Sustainable Protocol for the Synthesis of 2′,3′-Dideoxynucleoside and 2′,3′-Didehydro-2′,3′-dideoxynucleoside Derivatives
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General
3.2. General Procedure for Enzymatic Acylation of 1 Synthesis of 2
3.3. Synthesis of 5
3.4. Synthesis of 6
3.5. Synthesis of 7
3.5.1. Method A: Bu3SnH
3.5.2. Method B: (Me3Si)3SiH
3.6. Synthesis of 8
3.6.1. Method A: TBAF
3.6.2. Method B: (–)-CSA
3.7. Synthesis of 9
3.7.1. Synthesis of Zalcitabine (9c)
3.7.2. Synthesis of Didanosine (9f)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- World Health Organization. Number of Deaths due to HIV/AIDS. Available online: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/number-of-deaths-due-to-hiv-aids (accessed on 19 June 2022).
- Mitsuya, H.; Weinhold, K.; Furman, P.A.; St. Clair, M.H.; Lehrman, S.N.; Gallo, R.C.; Bolognesi, D.; Barry, D.W.; Broder, S. 3′-Azido-3′-deoxythymidine (BW A509U): An antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphadenopathy-associated virus in vitro. Proc. Natl. Acad. Sci. USA 1985, 82, 7096–7100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yates, M.K.; Seley-Radtke, K.L. The evolution of antiviral nucleoside analogues: A review for chemists and non-chemists. Part II: Complex modifications to the nucleoside scaffold. Antivir. Res. 2019, 162, 5–21. [Google Scholar] [CrossRef] [PubMed]
- Seley-Radtke, K.L.; Yates, M.K. The evolution of nucleoside analogue antivirals: A review for chemists and non-chemists. Part 1: Early structural modifications to the nucleoside scaffold. Antivir. Res. 2018, 154, 66–86. [Google Scholar] [CrossRef] [PubMed]
- Wilson, L.J.; Liotta, D. A general method for controlling glycosylation stereochemistry in the synthesis of 2′-deoxyribose nucleosides. Tetrahedron Lett. 1990, 31, 1815–1818. [Google Scholar] [CrossRef]
- Chu, C.K.; Babu, J.R.; Beach, J.W.; Ahn, S.K.; Huang, H.; Jeong, L.S.; Lee, S.J. A highly stereoselective glycosylation of 2-(phenylselenenyl)-2,3-dideoxyribose derivative with thymine: Synthesis of 3′-deoxy-2′,3′-didehydrothymidine and 3′-deoxythymidine. J. Org. Chem. 1990, 55, 1418–1420. [Google Scholar] [CrossRef]
- Beach, J.W.; Kim, H.O.; Jeong, L.S.; Nampalli, S.; Islam, Q.; Ahn, S.K.; Babu, J.R.; Chu, C.K. A highly stereoselective synthesis of anti-HIV 2′,3′-dideoxy- and 2′,3′-didehydro-2′,3′-dideoxynucleosides. J. Org. Chem. 1992, 57, 3887–3894. [Google Scholar] [CrossRef]
- McDonald, F.E.; Gleason, M.M. Asymmetric Syntheses of Stavudine (d4T) and Cordycepin by Cycloisomerization of Alkynyl Alcohols to Endocyclic Enol Ethers. Angew. Chem. Int. Ed. Engl. 1995, 34, 350–352. [Google Scholar] [CrossRef]
- Diaz, Y.; El-Laghdach, A.; Matheu, M.S.; Castillon, S. Stereoselective Synthesis of 2′,3′-Dideoxynucleosides by Addition of Selenium Electrophiles to Glycals. A Formal Synthesis of D4T from 2-Deoxyribose. J. Org. Chem. 1997, 62, 1501–1505. [Google Scholar] [CrossRef]
- Chiacchio, U.; Rescifina, A.; Iannazzo, D.; Romeo, G. Stereoselective Synthesis of 2′-Amino-2′,3′-dideoxynucleosides by Nitrone 1,3-Dipolar Cycloaddition: A New Efficient Entry Toward d4T and Its 2-Methyl Analogue. J. Org. Chem. 1999, 64, 28–36. [Google Scholar] [CrossRef]
- Álvarez de Cienfuegos, L.; Mota, A.J.; Rodríguez, C.; Robles, R. Highly efficient synthesis of 2′,3′-didehydro-2′,3′-dideoxy-β-nucleosides through a sulfur-mediated reductive 2′,3′-trans-elimination. From iodomethylcyclopropanes to thiirane analogs. Tetrahedron Lett. 2005, 46, 469–473. [Google Scholar] [CrossRef]
- Shiragamai, H.; Irie, Y.; Shirae, H.; Yokozeki, K.; Yasuda, N. Synthesis of 2′, 3′-dideoxyuridine via deoxygenation of 2′, 3′-O-(methoxymethylene) uridine. J. Org. Chem. 1988, 53, 5170–5173. [Google Scholar] [CrossRef]
- Mansuri, M.M.; Starrett, J.E.; Wos, J.A.; Tortolani, D.R.; Brodfuehrer, P.R.; Howell, H.G.; Martin, J.C. Preparation of 1-(2,3-dideoxy-.beta.-d-glycero-pent-2-enofuranosyl)thymine (d4T) and 2′,3′-dideoxyadenosine (ddA): General methods for the synthesis of 2′,3′-olefinic and 2′,3′-dideoxy nucleoside analogs active against HIV. J. Org. Chem. 1989, 54, 4780–4785. [Google Scholar] [CrossRef]
- Corey, E.J.; Winter, R.A.E. A new, stereospecific olefin synthesis from 1, 2-diols. J. Am. Chem. Soc. 1963, 85, 2677–2678. [Google Scholar] [CrossRef]
- Corey, E.J.; Hopkins, P.B. A mild procedure for the conversion of 1,2-diols to olefins. Tetrahedron Lett. 1982, 23, 1979–1982. [Google Scholar] [CrossRef]
- Chu, C.K.; Bhadti, V.S.; Doboszewski, B.; Gu, Z.P.; Kosugi, Y.; Pullaiah, K.C.; Van Roey, P. General syntheses of 2′,3′-dideoxynucleosides and 2′,3′-didehydro-2′,3′-dideoxynucleosides. J. Org. Chem. 1989, 54, 2217–2225. [Google Scholar] [CrossRef]
- Dudycz, L.W. Synthesis of 2′,3′-Dideoxyuridine Via the Corey-Winter Reaction. Nucleosides Nucleotides 1989, 8, 35–41. [Google Scholar] [CrossRef]
- Manchand, P.S.; Belica, P.S.; Holman, M.J.; Huang, T.N.; Maehr, H.; Tam, S.Y.K.; Yang, R.T. Syntheses of the anti-AIDS drug 2′,3′-dideoxycytidine from cytidine. J. Org. Chem. 1992, 57, 3473–3478. [Google Scholar] [CrossRef]
- Barton, D.H.R.; Jang, D.O.; Jaszberenyi, J.C. Towards dideoxynucleosides: The silicon approach. Tetrahedron Lett. 1991, 32, 2569–2572. [Google Scholar] [CrossRef]
- Barton, D.H.R.; Jang, D.O.; Jaszberenyi, J.C. Radical mono- and dideoxygenations with the triethylsilane + benzoyl peroxide system. Tetrahedron Lett. 1991, 32, 7187–7190. [Google Scholar] [CrossRef]
- Jang, D.O.; Cho, D.H. Radical deoxygenation of alcohols and vicinal diols with N-ethylpiperidine hypophosphite in water. Tetrahedron Lett. 2002, 43, 5921–5924. [Google Scholar] [CrossRef]
- Oba, M.; Suyama, M.; Shimamura, A.; Nishiyama, K. Radical-based transformation of vicinal diols to olefins via thioxocarbamate derivatives: A simple approach to 2′,3′-didehydro-2′,3′-dideoxynucleosides. Tetrahedron Lett. 2003, 44, 4027–4029. [Google Scholar] [CrossRef]
- Luzzio, F.A.; Menes, M.E. A Facile Route to Pyrimidine-Based Nucleoside Olefins: Application to the Synthesis of d4T (Stavudine). J. Org. Chem. 1994, 59, 7267–7272. [Google Scholar] [CrossRef]
- Saito, I.; Ikehira, H.; Kasatani, R.; Watanabe, M.; Matsuura, T. Photoinduced reactions. 167. Selective deoxygenation of secondary alcohols by photosensitized electron-transfer reaction. A general procedure for deoxygenation of ribonucleosides. J. Am. Chem. Soc. 1986, 108, 3115–3117. [Google Scholar] [CrossRef]
- Shen, B.; Bedore, M.W.; Sniady, A.; Jamison, T.F. Continuous flow photocatalysis enhanced using an aluminum mirror: Rapid and selective synthesis of 2′-deoxy and 2′,3′-dideoxynucleosides. Chem. Commun. 2012, 48, 7444–7446. [Google Scholar] [CrossRef]
- Greenberg, S.; Moffatt, J.G. Reactions of 2-acyloxyisobutyryl halides with nucleosides. I. Reactions of model diols and of uridine. J. Am. Chem. Soc. 1973, 95, 4016–4025. [Google Scholar] [CrossRef]
- Russell, A.F.; Greenberg, S.; Moffatt, J.G. Reactions of 2-acyloxyisobutyryl halides with nucleosides. II. Reactions of adenosine. J. Am. Chem. Soc. 1973, 95, 4025–4030. [Google Scholar] [CrossRef]
- Jain, T.C.; Jenkins, I.D.; Russell, A.F.; Verheyden, J.P.H.; Moffatt, J.G. Reactions of 2-Acyloxyisobutyryl Halides with Nucleosides. 1V.l A Facile Synthesis of 2,3-Unsaturated Nucleosides Using Chromous Acetate. J. Org. Chem. 1974, 39, 30–34. [Google Scholar] [CrossRef]
- Mengel, R.; Seifert, J.M. Über einen neuen Zugang zu 2′,3′-ungesättigten Nucleosiden—Eine milde Umwandlung vicinaler cis-Diole in Olefine. Tetrahedron Lett. 1977, 48, 4203–4206. [Google Scholar] [CrossRef]
- Robins, M.J.; Wilson, J.S.; Madej, D.; Low, N.H.; Hansske, F.; Wnuk, S.F. Nucleic Acid-Related Compounds. 88. Efficient Conversions of Ribonucleosides into Their 2′,3′-Anhydro, 2′(and 3′)-Deoxy, 2′,3′-Didehydro-2′,3′-dideoxy, and 2′,3′-Dideoxynucleoside Analogs. J. Org. Chem. 1995, 60, 7902–7908. [Google Scholar] [CrossRef]
- Chen, B.C.; Quinlan, S.L.; Stark, D.R.; Reid, J.G.; Audia, V.H.; George, J.G.; Eisenreich, E.; Brundidge, S.P.; Racha, S.; Spector, R.H. 5′-Benzoyl-2′α-bromo-3′-O-methanesulfonylthymidine: A superior nucleoside for the synthesis of the anti-AIDS drug D4T (Stavudine). Tetrahedron Lett. 1995, 36, 7957–7960. [Google Scholar] [CrossRef]
- Shiragami, H.; Ineyama, T.; Uchida, Y.; Izawa, K. Synthesis of 1-(2,3-Dideoxy-β-d-glycero-pent-2-enofuranosyl)thymine (d4T.; Stavudine) from 5-Methyluridine. Nucleosides Nucleotides 1996, 15, 47–58. [Google Scholar] [CrossRef]
- Chen, B.C.; Quinlan, S.L.; Reid, J.G.; Spector, R.H. A new thymine free synthesis of the anti-AIDS drug d4T via regio/stereo controlled β-elimination of bromoacetates. Tetrahedron Lett. 1998, 39, 729–732. [Google Scholar] [CrossRef]
- Guo, Z.; Sanghvi, Y.S.; Brammer, L.E., Jr.; Hudlicky, T. Synthesis of 2′, 3′-Dideoxy-2′, 3′-didehydro Nucleosides via a Serendipitous Route. Nucleosides Nucleotides Nucleic Acids 2001, 20, 1263–1266. [Google Scholar] [CrossRef]
- Sagandira, C.R.; Akwi, F.M.; Sagandira, M.B.; Watts, P. Multistep Continuous Flow Synthesis of Stavudine. J. Org. Chem. 2021, 86, 13934–13942. [Google Scholar] [CrossRef]
- Gillaizeau, I.; Lagoja, I.M.; Nolan, S.P.; Aucagne, V.; Rozenski, J.; Herdewijn, P.; Agrofoglio, L.A. Straightforward Synthesis of Labeled and Unlabeled Pyrimidine d4Ns via 2′,3′-Diyne seco Analogues through Olefin Metathesis Reactions. Eur. J. Org. Chem. 2003, 2003, 666–671. [Google Scholar] [CrossRef]
- Ewing, D.F.; Glaçon, V.; Mackenzie, G.; Postelb, D.; Len, C. Synthesis of acyclic bis-vinyl pyrimidines: A general route to d4T via metathesis. Tetrahedron 2003, 59, 941–945. [Google Scholar] [CrossRef]
- García, J.; Fernández, S.; Ferrero, M.; Sanghvi, Y.S.; Gotor, V. Novel enzymatic synthesis of levulinyl protected nucleosides useful for solution phase synthesis of oligonucleotides. Tetrahedron Assymetry 2003, 14, 3533–3540. [Google Scholar] [CrossRef]
- Martínez-Montero, S.; Fernández, S.; Sanghvi, Y.S.; Gotor, V.; Ferrero, M. Enzymatic Parallel Kinetic Resolution of Mixtures of d/l 2′-Deoxy and Ribonucleosides: An Approach for the Isolation of β-l-Nucleosides. J. Org. Chem. 2010, 75, 6605–6613. [Google Scholar] [CrossRef]
- Chatgilialoglu, C.; Griller, D.; Lesage, M. Tris(trimethylsilyl)silane. A new reducing agent. J. Org. Chem. 1988, 53, 3641–3642. [Google Scholar] [CrossRef]
- Chatgilialoglu, C. (Me3Si)3SiH: Twenty Years After Its Discovery as a Radical-Based Reducing Agent. Chem. Eur. J. 2008, 14, 2310–2320. [Google Scholar] [CrossRef]
- Brahmachari, G.; Nurjamal, K.; Karmakar, I.; Mandal, M. Camphor-10-Sulfonic Acid (CSA): A Water Compatible Organocatalyst in Organic Transformations. Curr. Organocatal. 2018, 5, 165–181. [Google Scholar] [CrossRef]
- Fehr, M.; Appl, A.; Esdaile, D.J.; Naumann, S.; Schulz, M.; Dahms, I. D-10-camphorsulfonic acid: Safety evaluation. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2020, 858–860, 503257. [Google Scholar] [CrossRef]
- Lu, G.; Wang, D.; Ren, J.; Ke, Y.; Zeng, B.-B. Catalytic removal of tert-butyldimethylsilyl (TBS) ether by PVP-I. Tetrahedron Lett. 2019, 60, 150831. [Google Scholar] [CrossRef]
- Kumar, G.D.K.; Baskaran, S. A Facile, Catalytic, and Environmentally Benign Method for Selective Deprotection of tert-Butyldimethylsilyl Ether Mediated by Phosphomolybdic Acid Supported on Silica Gel. J. Org. Chem. 2005, 70, 4520–4523. [Google Scholar] [CrossRef]
- Santaniello, E.; Ciuffreda, P.; Alessandrini, L. Synthesis of Modified Purine Nucleosides and Related Compounds Mediated by Adenosine Deaminase (ADA) and Adenylate Deaminase (AMPDA). Synthesis 2005, 2005, 509–526. [Google Scholar] [CrossRef]
Entry | Substrate | T (°C) | conc (M) | t (h) | 1 (%) a | 2 (%) a,b | Other Acylated Compounds (%) a |
---|---|---|---|---|---|---|---|
1 | 1ac | 30 | 0.1 | 2 | - | >97 (80) | - |
2 | 1bc | 30 | 0.1 | 2.5 | - | >97 (78) | - |
3 | 1cd | 55 | 0.025 | 54 | 26 | 53 (50) | 21 |
4 | 1dd | 55 | 0.025 | 24 | - | >97 (93) | - |
5 | 1ed | 55 | 0.025 | 48 | 10 | 70 (42) | 20 |
6 | 1fd | 55 | 0.025 | 90 | - | 87 (40) | 13 |
6→7 | 7→8 | ||||||
---|---|---|---|---|---|---|---|
B | 1→5 | 5→6 | Bu3SnH | (Me3Si)3SiH | TBAF | (–)-CSA | 8→9 |
a = U | 93 | 82 | 60 | 65 | 95 | 92 | 82 |
b = T | 85 | 81 | 60 | 75 | 90 | 95 | 87 |
c = C | 91 | 75 | 35 | ND | - | - | 70 a,b |
d = CBz | 80 | 72 | 60 | 40 | 90 | ND | - |
e = A | 85 | 90 | 60 | 77 | 95 | ND | 88 |
f = Hypoxanthine | 80 | 70 | ND | 80 | 75 | ND | 80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-Nieves, V.; Sanghvi, Y.S.; Fernández, S.; Ferrero, M. Sustainable Protocol for the Synthesis of 2′,3′-Dideoxynucleoside and 2′,3′-Didehydro-2′,3′-dideoxynucleoside Derivatives. Molecules 2022, 27, 3993. https://doi.org/10.3390/molecules27133993
Martín-Nieves V, Sanghvi YS, Fernández S, Ferrero M. Sustainable Protocol for the Synthesis of 2′,3′-Dideoxynucleoside and 2′,3′-Didehydro-2′,3′-dideoxynucleoside Derivatives. Molecules. 2022; 27(13):3993. https://doi.org/10.3390/molecules27133993
Chicago/Turabian StyleMartín-Nieves, Virginia, Yogesh S. Sanghvi, Susana Fernández, and Miguel Ferrero. 2022. "Sustainable Protocol for the Synthesis of 2′,3′-Dideoxynucleoside and 2′,3′-Didehydro-2′,3′-dideoxynucleoside Derivatives" Molecules 27, no. 13: 3993. https://doi.org/10.3390/molecules27133993
APA StyleMartín-Nieves, V., Sanghvi, Y. S., Fernández, S., & Ferrero, M. (2022). Sustainable Protocol for the Synthesis of 2′,3′-Dideoxynucleoside and 2′,3′-Didehydro-2′,3′-dideoxynucleoside Derivatives. Molecules, 27(13), 3993. https://doi.org/10.3390/molecules27133993