In Vitro and In Vivo Genotoxicity Assessments and Phytochemical Analysis of the Traditional Herbal Prescription Siryung-Tang
Abstract
:1. Introduction
2. Results
2.1. Genotoxicity Evaluation for SRT
2.1.1. Ames Test
2.1.2. Chromosome Aberration Test Results
2.1.3. Micronucleus Test
2.2. Quality Assessment of SRT by HPLC–PDA
2.2.1. Optimization of HPLC–PDA Conditions for Quality Control Analysis of SRT
2.2.2. Validation of HPLC Method Developed for Quality SRT Control
2.2.3. Quantification of the 12 Marker Analytes in SRT Samples
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. SRT Water Extract Preparation
4.3. Genotoxicity Evaluation for SRT
4.3.1. Ames Test
4.3.2. Chromosome Aberration Test
4.3.3. Micronucleus Test
4.4. HPLC Analysis for Quality Control of SRT
4.4.1. Chemicals and Reagents
4.4.2. Simultaneous Analysis of the 12 Marker Components Using HPLC
4.4.3. System Suitability Test and Method Validation of the Developed HPLC Analytical Method
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Mao, Q.; Xu, J.; Kong, M.; Shen, H.; Zhu, H.; Zhou, S.; Li, S. LC–MS–based metabolomics in traditional Chinese medicine research: Personal experiences. Chin. Herbal Med. 2017, 9, 14–21. [Google Scholar] [CrossRef]
- Liu, S.; Yi, L.Z.; Liang, Y.Z. Traditional Chinese medicine and separation science. J. Sep. Sci. 2008, 31, 2113–2137. [Google Scholar] [CrossRef] [PubMed]
- Yun, H.; Son, J.; Lee, S.; Lee, K.; Park, J. Case report of post-herpetic neuralgia by Siryung-tang (chailing-tang). Korean J. Orient. Physiol. Pathol. 2006, 20, 1779–1784. [Google Scholar]
- Heo, J. Donguibogam; Namsandang: Seoul, Korea, 2007; p. 397. [Google Scholar]
- Saireito. Available online: https://kampo.ca/herbs-formulas/formulas/saireito/ (accessed on 23 August 2021).
- Watanabe, T.; Yamamoto, T.; Yoshida, M.; Fujiwara, K.; Kageyama-Yahara, N.; Kuramoto, H.; Shimada, Y.; Kadowaki, M. The traditional herbal medicine Saireito exerts its inhibitory effect on murine oxazolone-induced colitis via the induction of Th1-polarized immune responses in the mucosal immune system of the colon. Int. Arch. Allergy Immunol. 2010, 151, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Kageyama-Yahara, N.; Wang, P.; Wang, X.; Yamamoto, T.; Kadowaki, M. The inhibitory effect of ergosterol, a bioactive constituent of a traditional Japanese herbal medicine Saireito on the activity of mucosal-type mast cell. Biol. Pharm. Bull. 2010, 33, 142–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Endo, M.; Oikawa, T.; Hatori, T.; Matsumoto, T.; Hasawa, T. Suppression of murine colitis by Kampo medicines, with special reference to the efficacy of Saireito. J. Trad. Med. 2009, 26, 110–121. [Google Scholar]
- Kim, B.H.; Choi, Y.H. Effects of Shiryung-tang extract on the liver injury induced by ethanol in rats. Korean J. Orient. Physiol. Pathol. 2013, 27, 611–616. [Google Scholar]
- Nakagawa, T.; Yokozawa, T.; Terasawa, K. A study of Kampo medicines in a diabetic nephropathy model. J. Trad. Med. 2001, 18, 161–168. [Google Scholar]
- Ohno, I.; Shibasaki, T.; Nakano, H.; Matsuda, H.; Matsumoto, H.; Misawa, T.; Ishimoto, F.; Sakai, O. Effect of Sairei-to on gentamicin nephrotoxicity in rats. Arch. Toxicol. 1993, 67, 145–147. [Google Scholar] [CrossRef] [PubMed]
- Katami, M.; Kuboniwa, H.; Maemura, S.; Yanagisawa, T. Genotoxicity of extracts of Japanese traditional herbal medicines (Kampo). Environ. Mutagen Res. 2002, 24, 1–15. [Google Scholar]
- OECD. Principles of Good Laboratory Practice; Organization for Economic Co-Operation and Development: ENV/MC/CHEM(98)17: Paris, France, 1998. [Google Scholar]
- Kato, S.; Hayashi, S.; Kitahara, Y.; Nagasawa, K.; Aono, H.; Shibata, J.; Utsumi, D.; Amagase, K.; Kadowaki, M. Saireito (TJ-114), a Japanese traditional herbal medicine, reduces 5-fluorouracil-induced intestinal mucositis in mice by inhibiting cytokine-mediated apoptosis in intestinal crypt cells. PLoS ONE 2015, 10, e0116213. [Google Scholar] [CrossRef] [PubMed]
- Oyama, M.; Murata, K.; Ogata, M.; Fujita, N.; Takahashi, R. Saireito improves lymphatic function and prevents UVB-induced acute inflammation and photodamage in HR-1 hairless mice. Evid. Based Complement. Alternat. Med. 2021, 2021, 3707058. [Google Scholar] [CrossRef] [PubMed]
- Phillipson, J.D. Phytochemistry and pharmacology. Phytochemistry 2007, 68, 2960–2972. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Guo, J.; Meng, F.; Liao, H.; Deong, Y.; Huang, Y.; Lei, X.; Liang, C.; Han, R.; Yang, W. Genetic toxicology and safety pharmacological evaluation of forsythin. Evid. Based Complent. Alternat. Med. 2021, 2021, 6610793. [Google Scholar] [CrossRef] [PubMed]
- Ishidate, M. The in vitro chromosomal aberration test using Chinese hamster lung (CHL) fibroblast cells in culture. Prog. Mutat. Res. 1985, 5, 427–432. [Google Scholar]
- Ashby, J. Is there a continuing role for the intraperitoneal injection route of exposure in short-term rodent genotoxicity assays? Mutat. Res. 1985, 156, 239–243. [Google Scholar] [CrossRef]
- Fenech, M. Cytokinesis-block micronucleus cytome assay. Nat. Protoc. 2007, 2, 1084–1104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mortelmans, K.; Zeiger, E. The Ames Salmonella/microsome mutagenicity assay. Mutat. Res. 2000, 455, 29–60. [Google Scholar] [CrossRef]
- Lee, K.H. The Dispensatory on the Visual and Organoleptic Examination of Herbal Medicine; National Institute of Food and Drug Safety Evaluation: Seoul, Korea, 2013; pp. 24–724. [Google Scholar]
- Seo, C.S.; Shin, H.K. Simultaneous determination of 12 marker components in Yeonkyopaedok-san using HPLC–PDA and LC–MS/MS. Appl. Sci. 2020, 10, 1713. [Google Scholar] [CrossRef] [Green Version]
- OECD. Guidelines for the Testing of Chemicals, 471, Bacterial Reverse Mutation Test; Organisation for Economic Co-Operation and Development: Paris, France, 2020. [Google Scholar]
- OECD. Guidelines for the Testing of Chemicals, 473, In Vitro Mammalian Chromosomal Aberration Test; Organisation for Economic Co-Operation and Development: Paris, France, 2016. [Google Scholar]
- OECD. Guidelines for the Testing of Chemicals, 474, Mammalian Erythrocyte Micronucleus Test; Organization for Economic Co-Operation and Development: Paris, France, 2016. [Google Scholar]
Group | Conc. (μg/mL) | RPD (%) | S9 Mix | Treatment Time (h) | No. of Cells Analyzed | Number of Cells with Structural Aberrations | Number of Cells with Numerical Aberrations | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ctb | csb | cte | cse | frg | gap | Total (%) | End | Pol | Total (%) | ||||||||
ctg | csg | gap– | gap+ | ||||||||||||||
SRT | 0 | 100 | – | 6–18 | 150 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 (0.0) | 0 (0.0) | 0 | 0 | 0 (0.0) |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||||||||
78.1 | 92.8 | – | 6–18 | 150 | Not observed | ||||||||||||
156 | 90.1 | – | 6–18 | 150 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 (0.0) | 1 (0.3) | 0 | 0 | 0 (0.0) | |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | |||||||||
313 | 87.3 | – | 6–18 | 150 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 (0.3) | 1 (0.3) | 0 | 0 | 0 (0.0) | |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | |||||||||
625 | 85.6 | – | 6–18 | 150 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 (0.0) | 0 (0.0) | 0 | 0 | 0 (0.0) | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||||||||
MMC | 0.1 | 58.5 | – | 6–18 | 150 | 9 | 0 | 26 | 0 | 0 | 0 | 0 | 56 ** (18.7) | 58 (19.3) | 0 | 0 | 0 (0.0) |
8 | 0 | 23 | 0 | 0 | 2 | 0 | 0 | 0 | |||||||||
SRT | 0 | 100 | + | 6–18 | 150 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 (0.0) | 0 (0.0) | 0 | 0 | 0 (0.0) |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||||||||
78.1 | 93.8 | + | 6–18 | 150 | Not observed | ||||||||||||
156 | 88.9 | + | 6–18 | 150 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 (0.3) | 1 (0.3) | 0 | 0 | 0 (0.0) | |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | |||||||||
313 | 85.5 | + | 6–18 | 150 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 (0.0) | 1 (0.3) | 0 | 0 | 0 (0.0) | |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | |||||||||
625 | 84.3 | + | 6–18 | 150 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 (0.0) | 0 (0.0) | 0 | 0 | 0 (0.0) | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||||||||
B[a]P | 20 | 50.7 | + | 6–18 | 150 | 5 | 0 | 25 | 0 | 0 | 0 | 0 | 58 ** (19.3) | 58 (19.3) | 0 | 0 | 0 (0.0) |
10 | 0 | 24 | 0 | 0 | 0 | 0 | 0 | 0 | |||||||||
SRT | 0 | 100 | – | 24–0 | 150 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 (0.0) | 0 (0.0) | 0 | 0 | 0 (0.0) |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||||||||
78.1 | 89.7 | – | 24–0 | 150 | Not observed | ||||||||||||
156 | 88.0 | – | 24–0 | 150 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 (0.3) | 1 (0.3) | 0 | 0 | 0 (0.0) | |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||||||||
313 | 82.3 | – | 24–0 | 150 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 (0.0) | 0 (0.0) | 0 | 0 | 0 (0.0) | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||||||||
625 | 71.0 | – | 24–0 | 150 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 (0.0) | 0 (0.0) | 0 | 0 | 0 (0.0) | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||||||||
MMC | 0.1 | 52.7 | – | 24–0 | 150 | 9 | 0 | 32 | 0 | 0 | 0 | 0 | 70 ** (23.3) | 71 (23.7) | 0 | 0 | 0 (0.0) |
13 | 0 | 27 | 0 | 0 | 1 | 0 | 0 | 0 |
Group | Dose (mg/kg) | Hours after Dosing | PCE/(PCE + NCE) % (Mean ± SD) | MNPCE/PCE % (Mean ± SD) |
---|---|---|---|---|
Negative control | 0 | 24 | 33.4 ± 0.59 | 0.025 ± 0.025 |
48 | 33.2 ± 0.63 | 0.030 ± 0.021 | ||
SRT | 1250 | 24 | 32.4 ± 1.57 | 0.030 ± 0.033 |
2500 | 24 | 32.5 ± 1.61 | 0.025 ± 0.000 | |
5000 | 24 | 32.7 ± 1.72 | 0.025 ± 0.031 | |
48 | 32.6 ± 0.94 | 0.020 ± 0.021 | ||
Positive control (MMC) | 2 | 24 | 33.4 ± 0.70 | 5.090 ± 0.513 |
Analyte | Quantitative Wavelength (nm) | Linear Range (μg/mL) | Regression Equation | r2 | LOD (μg/mL) | LOQ (μg/mL) |
---|---|---|---|---|---|---|
1 | 280 | 0.31–20.00 | y = 95,550.99x + 458.13 | 1.0000 | 0.03 | 0.09 |
2 | 280 | 0.31–20.00 | y = 99,954.33x + 3602.82 | 1.0000 | 0.09 | 0.27 |
3 | 275 | 0.94–60.00 | y = 15,130.59x + 2858.94 | 1.0000 | 0.11 | 0.32 |
4 | 275 | 0.31–20.00 | y = 26,128.42x + 1517.82 | 1.0000 | 0.06 | 0.17 |
5 | 275 | 0.31–20.00 | y = 65,883.81x + 3774.02 | 0.9999 | 0.06 | 0.18 |
6 | 275 | 0.78–50.00 | y = 41,788.84x + 771.77 | 1.0000 | 0.11 | 0.34 |
7 | 275 | 0.31–20.00 | y = 53,049.55x + 1924.39 | 1.0000 | 0.09 | 0.26 |
8 | 290 | 0.78–50.00 | y = 156,240.95x + 26,984.77 | 0.9999 | 0.16 | 0.50 |
9 | 275 | 0.31–20.00 | y = 64,648.61x − 2836.96 | 1.0000 | 0.07 | 0.20 |
10 | 255 | 0.31–20.00 | y = 7375.30x − 645.92 | 0.9999 | 0.05 | 0.15 |
11 | 275 | 0.31–20.00 | y = 93,965.82x + 4297.31 | 1.0000 | 0.06 | 0.17 |
12 | 220 | 0.31–20.00 | y = 27,871.86x − 3292.83 | 0.9998 | 0.01 | 0.03 |
Analyte | Spiked Conc. (μg/mL) | Measured Conc. (μg/mL) | Recovery (%) | SD | RSD (%) |
---|---|---|---|---|---|
1 | 1.00 | 0.97 | 96.99 | 0.76 | 0.78 |
2.00 | 1.97 | 98.37 | 0.85 | 0.86 | |
4.00 | 3.82 | 95.39 | 0.33 | 0.35 | |
2 | 1.00 | 0.99 | 99.08 | 0.64 | 0.65 |
2.00 | 2.02 | 101.21 | 0.77 | 0.76 | |
4.00 | 4.02 | 100.53 | 0.39 | 0.39 | |
3 | 4.00 | 4.03 | 100.84 | 2.37 | 2.35 |
10.00 | 9.70 | 96.96 | 1.00 | 1.03 | |
20.00 | 19.74 | 98.71 | 1.15 | 1.16 | |
4 | 1.00 | 0.98 | 98.44 | 1.34 | 1.36 |
2.00 | 2.00 | 100.09 | 0.26 | 0.26 | |
4.00 | 4.05 | 101.28 | 2.15 | 2.12 | |
5 | 1.00 | 1.01 | 100.99 | 1.39 | 1.38 |
2.00 | 1.98 | 98.89 | 0.37 | 0.38 | |
4.00 | 4.03 | 100.85 | 1.55 | 1.53 | |
6 | 4.00 | 4.04 | 101.04 | 0.88 | 0.87 |
8.00 | 7.79 | 97.37 | 2.13 | 2.19 | |
16.00 | 15.91 | 99.44 | 0.15 | 0.15 | |
7 | 1.00 | 0.97 | 96.71 | 1.51 | 1.56 |
2.00 | 2.03 | 101.65 | 0.92 | 0.91 | |
4.00 | 4.17 | 104.31 | 0.35 | 0.34 | |
8 | 2.00 | 2.04 | 102.05 | 1.28 | 1.25 |
5.00 | 4.91 | 98.26 | 0.79 | 0.80 | |
10.00 | 10.34 | 103.44 | 0.55 | 0.53 | |
9 | 1.00 | 1.00 | 100.13 | 2.58 | 2.57 |
2.00 | 2.06 | 103.09 | 1.32 | 1.28 | |
4.00 | 4.07 | 101.68 | 0.47 | 0.46 | |
10 | 1.00 | 1.02 | 102.22 | 1.56 | 1.53 |
2.00 | 1.96 | 97.97 | 1.49 | 1.52 | |
4.00 | 4.13 | 103.33 | 1.28 | 1.24 | |
11 | 1.00 | 1.02 | 101.91 | 0.22 | 0.22 |
2.00 | 1.96 | 97.98 | 0.26 | 0.26 | |
4.00 | 3.83 | 95.74 | 0.16 | 0.17 | |
12 | 1.00 | 1.00 | 99.73 | 1.60 | 1.61 |
2.00 | 1.95 | 97.69 | 0.41 | 0.42 | |
4.00 | 4.02 | 100.52 | 0.29 | 0.29 |
Analyte | Conc. (μg/mL) | Intra-Day | Inter-Day | ||||
---|---|---|---|---|---|---|---|
Measured Conc. (μg/mL) | Precision (RSD, %) | Accuracy (%) | Measured Conc. (μg/mL) | Precision (RSD, %) | Accuracy (%) | ||
1 | 5.00 | 4.88 | 0.57 | 97.63 | 4.76 | 2.09 | 95.15 |
10.00 | 10.14 | 0.36 | 101.43 | 10.21 | 0.63 | 102.07 | |
20.00 | 19.91 | 0.25 | 99.57 | 20.10 | 0.77 | 100.48 | |
2 | 5.00 | 5.03 | 0.34 | 100.53 | 4.96 | 1.10 | 99.28 |
10.00 | 10.06 | 0.15 | 100.58 | 9.95 | 0.94 | 99.53 | |
20.00 | 20.10 | 0.43 | 100.48 | 19.88 | 0.95 | 99.38 | |
3 | 15.00 | 15.28 | 0.70 | 101.89 | 15.13 | 1.03 | 100.89 |
30.00 | 30.45 | 0.26 | 101.49 | 30.21 | 0.89 | 100.69 | |
60.00 | 60.54 | 0.54 | 100.90 | 59.99 | 0.87 | 99.99 | |
4 | 5.00 | 5.08 | 0.55 | 101.65 | 5.04 | 0.92 | 100.81 |
10.00 | 10.15 | 0.20 | 101.47 | 10.06 | 0.88 | 100.63 | |
20.00 | 20.16 | 0.53 | 100.81 | 19.99 | 0.85 | 99.95 | |
5 | 5.00 | 5.07 | 0.50 | 101.33 | 5.03 | 0.87 | 100.53 |
10.00 | 10.11 | 0.20 | 101.10 | 10.03 | 0.70 | 100.31 | |
20.00 | 20.09 | 0.35 | 100.45 | 19.91 | 0.81 | 99.57 | |
6 | 12.50 | 12.62 | 0.68 | 101.00 | 12.51 | 1.06 | 100.11 |
25.00 | 25.37 | 0.21 | 101.47 | 25.14 | 0.86 | 100.58 | |
50.00 | 50.42 | 0.44 | 100.84 | 50.01 | 0.79 | 100.03 | |
7 | 5.00 | 5.06 | 0.62 | 101.22 | 5.03 | 0.89 | 100.56 |
10.00 | 10.13 | 0.29 | 101.32 | 10.05 | 0.83 | 100.48 | |
20.00 | 20.18 | 0.48 | 100.88 | 20.00 | 0.85 | 100.01 | |
8 | 12.50 | 12.70 | 0.46 | 101.64 | 12.61 | 0.81 | 100.90 |
25.00 | 25.39 | 0.21 | 101.56 | 25.21 | 0.67 | 100.82 | |
50.00 | 50.23 | 0.34 | 100.46 | 49.84 | 0.74 | 99.68 | |
9 | 5.00 | 5.03 | 0.75 | 100.56 | 4.98 | 0.94 | 99.68 |
10.00 | 10.11 | 0.39 | 101.06 | 9.99 | 0.99 | 99.89 | |
20.00 | 20.17 | 0.39 | 100.84 | 19.96 | 0.93 | 99.78 | |
10 | 5.00 | 4.83 | 0.73 | 96.54 | 4.82 | 0.95 | 96.33 |
10.00 | 9.99 | 0.41 | 99.91 | 9.96 | 0.44 | 99.62 | |
20.00 | 20.22 | 0.56 | 101.10 | 20.42 | 0.93 | 102.11 | |
11 | 5.00 | 5.07 | 0.59 | 101.46 | 5.03 | 0.91 | 100.66 |
10.00 | 10.14 | 0.28 | 101.45 | 10.06 | 0.80 | 100.65 | |
20.00 | 20.17 | 0.48 | 100.87 | 20.00 | 0.82 | 100.00 | |
12 | 5.00 | 5.09 | 0.31 | 101.82 | 5.13 | 0.76 | 102.57 |
10.00 | 10.28 | 0.09 | 102.82 | 10.30 | 0.35 | 102.99 | |
20.00 | 20.43 | 0.29 | 102.14 | 20.42 | 0.32 | 102.10 |
Analyte | Amount (mg/g Freeze-Dried Sample) | Origin | |||||
---|---|---|---|---|---|---|---|
Batch 1 | Batch 2 | Batch 3 | |||||
Mean ± SD (×10–2) | RSD (%) | Mean ± SD (×10–2) | RSD (%) | Mean ± SD (×10–2) | RSD (%) | ||
1 | 0.10 ± 0.06 | 0.59 | 0.10 ± 0.15 | 1.55 | 0.10 ± 0.04 | 0.43 | PU |
2 | 0.04 ± 0.02 | 0.55 | 0.04 ± 0.08 | 1.77 | 0.04 ± 0.08 | 1.78 | PU |
3 | 2.05 ± 1.71 | 0.83 | 2.07 ± 5.17 | 2.50 | 2.05 ± 2.16 | 1.06 | GU |
4 | 0.60 ± 0.74 | 1.24 | 0.61 ± 1.63 | 2.67 | 0.60 ± 0.17 | 0.28 | GU |
5 | 0.36 ± 0.12 | 0.34 | 0.36 ± 0.12 | 0.33 | 0.36 ± 0.13 | 0.35 | CC |
6 | 16.78 ± 7.01 | 0.42 | 16.86 ± 6.98 | 0.41 | 16.63 ± 10.92 | 0.66 | SB |
7 | 4.05 ± 1.61 | 0.40 | 4.08 ± 2.04 | 0.50 | 4.01 ± 2.61 | 0.65 | SB |
8 | 1.29 ± 0.19 | 0.15 | 1.29 ± 0.08 | 0.06 | 1.29 ± 0.21 | 0.16 | CC |
9 | 0.67 ± 0.07 | 0.10 | 0.68 ± 0.36 | 0.53 | 0.68 ± 0.22 | 0.32 | SB |
10 | 3.31 ± 3.77 | 1.14 | 3.36 ± 3.23 | 0.96 | 3.31 ± 3.51 | 1.06 | GU |
11 | 0.24 ± 0.07 | 0.28 | 0.24 ± 0.09 | 0.36 | 0.24 ± 0.06 | 0.24 | SB |
12 | 0.11 ± 0.14 | 1.35 | 0.11 ± 0.18 | 1.62 | 0.11 ± 0.13 | 1.26 | AJ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, C.-S.; Jung, M.-S.; Shin, H.-K.; Lee, M.-Y. In Vitro and In Vivo Genotoxicity Assessments and Phytochemical Analysis of the Traditional Herbal Prescription Siryung-Tang. Molecules 2022, 27, 4066. https://doi.org/10.3390/molecules27134066
Seo C-S, Jung M-S, Shin H-K, Lee M-Y. In Vitro and In Vivo Genotoxicity Assessments and Phytochemical Analysis of the Traditional Herbal Prescription Siryung-Tang. Molecules. 2022; 27(13):4066. https://doi.org/10.3390/molecules27134066
Chicago/Turabian StyleSeo, Chang-Seob, Mi-Sook Jung, Hyeun-Kyoo Shin, and Mee-Young Lee. 2022. "In Vitro and In Vivo Genotoxicity Assessments and Phytochemical Analysis of the Traditional Herbal Prescription Siryung-Tang" Molecules 27, no. 13: 4066. https://doi.org/10.3390/molecules27134066
APA StyleSeo, C. -S., Jung, M. -S., Shin, H. -K., & Lee, M. -Y. (2022). In Vitro and In Vivo Genotoxicity Assessments and Phytochemical Analysis of the Traditional Herbal Prescription Siryung-Tang. Molecules, 27(13), 4066. https://doi.org/10.3390/molecules27134066