://www.umweltbundesamt.de/en/publikationen/reach-improvement-of-guidance-methods-for-the (accessed on 23 November 2020).
- Chemaxon. JChem for Office. Available online: https://chemaxon.com/products/jchem-for-office (accessed on 6 April 2019).
- EPA. Ecological Structure Activity Relationships (ECOSAR) Software. Available online: https://www.epa.gov/tsca-screening-tools/ecological-structure-activity-relationships-ecosar-predictive-model (accessed on 6 April 2019).
- OECD. QSAR Toolbox. Available online: https://qsartoolbox.org/ (accessed on 6 April 2019).
- Neumann, M.; Schliebner, I. A Revised Proposal for Implementing Criteria and an Assessment Procedure to Identify Persistent, Mobile and Toxic (PMT) and Very Persistent, Very Mobile (VPvM) Substances under REACH. In Protecting the Sources of Our Drinking Water; German Environmental Agency: Dessau-Rosslau, Germany, 2017. [Google Scholar]
- Sigmund, G.; Arp, H.P.H.; Aumeier, B.M.; Bucheli, T.D.; Chefetz, B.; Chen, W.; Droge, S.T.J.; Endo, S.; Escher, B.I.; Hale, S.E.; et al. Sorption and Mobility of Charged Organic Compounds: How to Confront and Overcome Limitations in Their Assessment. Environ. Sci. Technol. 2022, 56, 4702–4710. [Google Scholar] [CrossRef]
- EPA. CompTox Chemicals Dashboard. Available online: https://comptox.epa.gov/dashboard (accessed on 7 April 2019).
- EFSA Scientific Committee; More, S.J.; Bampidis, V.; Benford, D.; Bragard, C.; I Halldorsson, T.; Hernández-Jerez, A.F.; Bennekou, S.H.; Koutsoumanis, K.P.; Machera, K.; et al. Guidance on the use of the Threshold of Toxicological Concern approach in food safety assessment. EFSA J. 2019, 17, e05708. [Google Scholar] [CrossRef] [Green Version]
- Wilson, E.W.; Castro, V.; Chaves, R.; Espinosa, M.; Rodil, R.; Quintana, J.B.; Vieira, M.N.; Santos, M.M. Using zebrafish embryo bioassays combined with high-resolution mass spectrometry screening to assess ecotoxicological water bodies quality status: A case study in Panama rivers. Chemosphere 2021, 272, 129823. [Google Scholar] [CrossRef]
- Schymanski, E.L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H.P.; Hollender, J. Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environ. Sci. Technol. 2014, 48, 2097–2098. [Google Scholar] [CrossRef]
- Johannessen, C.; Helm, P.; Lashuk, B.; Yargeau, V.; Metcalfe, C.D. The Tire Wear Compounds 6PPD-Quinone and 1,3-Diphenylguanidine in an Urban Watershed. Archives Environ. Contamination Toxicol. 2022, 82, 171–179. [Google Scholar] [CrossRef]
- Seiwert, B.; Klöckner, P.; Wagner, S.; Reemtsma, T. Source-related smart suspect screening in the aqueous environment: Search for tire-derived persistent and mobile trace organic contaminants in surface waters. Anal. Bioanal. Chem. 2020, 412, 4909–4919. [Google Scholar] [CrossRef] [PubMed]
- Sieira, B.J.; Montes, R.; Touffet, A.; Rodil, R.; Cela, R.; Gallard, H.; Quintana, J.B. Chlorination and bromination of 1,3-diphenylguanidine and 1,3-di-o-tolylguanidine: Kinetics, transformation products and toxicity assessment. J. Hazard. Mater. 2019, 385, 121590. [Google Scholar] [CrossRef] [PubMed]
- Freeling, F.; Alygizakis, N.; von der Ohe, P.C.; Slobodnik, J.; Oswald, P.; Aalizadeh, R.; Cirka, L.; Thomaidis, N.S.; Scheurer, M. Occurrence and potential environmental risk of surfactants and their transformation products discharged by wastewater treatment plants. Sci. Total Environ. 2019, 681, 475–487. [Google Scholar] [CrossRef] [PubMed]
- Camacho-Muñoz, D.; Martín, J.; Santos, J.L.; Aparicio, I.; Alonso, E. Occurrence of surfactants in wastewater: Hourly and seasonal variations in urban and industrial wastewaters from Seville (Southern Spain). Sci. Total Environ. 2014, 468-469, 977–984. [Google Scholar] [CrossRef]
- Franco-Belussi, L.; Jones-Costa, M.; Salla, R.F.; Souza, B.F.S.; Pinto-Vidal, F.A.; Oliveira, C.R.; Silva-Zacarin, E.C.M.; Abdalla, F.C.; Duarte, I.C.S.; De Oliveira, C. Hepatotoxicity of the anionic surfactant linear alkylbenzene sulphonate (LAS) in bullfrog tadpoles. Chemosphere 2021, 266, 129014. [Google Scholar] [CrossRef]
- González-Gaya, B.; Lopez-Herguedas, N.; Santamaria, A.; Mijangos, F.; Etxebarria, N.; Olivares, M.; Prieto, A.; Zuloaga, O. Suspect screening workflow comparison for the analysis of organic xenobiotics in environmental water samples. Chemosphere 2021, 274, 129964. [Google Scholar] [CrossRef]
- Ramos, R.L.; Moreira, V.R.; Lebron, Y.A.; Santos, A.V.; Santos, L.V.; Amaral, M.C. Phenolic compounds seasonal occurrence and risk assessment in surface and treated waters in Minas Gerais—Brazil. Environ. Pollut. 2021, 268, 115782. [Google Scholar] [CrossRef]
- González-Mariño, I.; Quintana, J.B.; Rodríguez, I.; Cela, R. Evaluation of the occurrence and biodegradation of parabens and halogenated by-products in wastewater by accurate-mass liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-QTOF-MS). Water Res. 2011, 45, 6770–6780. [Google Scholar] [CrossRef]
- Cetinić, K.A.; Grgić, I.; Previšić, A.; Rožman, M. The curious case of methylparaben: Anthropogenic contaminant or natural origin? Chemosphere 2022, 294, 133781. [Google Scholar] [CrossRef]
- Wei, F.; Mortimer, M.; Cheng, H.; Sang, N.; Guo, L.-H. Parabens as chemicals of emerging concern in the environment and humans: A review. Sci. Total Environ. 2021, 778, 146150. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, Q.; Yan, X.; Wang, Y.; Liao, C.; Jiang, G. A review of organophosphate flame retardants and plasticizers in the environment: Analysis, occurrence and risk assessment. Sci. Total Environ. 2020, 731, 139071. [Google Scholar] [CrossRef] [PubMed]
- AEMPS. Utilización de Medicamentos Antidepresivos en España Durante el Periodo 2000–2013. U/AD/V1/14012015. 2015. Available online: https://www.aemps.gob.es/medicamentosUsoHumano/observatorio/docs/antidepresivos-2000-2013.pdf?x93256 (accessed on 3 February 2022).
- CIMA. Medicine Online Information Center of AEMPS; CIMA: Madrid, Spain, 2020. [Google Scholar]
- Commission Implementing Decision (EU) 2020/1161 of 4 August 2020 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council (notified under document number C(2020) 5205) (Text with EEA relevance). Off. J. Eur Union 2020, 257, 32–35. Available online: http://data.europa.eu/eli/dec_impl/2020/1161/oj (accessed on 15 February 2022).
- WHO. ATC/DDD Index 2022 from the World Health Organization; WHO: Geneva, Switzerland, 2022.
- Sui, Q.; Wang, B.; Zhao, W.; Huang, J.; Yu, G.; Deng, S.; Qiu, Z.; Lu, S. Identification of priority pharmaceuticals in the water environment of China. Chemosphere 2012, 89, 280–286. [Google Scholar] [CrossRef] [PubMed]
Name | Cas | Production (Tons/Year) (1) | Main Uses | LogD pH7.4 (2) | Freq (%) March | Freq (%) July | Classification (3) |
---|---|---|---|---|---|---|---|
1,3-di-o-tolylguanidine (DTG) | 97-39-2 | 100–1000 | Vulcanization reagent | 2.27 | 100 | 66 | PM-Pot T |
1,3-diphenylguanidine (DPG) | 102-06-7 | 1000–10,000 | Vulcanization reagent | 2.89 | 38 | 80 | PM-Pot T |
Dodecylbenzenesulfonic acid (C12-LAS) | 18777-53-2 | 1000–10,000 * | Manufacture washing–cleaning products | 4.02 | 100 | 10 | PM-Pot T |
ε-caprolactam | 105-60-2 | 1,000,000–10,000,000 | Manufacture polymers, textiles, coatings, soaps | 0.31 | 100 | 80 | not P |
Methyl 4-hydroxybenzoate (Methyl paraben) | 99-76-3 | 1000–10,000 | Cosmetical and personal care products | 1.64 | 85 | 69 | not P |
Tributoxyethyl phosphate (TBEP) | 78-51-3 | 1000–10,000 | Manufacture polymers and textiles | 3.94 | 73 | 100 | PMT |
4-Nitrophenol (4NP) | 100-02-7 | Unavailable | Chemicals manufacturing | 1.12 | 46 | 90 | PMT |
Venlafaxine | 93413-69-5 | Unavailable | Pharmaceutical | 1.22 | 69 | 80 | PMT |
O-desmethylvenlafaxine | 93413-62-8 | Unavailable | Pharmaceutical metabolite | 1.07 | 62 | 90 | PMT |
Sulpiride | 15676-16-1 | Unavailable | Pharmaceutical | −0.7 | 81 | 100 | PMT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montes, R.; Méndez, S.; Carro, N.; Cobas, J.; Alves, N.; Neuparth, T.; Santos, M.M.; Quintana, J.B.; Rodil, R. Screening of Contaminants of Emerging Concern in Surface Water and Wastewater Effluents, Assisted by the Persistency-Mobility-Toxicity Criteria. Molecules 2022, 27, 3915. https://doi.org/10.3390/molecules27123915
Montes R, Méndez S, Carro N, Cobas J, Alves N, Neuparth T, Santos MM, Quintana JB, Rodil R. Screening of Contaminants of Emerging Concern in Surface Water and Wastewater Effluents, Assisted by the Persistency-Mobility-Toxicity Criteria. Molecules. 2022; 27(12):3915. https://doi.org/10.3390/molecules27123915
Chicago/Turabian StyleMontes, Rosa, Sandra Méndez, Nieves Carro, Julio Cobas, Nelson Alves, Teresa Neuparth, Miguel Machado Santos, José Benito Quintana, and Rosario Rodil. 2022. "Screening of Contaminants of Emerging Concern in Surface Water and Wastewater Effluents, Assisted by the Persistency-Mobility-Toxicity Criteria" Molecules 27, no. 12: 3915. https://doi.org/10.3390/molecules27123915
APA StyleMontes, R., Méndez, S., Carro, N., Cobas, J., Alves, N., Neuparth, T., Santos, M. M., Quintana, J. B., & Rodil, R. (2022). Screening of Contaminants of Emerging Concern in Surface Water and Wastewater Effluents, Assisted by the Persistency-Mobility-Toxicity Criteria. Molecules, 27(12), 3915. https://doi.org/10.3390/molecules27123915