Capillary Electrophoresis Mass Spectrometry: Developments and Applications for Enantioselective Analysis from 2011–2020
Abstract
:1. Introduction
1.1. Identification of Studies in Chiral CE-MS
1.2. Scope of the Review
2. Fundamentals of Electromigration Techniques for Chiral CE-MS
2.1. Modes of Chiral CE-MS
Moving Chiral Selector
2.2. Fixed Chiral Selector
3. Basic Instrumentation-Setup
3.1. Leveling the CE and MS Instruments
3.2. Interface and Ionization Sources
3.3. Types of Mass Analyzers
3.4. Approaches Used in Coupling Chiral CE to MS
3.4.1. Partial-Filling Technique
3.4.2. Counter-Migration
3.4.3. Molecular Micelles
4. Development of Chiral Selectors for CE-MS
4.1. Chiral Selectors in EKC-MS and LE-EKC-MS
Chiral Selector | Conditions and Sample Preparation | Application | Ref. |
---|---|---|---|
Alpha cyclodextrin (α-CD) | Column: Polybrene coated capillary (50 µm id; 360 µm od; and 60 cm effective length) BGE: 40 mM NH4OAC. Injection and voltage: 50 mbar, 5s-24 kV. PFT: 70 mM α-CD: SL: MeOH/H2O/-NH4OH (50/50/−0.2, v/v/v), 10 µL/min ESI-QTOF-MS: Negative −3.5 kV; fragmentor voltage, 135 V; skimmer voltage, 65 V; acq rate: 1.03 spectra/s, DGF: 5 L/min; DGT: 150 °C; NP: 5 psi. SLE: JA standard at 250 ng/g fresh weight in MeOH/-H2O (80/20, v/v) for extraction, overnight agitation at 4 °C, centrifugation at 16,000 rpm for 15 min at 4 °C. Supernatant collected, evaporated to remove MeOH, aqueous residue adjusted to pH 2.8 with acetic acid. LLE: the acidic residue extracted with an equal volume of diethyl ether, discarding the aqueous phase, the organic fraction was vacuum evaporated. Before analysis, the solid residue was resuspended in MeOH/H2O (50/50, v/v) and filtered through a 0.22-µm filter. | Four JA: (i)(3S,7S)(+)-JA, (3R,7S)(+)-epi-JA, (3R,7R)(-)-JA, (3S,7R)(-)-epi-JA stereoisomers in wounded tobacco leaves. | [28] |
Beta cyclodextrin (β-CD) | Column: BFS capillary (50 µm id; 360 µm od; 80 cm effective length) BGE: 50 mM NH4HCO3, pH 8, H2O/IPA (85/15 v/v), 10 mM β-CD. Injection and voltage: 0.5 psi, 20 s, +25 kV. FFT: 10 mM β-CD SL: MeOH/H2O/1M NH4HCO3 (50/50/1, v/v/v), 3 µL/min. ESI-IT-MS: −2.5 kV; fragmentor voltage, 135 V; skimmer voltage, 65 V; acquisition and scan rate: 350 Hz, 110–650 m/z, DGF: 4 L/min; DGT: 325 °C; NP: 2 psi LLE: 250 mL of thawed CSF sample mixed with 1500 mL of ice-cold (−20 °C) ACN vortex, wait 5 min, centrifuged 15 min, 4 °C 1500 rcf | 13 FMOC AAs spiked in human CSF | [29] |
Beta cyclodextrin (β-CD) | Column: BFS capillary (50 µm id; 360 µm od; 75 cm effective length) BGE: 49 mM NH,OAc, pH 9.2 15% v/v IPA, FFT 6 mM β−CD. Injection and voltage: 50 mbar, 5 s, +25 kV SL: 50:50 v/v IPA, 10 mM NH,OAc, 6 μL/min SQ-ESI-MS: +3.5 kV; fragmentor voltage, 135 V; skimmer voltage, 65 V; acquisition and scan rate: 350 Hz, 110–650 m/z, DGF: 4 L/min; DGT: 300 °C; NP: 3 psi Preconcentration: LVSS-PS 50 mbar, 60 s, electroosmotic voltage −25 kV, 40 s; separation voltage +25 kV. LLE: 200 µL of thawed CSF mixed with 800 µL of ice-cold (−20 °C) ACN vortex vigorously, wait 5 min, centrifuged 10 min, 4 °C 1200 rcf. The supernatant was collected, dried, reconstituted in 200 µL of 200 mM Na2B4O7 (pH 9.2) Derivatization: A 200 µL 3-hydroxyapatite in 200 mM Na2B4O7, pH 9.2, or the CSF reconstituted sample mixed with 200 µL of 18 mM FMOC-Cl in ACN, vortexed for 8 min, extracted with 0.5 mL n-pentane to remove excess FMOC-Cl and the aqueous phase diluted 1:1 with water before injection | 4 stereoisomers of FMOC derivatized 3-hydroxy aspartic acid spiked in rat CSF | [30] |
Gamma cyclodextrin (γ-CD) | Column: BFS capillary (50 µm id; 360 µm od; 100 cm effective length) BGE: 50 mM ammonium carbonate (pH 10.0), 0.75 mM γ-CD. Injection and voltage: 50 mbar, 15 s, +30 kV. SL: isopropanol/25 mM ammonium carbonate (50/50 v/v), 3.3 μL/min. FFT: = 0.75 mM γ-CD ESI-IT-MS: +4.5 kV; m/z range scanned from 100 to 600 with a scan resolution corresponding to 13,000 per second. CID with fragmentation amplitude of 1.0 V; DGF: 3 L/min; DGT: 350 °C; NP: 2 psi. D and F: 100 µL of AAs standards or fertilizer mixture solutions (enzymatically hydrolyzed), diluted 0.1 M borate, pH 10.0, reacted with 200 µL (15 mM)FITC in acetone, kept in the dark for 16 h before injection. | 14 AAs in 4 hydrolyzed protein fertilizers | [31] |
Gamma cyclodextrin (γ-CD) | Column: BFS capillary (50 µm id; 360 µm od; 60 cm effective length) BGE: 100 mM ammonium formate adjusted to pH 2.6, 20 mM γ-CD. Injection and voltage: 5 kPa, 9 s, +30 kV. FFT: 20 mM γ-CD SL: MeOH/water/formic acid (50/49/1, v/v), 4 μL/min ESI-QTOF-MS: +3.5 kV; fragmentor, skimmer, and Oct 1 RF voltage of 200 V, 65 V, 600 V, respectively. The m/z scan range of 150–3000, acquisition rate: 5 spectra/-sec, DGF: 4 L/min; DGT: 275 °C; NP: 15 psi | Standard solution of daclatasvir and its enantiomer | [32] |
2-Hydroxypropyl-β-cyclodextrin (HP-β-CD) | Column: BFS capillary (50 µm id; 360 µm od; 100 cm effective length) BGE: 20 mM ammonium formate, 10% (v/v) formic acid Injection and voltage: 0.5 psi, 12 s, +24 kV PFT: inject in a plug of 10% (v/v) formic acid 20 mM HP-β-CD (10 psi, for 1.68 min) SL: 0.1% (v/v) formic acid, MeOH/water (80:20, v/v), 2 µL/min using flow microvial interface without sheath gas and nebulizer pressure ESI-QQQ-MS: +3.0 kV; a declustering potential of 98 V, CE: 35 Ev. The m/z scan range of 150–3000, acq rate 5 spectra/-sec. DGF: 10 L/min LLE: Corydalis Rhizoma extracted using 70% (v/v) ethanol | D/L tetrahydro-palmatine and R/S tetrahydrober-berine in Corydalis Rhizoma extract | [33] |
2-Hydroxypropyl-β-cyclodextrin (HP-β-CD). | Column: BFS capillary (50 µm id; 360 µm od; 100 cm effective length) BGE: 50 mM ammonium acetate (pH 3.5) PFT: 0.5% w/v HP-β-CD (930 mbar, 60 s) Injection and voltage: +15 kV, 30 s, +15 kV; field enhanced injection with micelle-to-solvent stacking. SL: 1% acetic acid in 50% MeOH/water, 3 µL/min. ESI-IT-MS: +4.5 kV; The m/z scan range of 150–3000 and an acquisition rate of 5 spectra/-sec. DGF: 5 L/min; DGT: 300 °C; NP: 3 psi. | A standard racemic mixture of chlorophenir-amine enantiomers | [34] |
2-hydroxypropyl-β-cyclodextrin (HP-β−CD) | Column: BFS capillary (50 µm id; 360 µm od; 104 cm effective length) BGE: 150 mM formic acid acetate (pH 3.0), PFT: 0,5% HP-β-CD, 930 mbar, 60 s) Injection and voltage: 50 mbar, 5 s, +30 kV; SL: 0.1% formic acid in 80% MeOH/H2O, 3.3 µL/min. ESI-IT-MS: +4.5 kV; The m/z scan range of 100–400 and with an acquisition rate of 32,000 m/z/s) 5 L/min; DGT: 200 °C; NP: 3 psi. SLE: Five capsules homogenized, the ground powder dissolved in DMSO, centrifuge for 10 min at 4000 rpm (20 °C), bring to a known volume and diluted with triply deionized water as needed | Standard mixture of R/S duloxetine. Quantitation of S- duloxetine in pharmaceutical formulation | [35] |
Sulfated beta-cyclodextrin (S-β-CD) | Column: BFS capillary (50 µm id; 360 µm od; 40 cm effective length). Connecting column: (50 um i.d., 5 cm, 30 μm tapered) BGE: 25 mM ammonium phosphate (pH 2.3) CMT: using 0.1% S-β-CD Injection and voltage: 10 cm, 5 s; −300 V/cm and +300 V/cm for separation and connection capillary SL: MeOH/water/formic acid (50/50/0.1 (v/v/v), 3.3 µL/min ESI-IT-MS: Positive, +4.5 kV SLE: Aqueous methyldopa tablets spike with a standard solution of methyldopa | DL-MDOPA (2-amino-2-methyl-3-(3,4-dihydroxy)-phenyl)propanoic acid) in methyldopa tablet | [21] |
Sulfated beta-cyclodextrin (S-β-CD) | Column: Bare fused silica capillary (25 µm id; 365 µm od; 65 cm effective length). BGE: 40 mM sodium borate buffer pH 9.5, with FFT: 60 mg/mL S-β-CD Injection and voltage: 100 mbar, 5 s; +30 kV SL: a 20-times diluted buffer was introduced by self aspiration to the nebulizer inlet, where it was mixed with an effluent from the CE capillary. ICP-MS: RF power of 1550 W, plasma gas flow rate of 14.95 L/min, auxiliary gas-flow rate of 0.9 L/min, nebulizer gas-flow rate of 1.08 L/min, make-up gas-flow rate of 0.2 L/min, and a dwell time of 200 ms for 194 Pt and 195 Pt isotopes. C and F Urine centrifuged for 10 min at 10,000 rpm, spiked with oxaliplatin 0.1 mg/mL solution, and filtered using 0.45 µm PTFE syringe filters. | 2 oxaliplatin enantiomers ((R,R)- Oxaliplatin), and ((S,S)- Oxaliplatin) in spiked human urine samples | [24] |
Sulfated beta-cyclodextrin (S-β-CD) | Column: BFS capillary (75 µm id; 360 µm od; 80 cm effective length) BGE: 200 mM formic acid PFT: 5.0 mM S-β-CD Injection and voltage: 50 mbar, 12 s, +30 kV. SL: 50% MeOH in water containing 0.1% formic acid, 3.0 µL/min. ESI-IT-MS: +4.0 kV; sheath gas 20 psi, au gas 0 psi C and F: Cells cultured in RPMI with 10% heat-inactivated horse serum and 5% fetal bovine serum. 500 μM DOPA (racemic or enantiomer) incubated with 6 mL of PC-12 suspension (2 × 106 cells/mL), 2 h at 37 °C. Cells removed by centrifugation, deproteinized with 300 μL of 30% trichloroacetic acid. Filtered and diluted 10× | DOPA and tyrosine and its precursors in PC-12 nerve cells | [36] |
Sulfated beta-cyclodextrin (S-β-CD) | Column: BFS capillary (50 µm id; 360 µm od; 75 cm effective length) BGE: 20 mM acetic acid/-ammonium acetate, pH 5.5 PFT: using 1.0 mM S-β-CD Injection and voltage: 100 mbar, 50 s, +25 kV. SL: 50% MeOH in water containing 0.1% acetic acid, 2.0 µL/min. ESI-IT-MS: +4.0 kV; DGT: 220 °C; NP: 20 psi. C and F: Epinine dissolved in 50 mM phosphate buffer, pH 7.4, mixed with acetaldehyde to final concentrations of 10 and 30 mM for epinine and acetaldehyde, respectively, incubated at 37 °C, 2 h, centrifuged at 10,000× g (10 min). Supernatant collected for quantitation | 1,2,3,4-tetrahydroisoquinoline derivatives (R/S)-salsolinol, N-methyl salsolinol in incubation solution | [37] |
Sulfated beta-cyclodextrin (S−β-CD) | Microchip channel, 4 cm long × 60 µm wide × 20 µm deep; glass substrate, PDMS cover tapered into thin layers (<200 µm in thickness) served as the nano ESI emitter, fixed on an XYZ-translational stage, positioned nanoESI emitter tip ~1.0 mm away from MS orifice. BGE: 10 mM ammonium acetate/acetic acid buffer (pH 5.5) and MeOH (1:1); running buffer at 100 nL/min; PFT: 35 nL 15 mM sulfated β-CD solution at 100 nL/min. Injection and voltage: 600 V, 15 s. ESI-IT-MS ion source voltage, +1.5 kV; relative collision energy 25% with an isolation width of 2.0 u and 30 ms activation time; auxiliary gas, 0 unit, sample capillary temperature, 250 °C. D and F: Cells harvested and suspended in PBS at a 2 × 106 cells/mL density. A portion of the cell suspension (25 µL) was transferred to the sample reservoir, racemic DOPA was added at a final concentration of 100 µM. | DOPA, glutamine, and serine in living cells. | [38] |
Sulfated beta-cyclodextrin (S-β-CD) | Microchip channel, 4 cm long × 60 µm wide × 20 µm deep; glass substrate PDMS tapered into thin layers (<200 µm thickness) as the nano-ESI emitter fixed on an XYZ-translational stage, nano-ESI emitter tip ~1.0 mm away from the MS orifice PFT: 35 nL sulfated β-CD solution infused to partially fill the separation channel by turning on and off the syringe pump set at 200 nL/min BGE: 15 mM ammonium acetate/acetic acid buffer (pH 5.5) and MeOH (1:1); running buffer at 100 nL/min; 15 mM sulfated-β-CD Injection and voltage: 350–1500 V, 20 s. ESI-IT-MS ion source voltage, 0 V; RCE 25% with an isolation width of 2.0 u and 30 ms activation time; auxiliary gas, 0 unit, sample capillary temperature, 250 °C. D and F: PC-12 cells cultured in complete RPMI medium with 10% heat-inactivated horse serum and 5% FBS. Cells preloaded and incubated with D/L serine for 120 min, washed, and suspended in PBS solution before being transferred to the sample reservoir | Intracellular and extracellular levels of D-serine and L-serine. | [39] |
Carboxyethyl-β-cyclodextrin | Column: BFS silica capillary (300 µm id; 160 mm effective length) was coated with 0.05% m-hydroxyethylcellulose (w/v). Preconcentration: An ITP column = 800 μm id poly- tetrafluorethylene capillary of a 90 mm total length BGE: 5 mg/mL of CE-β-CD dissolved in 25 mM ε-aminocaproic acid +25 mM HOAc (pH 4.5) as FFT. Injection and voltage: 50 mbar, 250 s; + 30 kV SL interface: methanol:water (50:50 v/v), 0.1% (v/v) acetic acid. 2.0 μL/min. ESI-QqQ-MS: 4.5 kV; DGT: 300 °C; NP: 15 psi; DGF: 5 L/min. Scan range of 100–210 m/z. D and F: Urine sample frozen immediately after sampling until use. The sample thawed, and each sample was 100-fold diluted with demineralized water and immediately injected | Enantiomers of N-(3-phenyl-3-(2-pyridyl)propyl)-N,N-Dimethyl-amine maleate in urine | [40] |
Highly sulfated gamma cyclodextrin (S-γ-CD) | Column: BFS capillary (50 µm id; 360 µm od; 80 cm effective length) BGE: 50 mM pH 2.5 phosphate buffer PFT: 0.6% v/v HS-γ-CD Injection and voltage 25 kV, 5 kV for 10 s SL: 50:50 v/v TDI water and MeOH, 5 μL/min ESI-TOF-MS: ESI capillary +3.0 kV, fragmentor 125 V; DGF: 5 L/min, DGT: 180 °C; NP: 10 psi. skimmer: 40 V. D and F: Stock solutions of synthetic cathinones (0.1 mg/mL) in MeOH, filtered and stored at −20 °C. | Separation of 12 cathinones in seized drugs | [41] |
Highly sulfated gamma cyclodextrin (S-γ-CD) | Column: Chemically modified sulfonated capillary (50 µm id; 360 µm od; 100 cm effective length) BGE: 10-mM formic acid containing 6% (20 mM) FFT: 20 mM S-γ-CD Injection and voltage: 50 mbar, 5 s, −15 kV. SL: 10-mM NH4OAC/-MeOH (50:50, v/v) 3 μL/min ESI-IT-MS: +4.5 kV; DGT: 200 °C; NP: 5 au, ion-transfer voltage: 550 V D and F. Amphetamine type samples were dissolved in pure water into 50 μg/mL. All sample solutions filtered through 0.25-µm filter | 8 amphetamine type stimulants | [42] |
Highly sulfated gamma cyclodextrin (S-γ-CD) | Column: BFS capillary (50 µm id;360 µm od; 90 cm effective length). BGE: 50-mM ammonium formate, pH 2.2 FFT: 0.26% highly S-γ−CD. Injection and voltage: 7.25 bar, 10 s, −20 kV. SL: 10-mM ammonium acetate, MeOH/H2O (50:50, v/v), 3 μL/min. ESI-TOF-MS: +4.5 kV; DGT: 180 °C; NP: 4.5 bar, ion-transfer voltage: 550 V D and F. Amphetamines dissolved in water into 0.2 mg/mL (containing 200-µg/mL diazepam as IS), filtered through 0.25-µm filter | 20 seized amphetamine and ephedrines-type substances | [43] |
(+)-(18-Crown-6)-2,3,11,12 tetra-carboxylic acid (18C6H4) | Column: BFS capillary (15 µm id; 360 µm od; 100 cm effective length). BGE: 30 mM 18C6H4 CMT 30 mM 18C6H4 in water Injection and voltage 1 psi, 4 s, +25 kV, 5 psi. Sheathless interface: porous capillary tip ESI-OT-MS: +1.1 kV; Mass spectra recorded in the range of m/z 550–650 m/z using a scan speed of >4 Hz | Standard racemic mixtures of cathinone, pregabalin, and norephedrine in bath salts | [25] |
(+)-(18-Crown-6)-2,3,11,12 tetra-carboxylic acid (18C6H4) | Column: Polybrene coated fused silica capillary (5–10 µm id; 360 µm od; 100 cm effective length). BGE: 30 mM 18C6H4 CMT with water as BGE Injection and voltage: −4 kV, 2–3 s, −25 kV Sheathless interface: porous capillary tip ESI-IT-MS: ESI capillary (+0.9–1.0 kV); Mass spectra were recorded in the range of m/z 550–650 m/z using a scan speed of >4 Hz | Racemic mixtures of cathinone, pregabalin, and norephedrine | [25] |
(+)-(18-Crown-6)-2,3,11,12 tetra-carboxylic acid (18C6H4) | Column: BFS capillary (15–20 µm id; 150 µm od; 95–115 cm effective length). BGE: 30 mM 18C6H4 in water in CMT mode. Injection and voltage 25–30 kV were applied to the CE inlet electrode with 3–5 psi of forward pressure, and 1.1–1.25 kV was applied to the CE outlet/ESI electrode, pressure (0.1–1 psi) or −2 to −4 kV (2–5 s); running voltage, +25–30 kV Sheathless interface: porous capillary tip ESI-IT-MS: 1.1 kV; Mass spectra were recorded in the range of m/z 525–700 | D/L ratios of aspartic acid in silk textiles. | [44] |
(+)-(18-Crown-6)-2,3,11,12 tetra-carboxylic acid (18C6H4) | Column: BFS capillary (15–20 µm id; 150 µm od; 100–110 cm effective length). BGE: 30 mM 18C6H4 CMT: 30 mM 18C6H4 in water Injection and voltage: pressure (0.1–1 psi) or −2 to −4 kV (2–5 s); +25–30 kV Sheathless interface: porous capillary tip ESI-IT-MS: (+1.1 kV); Mass spectra for aspartic acid/18-C-6-TCA complexes (m/z = 574) SLE: Bone pieces washed with water and methanol. Nearly 1–5 mg of the bone digested in 6 N HCI at 110 °C for 2 h, centrifuged at 14,000 rpm, supernatants removed, dried to complete dryness, and resuspended in 0.1 N HCI (amino acid solution) for CE-MS analysis | D/L ratio of aspartic acid in human archeological bone specimens | [45] |
(+)-(18-Crown-6)-2,3,11,12 tetra-carboxylic acid (18C6H4) | Column: BFS capillary (50 µm id; 360 µm od; 100 cm effective length) BGE: 30 mM 18C6H4 with water as BGE; PFT: 30 mM 18C6H4. 50 mbar,17 min to fill approximately 70% capillary Injection and voltage: +24 kV, 50 mbar for 10 s SL: MeOH:water (1:1, v/v), 5 μL/min with reference mass solutions of 0.15 μM Hexakis(1H, 1H, 3Htetra-fluoropropoxy)phosphazine and 0.075 μM purine added into the sheath liquid solution ESI-QTOF-MS: +4.0 kV, nozzle voltage: 2 kV; DGF: 12 L/min, DGT: 200 °C; mass spectra recorded in the range of 20–1700 m/z, scan rate of 1.5 spectra/scan. C and F: grain vinegar, black vinegar, and balsamic vinegar analyze. A 500 μL of each sample was filtered through a 3 kDa cutoff filter by centrifugation at 14,000× g for 10 min at 4 °C, filtered aliquot diluted with water. To evaluate signal suppression, 20 μL of a DL-AA mixture (50 μg/mL) spiked into vinegar extracts before injection | 20 underivatized DL-AAs in 3 different types of vinegar sample | [46] |
Vancomycin | Column: A hexamethrine dibromide coated capillary. (50 µm id; 365 µm od; 100 cm effective length). BGE: 50 mM ammonium formate (pH 7.0), 10 mM vancomycin, 10% MeOH. PFT: partial filling, 150 s × 50 mbar of 10 mM vancomycin in BGE Injection and voltage 50 mbar,150 s, −20 kV. SL interface: 50 mM ammonium formate pH 7.0 (50:50, v/v) MeOH-water-ammonium hydroxide, 6 μL/min. ESI-IT-MS: −3.5 kV and +4.5 kV; DGT: 200 °C; NP: 6 psi; DGF = 5 L/min. Scan range of 70–440 m/z. | 17 FMOC AAs | [47] |
Vancomycin | Column: A polyacrylamide coated capillary (50 µm id; 365 µm od; 60 cm effective length) BGE: 50 mM ammonium acetate (pH 4.5), CMT: 25 mM vancomycin Injection and voltage 100 mbar, 15 s; −25 kV SL interface: MeOH-water-ammonium hydroxide (50:49.5:0.5% v/v/v); 6 μL/min ESI-QqQ-MS: −2.5 kV; DGT: 200 °C; NP: 10 psi; DGF = 10 L/min. Mass spectra recorded in SIM (m/z = 147.1) and MRM (m/z = 147→129) D and F: The urine sample was diluted 10-fold in triply deionized water, vortexed for 1 min, and filtered using a 0.22 μm syringe filter | D/L-2hydroxyglutaric acid in urine | [48] |
Dual chiral selector: 80 mM methyl-β-CD and 40 mM of 2-hydroxypropyl-β-CD | Column: BFS capillary (50 µm id; 365 µm od; 120 cm effective length) BGE: 80 mM methyl-β-CD and 40 mM of 2-hydroxy-propyl-β-CD dissolved in 2 M formic acid (pH 1.2). PFT: 120 cm and 2.5 min (i.e., 83% of the capillary) filled with CDs mixture Injection and voltage: 50 mbar, 250 s; +30 kV SL interface: 50:50 (v/v) MeOH/water with 0.1% (v/v) formic acid, 3.3 μL/min ESI-IT-MS: −4.5 kV; DGT: 200 °C; NP: 3 psi; DGF = 5 L/min. Scan range of 100–210 m/z LLE: Rat plasma samples treated with plasma: acetonitrile, 1:2), centrifuged at 10,000× g (15 min, 4 °C), supernatant diluted with formic acid (1:1) to a final concentration of 0.25 M containing trigonelline as IS Filtered with 0.2 μm polytetrafluoroethylene before CE-MS | 5 chiral compounds of phenylalanine-tyrosine metabolic pathway: norepinephrine, epinephrine,3,4-dihy-droxyphenylalanine, phenylalanine, and tyrosine in rat plasma | [49] |
Dual chiral selector (Crown ether + γ-CD) | Column: BFS capillary (20 µm id; 150 µm od; 95–115 cm effective length). BGE: 0.125%HS-y-CD in 15 mM (+)-18-C-6-TCA PFT: 55% of the capillary is filled with 0.125% HS-y-CD in 15 mM 18C6H4 FFT: 0.125% HS-y-CD in 15 mM 18C6H4 Injection and voltage (0.5 or 1 psi) for 4 s, 25 kV Sheathless interface: porous capillary tip. ESI-IT-MS: +1 kV); Mass range of m/z 560–700 was used to detect the analyte/(+)-18C6H4 complexes | Positional and optical isomers of amphetamines and cathinones in seized drugs | [50] |
6-mono-deoxy-6(4(2aminoethhyl) imidazolyl)−β-CD (CDmh) + Cu(II) complex | Column: bare fused silica capillary (100 µm id; 365 µm od; 100 cm effective length). BGE: 0.25 mM CDmh CS is dissolved in 2 mM HOAc (pH 4.8), CuSO4 Cu2+ and CS1: 1,2 ratio in FFT mode. Injection and voltage: 1 psi, 20 s; +24 kV Preconcentration: LVSS-PS injections of 50 mbar for the 60 s. After injection, a −25 kV for 40 s was applied to electroosmotically pump the sample matrix out of the capillary at the injection end, SL interface: 25:75 v/v MeOH and 10 mM NHOAc (10 mM), 5 μL/min. ESI-SQ-MS: +4.0 kV; DGT: 250 °C; NP: 3 psi; DGF: 0 L/min. Scan range of 70–1600 m/z. | Enantiomers of tryptophanate | [51] |
(+)-1-(9-fluorenyl)ethyl chloroformate (+) FLEC) as derivatizing reagent | Column: Bare fused silica capillary (50 µm id; 375 µm od; 50 cm effective length). BGE: 150 mM acetic acid, adjusted to pH 3.7 with NH4OH. Injection and voltage: 50 mbar, 20 s; −30 kV applied voltage. SL interface: 50:50:0.1 v/v MeOH:H2O NH4OH (10 mM); 3 μL/min. ESI-IT-MS: −4.0 kV; DGT: 3000 °C; NP: 6 psi; DGF = 4 L/min; octopole radio frequency amplitude: 115.6 Vp p, capillary exit: −91.0 V, skimmer: −28.4 V, max accumulation time: 50 ms, ion charge control (ICC) target: 200 ms, scan interval: SPE: FLEC derivatives were extracted from the CSF sample using a SPE sorbent, conditioned with 1 mL of MeOH, 1 mL of water. After loading the sample, the cartridge was sequentially washed using 1 mL of aqueous MeOH (15%, v/v) and 1 mL of water. The FLEC derivatives were eluted by 2 × 0.25 mL of MeOH (containing 0.1% NH4OH), eluent was evaporated, reconstituted in 40 µL of ACN: H2O (1:1, v/v) | 5 amino acids in artificial CSF | [52] |
4.1.1. Native, Derivatized and Charged Cyclodextrins
4.1.2. Crown Ethers
4.1.3. Vancomycin
4.1.4. Dual Chiral Selectors
4.1.5. Miscellaneous
4.2. Chiral Selectors in MEKC-MS
Chiral Selector | MEK-MS Conditions | Application | Ref |
---|---|---|---|
Polysodium N-undecenoyl-L,L-leucylvalinate (poly-L,L-SULV) | Column: Bare fused silica capillary column (118 cm L, 50 um i.d., 375 um o.d) BGE: 25 mM NH4OAc pH 5.0 FFT:25 mM poly-L,L-SULV with 15% MeOH. Injection and voltage: 5 mbar for 2 s; 30 kV. SL: MeOH/H2O (80/20, v/v), 5 mM NH4OAc at pH 6.8; 5 µL/min ESI-SQ-MS: −3 kV; fragmentor voltage, 91 V; DGF: 6.0 L/min; DGT: 200 °C; and NP: 4 psi. The ESI-MS detection was performed in the SIM mode. [M−H]− ions were monitored at 307 m/z WAR and 323 m/z for 4′-, 6-, 7-,8, 9 and 10-OH WAR ESI-QqQ-MS: same as for SQ-MS except for DGF: 8.0 L/min; fragmentor voltage set at 125 V for WAR and OH-WAR and 75 V for I.S.; collision energy at 20 eV for WAR and OH-WAR and 5 eV for I.S. SPE: MAX cartridges pre conditioned with 2 mL of MeOH, 2 mL of water. Aliquots (250 µL) of plasma sample, 2.5 µL of I.S. solution and 250 µL of 10% (v/v) perchloric acid or 4% (v/v) phosphoric acid were transferred to a 1.5 mL microcentrifuge tube. After vortex mixing for 30 s, centrifugation (10 min at 1000 rpm, (9279 g)], the supernatant (450 µL) loaded on a preconditioned MAX cartridge. The loaded sample was washed with 2 mL of 2% (w/w) NH4OH, 2 mL of H2O, eluted with 2 mL of MeOH | Warfarin and its five hydroxylated metabolites in plasma | [54] |
Polysodium N-undecenoyl-L,L-leucylalaninate (poly-L,L-SULA) | Column: Bare fused silica capillary of 60 cm length, 50 µm i.d. 365 mm o.d. BGE: 20 mM NH4OAc, 25 mM TEA, pH 8.5 FFT: 15 mM poly-L,L-SULA Injection and voltage: 5 mbar, 100 s, +25 kV. SL: 5 mM NH4OAc in 80/20 MeOH/H2O, pH 6.8; 5 µL/min. ESI-QqQ-MS DGF: 8 L/min; NP: 3 psi; DGT: 200 °C; capillary voltage 3000 V; fragmentor 113 V SPE: Strata-X-C polymeric strong cation cartridges (3 cc, 60 mg).activated with 2 mL of MeOH, 2 mL of TDI water. Aliquots of 250 µL patient plasma sample, 2.5 µL of IS (1 mg/mL) and 250 µL of 4% (v/v) H3PO4 were added to a 1.5 mL tube. After vortexing for 30 s, the mixed solution was centrifuged at 1000 rpm for 10 min. Supernatant (~450 µL) was loaded on the pretreated Strata-X-C cartridge, allowed to be adsorbed into the cartridge for 15 s, the loaded sample on the cartridge was washed with 2 mL of 0.1 M HCI and 2 mL of MeOH, dried under gentle stream of air, 30 s. The analytes eluted with 2 mL NH4OH/-MeOH (5/95 v/v) in a 10 mL glass tube, solvent was evaporated in a vacuum chamber under a gentle stream of air. The residue in the tube was reconstituted with 50 µL of MeOH/H2O (10/90, v/v) before injecting | Venlafaxine, O-desmethylvenlafaxine, N-desmethylvenlafaxine in human plasma | [55] |
Polysodium N-undecenoxycarbonyl-L-leucinate (poly- L-SUCL) | Column: A 77 cm fused silica capillary column covalently bonded with 28 mg/mL of 2-acryl-amido-2-methyl-1-propanesulfonic acid BGE: 20 mM NH4OAc, 15 mM TEA FFT: 25 mM poly-L SUCL, pH 8.8 Injection and voltage: 10 psi, 20 s; +30 kV SL interface: 25:75 v/v MeOH and 10 mM NH4OAc (10 mM). 5 μL/min ESI-QqQ-MS: 3.5 kV; DGT: 200 °C; NP: 3 psi; DGF = 6 L/min SLE: Two tablets of meto and two tablets of aten, total weight of 313.6 mg and 180.0 mg, respectively, crushed, transferred separately to two separate 100 mL flask, add 50–60 mL of MeOH, sonicated for 30 min for complete dissolution, diluted up to the mark with MeOH and shaken well, filtered separately. A diluent contains 400 µL of meto, 400 µL of aten solution,125 µL of the pindo (IS), 75 µL of MeOH, 9 mL of TDI-H2O, providing a final concentration of 20 mg/mL of aten and meto | (+/−)Atenolol and (+/−) metoprolol in commercial tablets using pindolol as IS. standard, a racemic mixture of norphenyl-ephrine, ephedrine and atropine | [56] |
Dual polymeric chiral surfactant Polysodium N-undecenoyl-L,L-leucyl-valinate (poly-L-SULV) + polysodium N-undecenoxycarbonyl-L-leucinate (poly-L-SUCL) | Column: A bare fused silica capillary of 120 cm length, 50 μm i.d. 365 mm o.d. BGE: 25 mM NH4OAc, pH 8.0, with 75 mM poly-SULV and 25 mM poly-SUCL FFT: 75 mM poly-L-SULV + 25 mM poly-L-SUCL Injection and voltage: 5 mbar, 10 s, +25 kV. SL: 5 mM NH4OAc in 50/50 MeOH/H2O, 0.5% v/v acetone; flow rate 7.5 μL/min APPI-SQ-MS DGF: 5 L/min; NP: 5 psi; DGT: 150 °C; vaporizer temperature 150 °C; capillary voltage 2000 V; fragmentor 80, gain 3; SIM at m/z = 195, 197 | A standard mixture of 4 benzoin derivatives | [23] |
Polysodium N-undecylenyl-alpha-D-glucopyranoside 4,6-hydrogen phosphate (poly-α -D-SUGP) Polysodium N-undecylenyl-alpha-D-glucopyranoside 6-hydrogen sulfate (Poly-α-D-SUGS) | Column: Bare fused silica capillary of 60 cm length, 50 μm i.d. 365 μm o.d. BGE: 20 mM NH4OAc, pH 10.8 FFT: 15 mM (poly-α-D-SUGP with 15 mM (poly-α-D-SUGP or poly-α-D-SUGS) Injection and voltage: 5 mbar, 10 s, +15 kV. SL: sheath liquid: 5 mM NH4OAc in 80/20 MeOH/H2O, pH 6.8; 5 μL/min ESI-QqQ-MS +3 kV, DGF: 6 L/min; NP: 3 psi; DGT: 250 °C; fragmentor voltage and collision energy varied for different compounds from 83–200 and 17–41, respectively | Standard mixture of 1,1′-binaphthyl phosphate, ephedrine, pseuodoephedrine, methyl-ephedrine, norephedrine, atenolol, metoprolol, carteolol, talinolol | [57] |
Ammonium perflurooctanoate (APFO) | Column: Bare fused silica capillary of 80 cm length, 50 μm i.d. 365 μm o.d. BGE: 150 mM APFO (pH 9.5) FFT: 150 mM APFO Injection and voltage: 0.5 psi, 10 s: SL: isopropanol-water-formic acid; (90:10:0.1, v/v/v), 3 μmL/min ESI-IT-MS: +500 oV, NP: 2 psi, DGT: 300 °C, DGF 4 L/min LLE: The buffer concentration and pH of the CSF samples were adjusted by adding 260 µL of 200 mM sodium tetraborate (pH 9.2) and 10 µL of 2 M sodium hydroxide to 1740 µL CSF. To 180 µL AA standard mixture in 26 mM sodium tetraborate or pH adjusted CSF, 180 µL of 12 mM FLEC solution diluted with acetonitrile) were added and mixed, yielding a FLEC/AA concentration ratio between 50 and 100. The mixture was incubated for 10 min at room temperature. The sample was 1:1 diluted with water to enhance analyte stacking | (+ )-1-(9-fluorenyl)ethylchloroformate derivitized DL-AAs spiked in human CSF | [58] |
Ammonium perflurooctanoate (APFO) | Column: Bare fused silica capillary of 60 cm length, 50 mm i.d. 365 mm o.d BGE: 150 mM APFO (pH 9.5); FFT: 150 mM APFO Injection and voltage: 0.5 psi, 10 s SL: sheath liquid, isopropanol-water-formic acid (90:10:0.1 v/v/v); 2.5 µL/min ESI-IT-MS: +5000 V, NP: 138 mbar, DGT: 300 °C DGF: 4 L/min; octopole RF amplitude: 168.9 Vpp, capillary exit: 48 V, skimmer: 29.7 V, Oct 1 DC: 11.7 V, Oct 2 DC: 1.8 V, max accumulation time: 300 ms, scan interval: 200–650 m/z LLE: Two aqueous artificial CSF solutions (500 mL each) were separately prepared in water. (A) NaCl (8.66 g), KCI (0.224 g), CaCl2-2H2O (0.206 g) and MgCl-6H2O (0.163 g); (B) Na2HPO4-7H2O (0.214 g) and NaH2PO4-H2O (0.027 g). The final artificial CSF solution prepared by mixing A and B. The samples prepared by spiking six AAs acids in artificial CSF, followed by a 1:1 dilution with 5 mM sodium tetraborate and 10% (v/v) ACN | (+)-1-(9-fluorenyl)ethyl chloroformate derivitized 6 AAs in artificial cerebrospinal fluid | [59] |
4.2.1. Direct Chiral Separations in MEKC-MS
4.2.2. Indirect Chiral Separations in MEKC-MS
4.3. Chiral Selectors in CEC-MS
Chiral Selector Approach | CEC-MS Conditions | Application | Ref |
---|---|---|---|
Sulfonated cellulose tris (3,5 dimethyl carbamate (CDMPC-SO3) | Packed column (75 um i.d.; 363 μm o.d.) cut to the appropriately packed bed lengths (15 cm for the optimized inlet side, 35 cm for the optimized outlet side) coated with 20% CDMPC-SO3. Mobile phase: 70%ACN, 5 mM NH4COOH, pH 3.5, Injection and voltage: injection at 6 kV, 6 s, +25 kV runs. SL: sheath liquid, MeOH/-H2O (90:10, v/v), 50 mM NH4OAc, flow rate, 5.0 µL/min ESI-SQ-MS: capillary voltage: +3000 V; fragmentor voltage: 80 V; DGF: 5 L/min; DGT:130 °C; NP: 4 psi. The SIM mode was set at m/z = 233 to monitor the desired [M+H]+ | (+/−)amino- glutethimide | [15] |
GMA-β-CD-2-acrylamido-2-methyl-propane sulfonic acid (AMPS) | Monolithic column Capillary (100 um i.d.; 365 um o.d.) were cut to the appropriate total capillary length of 50 cm with a 25 cm portion of the monolith in the inlet CE side, open 25 cm portion of the capillary placed in the MS outlet side. Mobile phase: 50/50 ACN/H20, 5 mM NH4OAc, 0.3% v/v TEA, pH 4.0. Injection and voltage: Injection at 5 kV, 3 s, +30 kV, 12 bar pressure from the inlet side. SL: sheath liquid, MeOH/-H2O (80:20, v/v), 5 mM NH4OAc, flow rate, 5.0 µL/min. ESI-SQ-MS: capillary voltage, +2000 V; DGF: 5 L/min; DGT: 200 °C; NP: 5 psi; fragmentor voltage 84 V, DGF: 3 L/min; DGT: 150 °C; NP: 20 psi; SIM positive ion mode. | Standard solution of 6 enantiomers of hexobarbital, catechin, flavanone, trogers base, aminoglutethimide, pseudoephedrine | [18] |
Cellulose tris (3,5 dimethyl carbamate (CDMPC) Sulfonated cellulose tris (3,5 dimethyl carbamate (CDMPC-SO3) | Packed column internal taper at the outlet end (50 cm × 100 µm i.d. capillary; 7 cm or 20 cm packed with 5 µm 1000° Å bare silica particles coated with 20% CDMPC and CDMPC-SO3 BGE: Variable %ACN, 5 mM NH4COOH, pH 3.5, 20 kV, 25 °C Injection and voltage: electrokinetic at 10 kV, 10 s. SL: MeOH/-H2O (90:10, v/v), 50 mM NH4OAc, flow rate, 5.0 µL/min ESI-SQ-MS: capillary voltage: +3000 V; fragmentor voltage: 80 V; DGF: 5 L/min; DGT: 130 °C; NP: 4 psi. SIM mode set at corresponding polarity to monitor the protonated [M+H]+ or deprotonated [M−H]− molecular ions | Standard solution of (+/−) warfarin, (+/−) glutethimide, (+/−) aminoglutethimide, trifluroanthryl-ethanol | [60] |
GMA-β−CD vinyl benzyl trimethylammonium (VBTA) | Monolithic column Capillary (100 or 150 um i.d.; 365 um o.d.) were cut to the appropriate total capillary length of 50 cm with a 25 cm portion of the monolith in the inlet CE side, open 25 cm portion of the capillary placed in the MS outlet side Mobile phase: 75/25 ACN/H2O, 5 mM NH4COOH, pH 3.0 Injection and voltage: 50 mbar 15 s, −30 kV, 2 bar pressure from the inlet side. SL: sheath liquid, MeOH/-H2O (50:50, v/v), 5 mM NH4OAc, flow rate, 4.0 µL/min. ESI-QqQ-MS: capillary voltage: −3500 V; DGF: 3 L/min; DGT: 150 °C; NP: 20 psi; fragmentor voltage 84 V, precursor ion of 284 m/z and product ion of 178 m/z | Standard solution of (atrolactic acid, 2-(3-chlorophenoxypropionic acid, 2,4-dinitro-phenyl-threonoine) | [61] |
Sodium 10-acryl-amidodecenoxy carbonyl-L-leucinate (SAADCL) | Monolithic column Capillary (100 µm i.d.; 365 um o.d.) cut to the appropriate total capillary length of 53 cm, 30 cm portion of the monolith in the outlet CE side, open 25 cm portion of the capillary placed at MS inlet side. Mobile phase: 5 mM NH4OAc, 0.5% (v/v) TEA (pH 5.0), 70% (v/v) ACN. Injection and voltage: 5 kV, 3 s, +15 kV, 2 bar pressure SL: sheath liquid, MeOH/-H2O (80:20, v/v), 5 mM NH4OAc, flow rate, 8.0 µL/min ESI-QqQ-MS: capillary voltage, +3500 V; DGF: 5 L/min; DGT: 150 °C; NP: 7 psi; MRM product ions observed at m/z 115.1 and 133.1 | Standard solution of ephedrine and pseudo ephedrine | [62] |
L-pipecolic acid | Monolithic column 100 μm i.d.; 365 um o.d. capillary cut to the total capillary length of 70 cm with an effective monolithic bed of 33 cm. Mobile phase: 50 mM ammonium acetate adjusted with acetic acid to pH 6.5 ACN:H2O (7:3, v/v), preinjection: mobile phases in the absence of Cu(II) ions for 12 h postinjection: 16 mM CuSO4, 30 min Injection and voltage: 50 mbar 15–20 s, −10 kV SL: sheath liquid, MeOH/-H2O (50:50, v/v), 5 mM NH4OAc, flow rate, 4.0 µL/min. ESI-IT-MS: capillary voltage: +20 V; ion-spray voltage: 3500 V; tube lens voltage 35 V. DGF: 4 L/-min; DGT: 150 °C; NP: 8 psi; scan: m/z 100–1000, scan time:200 ms. | Standard solution of 4 dansylated (DNS) +/− amino acids (DNS-valine, DNS-phenylalanine, DNS-threonine, DNS-serine) | [63] |
4.3.1. Packed Column
4.3.2. Monolithic Columns
5. Applications
5.1. Biospecimen
5.2. Pharmaceuticals
5.3. Cell Cultures
5.4. Plants and Plant Extracts
5.5. Miscellaneous
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMPS | 2-acrylamido-2-methyl-1-propane-sulfonic acid |
APFO | ammonium perfluorooctanoate (APFO) |
ATS | amphetamine-type stimulants |
NH4OAC | ammonium acetate |
NH4OH | ammonium hydroxide |
APPI | atmospheric pressure photoionization |
ATENO | atenolol |
α-CD | alpha cyclodextrin |
AAs | amino acids |
β−CD | beta cyclodextrin |
BGE | background electrolyte |
[(+)-18-C6H4-TCA] | (+)-(18- crown-6)-2,3,11,12-tetracarboxylic acid |
CD | cyclodextrin |
CD-mH | 6-mono-deoxy-6[4(2aminoethhyl] imadazolyl]-β-CD |
CDMPC-SO3 | sulfated cellulose dimethylphenylcarbamate |
CSP | chiral stationary phase |
C and F | centrifugation and filtration |
CE-β-CD | carboxyethyl beta cyclodextrin |
CEC-MS | capillary electrochromatography mass spectrometry |
COUAM | coumachlor |
CMT | counter-migration technique |
CSF | cerebrospinal fluid |
CS | chiral selector |
CSP | chiral stationary phase |
D and F | dilution and filtration |
DGF | drying gas flowrate |
DGT | drying gas temperature |
DOPA | dihydroxy phenylalanine |
DX | duloxetine (DX) |
EP | ephedrine |
ESI | electrospray ionization |
EKC | electrokinetic chromatography |
EKC-MS | electrokinetic chromatography mass spectrometry |
3-FMC | fluoromethcathinone |
FITC | fluorescein isothiocyanate |
FLEC | (+)-1-(9-fluorenyl)ethyl chloroformate ((+)-FLEC) |
FMOC | fluorenylmethoxycarbonyl |
FFT | full filling technique |
FASS, | field amplified sample stacking |
γ-CD | gamma cyclodextrin |
GMA-β-CD-VBTA | glycidyl methacrylate-bonded β-CD |
HS-γ-CD | highly sulfated gamma cyclodextrin |
HP-β-CD | hydroxypropyl-β-CD; |
ICP-MS | inductively coupled plasma mass spectrometry |
ITP | isotachophoresis |
IS | internal standard |
IT-MS | ion-trap mass spectrometer |
JA | jasmonic acid |
LIF | laser-induced fluorescence |
LE-EKC | ligand exchange electrokinetic chromatography |
LOD | limit of detection |
LOQ | limit of quantitation |
LLE | liquid-liquid extraction |
LVSS | large volume sample stacking |
MAX | mixed mode anion exchange |
MCE-MS | microchip electrophoresis mass spectrometry |
MEKC-MS | micellar electrokinetic chromatography mass spectrometry |
METOP | metoprolol |
MDOPA | methyldopa |
MoMs | molecular micelles |
MSS | micelle to solvent stacking |
N-DVX | N-desmethylvenlafaxine |
NMSal | N-methylsalsolinol |
OT-CEC | open tubular capillary electrochromatography |
O-DVX | O-desmethylvenlafaxine |
OH-WAR | hydroxyl warfarin |
PFT | partial filling technique |
poly-α-D-SOGP | polysodium N-octenylenyl-alpha-D-glucopyranoside 4,6-hydrogen phosphate |
poly-α-D-SUGP | polysodium N-undecenylenyl-alpha-D-glucopyranoside 4,6-hydrogen phosphate |
poly-α-D-SOGS | polysodium N-octenyl-alpha-D-glucopyranoside 6-hydrogen sulfate |
poly-α-D-SUGS | polysodium N-undecenynl-alpha-D-glucopyranoside 6-hydrogen sulfate |
poly(L-SUCL) | polysodium undeceoxy carbonyl leucinate |
poly(L-SULV) | polysodium undecenyl valinate |
poly(L-SULA) | polysodium undecenoyl L,L-leucyl alaninate |
poly(L-SULV) | polysodium undecenoyl L,L-leucyl valaninate |
PEP | pseudoephedrine |
PSP | pseudostationary phase |
QQQ-MS | triple quadrupole mass analyzer |
Q-TOF-MS | quadrupole time of flight mass spectrometer |
SAADCL | sodium 10-acryl-amidodecenoxy carbonyl-L-leucinate |
SLE | solid liquid extraction |
SPE | solid |
S-β-CD | sulfated beta cyclodextrin |
SBE-β-CD | sulfobutyl ether beta cyclodextin |
SL | sheath liquid |
SQ | single quadrupole mass analyzer |
UV/DAD | ultraviolet/diode array |
VC | vancomycin chloride |
VX | venlafaxine |
WAR | warfarin |
References
- DeKoster, N.; Clark, C.P.; Kohler, I. Past, Present, and Future Developments in Enantioselective Analysis Using Capillary Electromigration Techniques. Electrophoresis 2021, 42, 38–57. [Google Scholar] [CrossRef] [PubMed]
- Fortuna, S.S.; Puyana, M.C.; Marina, M.L. Chiral Micellar Electrokinetic Chromatography. J. Chromatogr. A 2020, 1626, 461383. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Kang, Y. Analysis of Stereoisomers of Chiral Drug by Mass Spectrometry. Chirality 2018, 30, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.; Shamsi, S.A. Carbohydrate Based Polymeric Surfactants for Chiral Micellar Electrokinetic Chromato-graphy (CMEKC) Coupled to Mass Spectrometry. In Chiral Separations Methods and Protocols; Methods in Molecular Biology; Humana Press Inc.: New York, NY, USA, 2019; pp. 417–444. [Google Scholar]
- Vega, E.D.; Crego, A.L.; Marina, M.L. Chiral Capillary Electrophoresis Mass Spectrometry. In Chiral Separations Methods and Protocols; Humana Press Inc.: New York, NY, USA, 2019; pp. 391–405. [Google Scholar]
- Sheppard, R.L.; Cal, T.J.; Henion, J.D. Chiral Separation and Detection of Terbutaline and Ephedrine by Capillary Electrophoresis Coupled with Ion Spray Mass Spectrometry. Anal. Chem. 1995, 67, 2054–2058. [Google Scholar] [CrossRef]
- Wang, J.; Warner, I.M. Chiral Separations using Micellar Electrokinetic Capillary Chromatography and a Polymerized Chiral Micelle. Anal. Chem. 1994, 66, 3773–3776. [Google Scholar] [CrossRef]
- Shamsi, S.A. Micellar Electrokinetic Chromatography-Mass Spectrometry using a Polymerized Chiral Surfactant. Anal. Chem. 2001, 73, 5103–5108. [Google Scholar] [CrossRef]
- Wachs, T.; Mayer, S.; Henion, J.D. Chiral CE-MS Using Bonded Chiral Phases. In Proceedings of the 46th ASMS Conference on Mass Spectrometry and Allied Topics, Orlando, FL, USA, 4 June 1998. [Google Scholar]
- Hancu, G.; Papp, L.A.; Tóth, G.; Kelemen, H. The use of Dual Cyclodextrin Chiral Selector Systems in the Enantioseparation of Pharmaceuticals by Capillary Electrophoresis: An Overview. Molecules 2021, 26, 2261. [Google Scholar] [CrossRef]
- El Deeb, S.; Silva, C.F.; Junior, C.S.N.; Hanafi, R.S.; Borges, K.B. Chiral Capillary Electrokinetic Chromatography: Principle and Applications, Detection and Identification, Design of Experiment, and Exploration of Chiral Recognition using Molecular Modeling. Molecules 2021, 26, 2841. [Google Scholar] [CrossRef]
- Deng, X.; Hai, X.; Vervoort, R.; Pamperin, D.; Adams, E.; Van Schepdael, A. Development and Validation of a Chiral Capillary Electrophoresis Method for Assay and Enantiomeric Purity Control of Pramipexole. J. Sep. Sci. 2011, 34, 3070–3076. [Google Scholar] [CrossRef]
- Menéndez-López, N.; Valimaña-Traverso, J.; Castro-Puyana, M.; Salgado, A.; García, M.Á.; Marina, M.L. Enantiomeric Separation of the Antiuremic Drug Colchicine by Electrokinetic Chromatography. Method Development and Quantitative Analysis. J. Pharm. Biomed. Anal. 2017, 138, 189–196. [Google Scholar] [CrossRef]
- Zheng, J.; Shamsi, S.A. The Hyphenation of Capillary Electrochromatography with Electrospray Ionization Mass spectrometry: Method Development and Assay of Warfarin in Human Plasma. Anal. Chem. 2003, 75, 6295–6305. [Google Scholar] [CrossRef] [PubMed]
- Bragg, W.; Shamsi, S.A. Development of a Fritless Packed Column for Capillary Electrochromatography-Mass Spectrometry. J. Chromatogr. A 2011, 1218, 8691–8700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Qu, J.; Lv, X.; Zhang, J.; Fang, L. A novel Open-Tubular Capillary Electrochromatography using Carboxymethyl-β-cyclodextrin Functionalized Gold Nanoparticles as Chiral Stationary Phase. J. Sep. Sci. 2020, 43, 946–953. [Google Scholar] [CrossRef] [PubMed]
- Schweitz, L. Molecularly Imprinted Polymer Coatings for Open-Tubular Capillary Electrochromatography Prepared by Surface Initiation. Anal. Chem. 2002, 74, 1192–1196. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Shamsi, S.A. Evaluation of a Methacrylate Bonded Cyclodextrins as a Monolithic Chiral Stationary Phase for Capillary Electrochromatography (CEC)-UV and CEC Coupled to Mass Spectrometry. Electrophoresis 2011, 32, 2727–2737. [Google Scholar] [CrossRef]
- Verheij, E.R.; Tjaden, U.R.; Niessen, W.M.A. Pseudo-Electrochromatography-Mass Spectrometry: A New Alternative. J. Chromatogr. A 1991, 554, 339–349. [Google Scholar] [CrossRef]
- Brocke, A.V.; Wistuba, D.; Gfrörer, P.; Stahl, M.; Schurig, V.; Bayer, E. On-line Coupling of Packed Capillary Electrochromatography with Coordination Ion Spray-Mass Spectrometry for the Separation of Enantiomers. Electrophoresis 2002, 23, 2963–2970. [Google Scholar] [CrossRef]
- Hung, S.-H.; Cheng, W.-S.; Huang, J.-L.; Wang, C.-W.; Her, G.-R. Chiral Electrokinetic Chromatography Electrospray Ionization Mass Spectrometry Using a Double Junction Interface. Electrophoresis 2012, 33, 546–551. [Google Scholar] [CrossRef]
- Moini, M. Simplifying CE−MS operation. 2. Interfacing Low-Flow Separation Techniques to Mass Spectrometry using a Porous Tip. Anal. Chem. 2007, 79, 4241–4246. [Google Scholar] [CrossRef]
- He, J.; Shamsi, S.A. Chiral Micellar Electrokinetic Chromatography (CMEKC)-Atmospheric Pressure Photoionization of Benzoin Derivatives Using Mixed Molecular Micelles. Electrophoresis 2011, 32, 1164–1175. [Google Scholar] [CrossRef]
- Sebestova, A.; Baron, D.; Pechancova, R.; Pluhacek, T.; Petr, J. Determination of Oxaliplatin Enantiomers at Attomolar Levels by Capillary Electrophoresis Connected with Inductively Coupled Plasma Mass Spectrometry. Talanta 2019, 205, 120151. [Google Scholar] [CrossRef] [PubMed]
- Rollman, C.M.; Moini, M. Ultrafast Capillary Electrophoresis/Mass Spectrometry of Controlled Substances with Optical Isomer Separation in About a Minute. Rapid Commun. Mass Spectrom. 2016, 29, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Chankvetadze, B.; Endresz, G.; Blaschke, G. About Some Aspects of the Use of Charged Cyclodextrins for Capillary Electrophoresis Enantioseparation. Electrophoresis 1994, 15, 804–807. [Google Scholar] [CrossRef]
- Schulte, G.; Heitmeier, S.; Chankvetadze, B.; Blaschke, G. Chiral Capillary Electrophoresis–Electrospray Mass Spectrometry Coupling with Charged Cyclodextrin Derivatives as Chiral selectors. J. Chromatogr. A 1998, 800, 77–82. [Google Scholar] [CrossRef]
- Han, Y.; Bai, Y.; Xiao, Y.; Du, F.; Yuan, L.; Tan, Z.; Zhao, M.; Liu, H. Simultaneous Discrimination of Jasmonic Acid Stereoisomers by CE-QTOF-MS Employing the Partial Filling Technique. Electrophoresis 2011, 32, 2693–2699. [Google Scholar] [CrossRef] [PubMed]
- Prior, A.; Sanchez-Hernandes, L.; Sastre-Toraǹo, J.; Marina, M.L.; de Jong, G.J.; Somsen, G.W. Enantioselective Analysis of Proteinogenic Amino Acids in Cerebrospinal Fluid by Capillary Electrophoresis Mass Spectrometry. Electrophoresis 2016, 37, 2410–2419. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhao, H.; Zhang, Z.; Li, X.; Mao, L.; Zhang, R.; Wang, Y. Derivatization Reagent-Assisted Enantioseparation of 3-Hydroxyaspartate with Two Chiral Centers in Rat Cerebrospinal Fluid by Capillary Electrophoresis-Mass Spectrometry. Anal. Chim. Acta 2019, 1047, 257–266. [Google Scholar] [CrossRef]
- Hernandes, L.S.; Sierras Serra, N.; Marina, M.L.; Crego, A. L Enantioseparation of Free D- and L-Amino Acids in Hydrolyzed Protein Fertilizers by Capillary Electrophoresis-Mass Spectrometry. J. Agric. Food Chem. 2013, 61, 5022–5030. [Google Scholar] [CrossRef]
- Krait, S.; Salgado, A.; Villani, C.; Naumann, L.; Neustib, C.; Chankvetadze, B.; Scriba, G.K.E. Unusual Complexation Behavior Between Daclatasvir and γ-Cyclodextrin. A Multiplatform Study. J. Chromatogr. A 2020, 1628, 461448. [Google Scholar] [CrossRef]
- Yan, B.; Huang, Z.A.; Hahaya, N.; Chen, D.D.Y. Enantioselective Analysis in Complex Matrices Using Capillary Electrophoresis Mass Spectrometry: A Case Study of Botanical Drug Corydalis Rhizoma Extract. J. Chromatogr. B 2020, 1152, 122216. [Google Scholar] [CrossRef]
- Wuetiirich, A.; Haddad, P.R.; Quirino, J.P. Online Sample Concentration in Partial-Filling Chiral Electrokinetic Chromatography-Mass Spectrometry. Chirality 2014, 26, 734–738. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-López, E.; Montealegre, C.; Marina, M.L.; Crego, A.L. Development of Chiral Methodologies with Ultraviolet and Mass Spectrometry Detection for Duloxetine Analysis in Pharmaceutical Formulations. J. Chromatogr. A 2014, 1363, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Yuan, B.; Wu, H.; Sanders, T.; McCullum, C.; Zheng, Y.; Tchounwou, P.B.; Liu, Y.-M. Chiral Capillary Electrophoresis-Mass Spectrometry of 3,4-Dihydroxyphenylalanine: Evidence for its Enantioselective Metabolism in PC-12 Nerve Cells. Anal. Biochem. 2011, 416, 191–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.; Yuan, B.; Liu, Y.-M. Chiral Capillary Electrophoresis-Mass Spectrometry of Tetrahydroisoquinoline-Derived Neurotoxins: Observation of Complex Stereoisomerism. J. Chromatogr. A. 2011, 1218, 3118–3123. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Xiao, D.; Ou, X.-M.; McCullum, C.; Liu, Y.-M. A Microchip Electrophoresis Mass Spectrometric Platform for Fast Separation and Identification of Enantiomers Employing the Partial Filling Technique. J. Chromatogr. A 2013, 1318, 251–256. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; McCullum, C.; Zhao, S.; Hu, H.; Liu, Y.-M. D-Serine Uptake and Release in PC-12 cells Measured by Chiral Microchip Electrophoresis-Mass Spectrometry. ACS Chem. Neurosci. 2015, 6, 582–587. [Google Scholar] [CrossRef] [Green Version]
- Piešanskẏ, J.; Maŕakov, K.; Kova, M.; Havŕanek, E.; Mikuš, P. Enantioselective Column Coupled Electrophoresis Employing Large Bore Capillaries Hyphenated with Tandem Mass Spectrometry for Ultra-Trace Determination of Chiral Compounds in Complex Real Samples. Electrophoresis 2015, 36, 3069–3079. [Google Scholar] [CrossRef]
- Merola, G.; Fu, H.; Tagliaro, F.; Macchia, T.; McCord, B.R. Chiral Separation of 12 Cathinone Analogs by Cyclodextrin-Assisted Capillary Electrophoresis with UV and Mass Spectrometry Detection. Electrophoresis 2014, 35, 3231–3241. [Google Scholar] [CrossRef]
- Mikuma, T.; Iwata, Y.T.; Miyaguchi, H.; Kuwayama, K.; Tsujikawa, K.; Kanamori, T.; Inoue, H. The Use of a Sulfonated Capillary on Capillary Electrophoresis-Mass Spectrometry of Amphetamine Sype Stimulants for Methamphetamine Impurity Profiling. Forensic Sci. Int. 2015, 249, 59–65. [Google Scholar] [CrossRef]
- Cui, X.; Liang, C.; Gong, F.; Wang, R.; Ni, C.; Wu, Y.; Chen, G.; Zhang, Y. Simultaneous Chiral Analysis of Amphetamine-Type Stimulants and Ephedrine by Capillary ElectrophoresiC Coupled to Time-of-flight mass spectrometry. Chirality 2018, 30, 1079–1087. [Google Scholar] [CrossRef]
- Moini, M.; Klauenberg, K.; Ballard, M. Dating Silk by Capillary Electrophoresis Mass Spectrometry. Anal. Chem. 2011, 83, 7577–7578. [Google Scholar] [CrossRef] [PubMed]
- Moini, M.; Rollman, C.M.; France, C.A.M. Dating Human Bone: Is Racemization Dating Species-Specific? Anal. Chem. 2013, 85, 11211–11215. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, S.-J.; Bang, E.; Ni, Y.-C. Chiral Separation of Intact Amino Acids by Capillary Electrophoresis-Mass Spectrometry Employing a Partial Filling Technique with a Crown Ether Carboxylic Acid. J. Chromatogr. A 2019, 1586, 128–138. [Google Scholar] [CrossRef]
- Sanchez-Hernandez, L.; Domınguez-Vega, E.; Montealegre, C.; Castro-Puyana, M.; Marina, M.L.; Crego, A.L. Potential of Vancomycin for the Enantiomeric Resolution of FMOC-Amino Acids by Capillary Electrophoresis-Ion-Trap-Mass Spectrometry. Electrophoresis 2014, 35, 1244–1250. [Google Scholar] [CrossRef] [PubMed]
- Švidrnocha, M.; Pȓibylkaa, A.; Bekárekb, V.; Ševčíka, J.; Smolkad, V.; Maier, V. Enantioseparation of d,l-2-Hydroxyglutaric acid by Capillary Electrophoresis with Tandem Mass Spectrometry—Fast and Efficient Tool for d- and l-2-Hydroxy-Glutaracidurias Diagnosis. J. Chromatogr. A 2016, 1467, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-López, E.; Marcos, A.; Ambrosio, E.; Marina, M.L.; Crego, A.L. Enantioseparation of the Constituents involved in the Phenylalanine-Tyrosine Metabolic Pathway by Capillary Electrophoresis Tandem Mass Spectrometry. J. Chromatogr. A 2016, 1467, 372–382. [Google Scholar] [CrossRef]
- Moini, M.; Rollman, C.M. Compatibility of Highly Sulfated Cyclodextrin with Electrospray Ionization at Low Nanoliter/Minute Flow Rates and its Application to Capillary Electrophoresis/Electrospray Ionization Mass Spectrometric Analysis of Cathinone Derivatives and their Optical Isomers. Rapid Commun. Mass Spectrom. 2015, 29, 304–310. [Google Scholar]
- Giuffrida, A.; Contino, A.; Maccarrone, G.; Messina, M.; Cucinotta, V. Mass Spectrometry Detection as an Innovative and Advantageous Tool in Ligand Exchange Capillary Electrophoresis. Electrophoresis 2011, 32, 1176–1180. [Google Scholar] [CrossRef]
- Moldovan, R.C.; Bodoki, E.; Servais, A.-C.; Chankvetadze, B.; Crommena, J.; Oprean, R.; Fillet, M. Capillary Electrophoresis-Mass Spectrometry of Derivatized Amino Acids for Targeted Neurometabolomics—pH Mediated Reversal of Diastereomer Migration Order. J. Chromatogr. A 2018, 1564, 199–206. [Google Scholar] [CrossRef]
- Kuhn, R.; Erni, F.; Kuhn, R.; Erni, F. Chiral Recognition and Enantiomeric Resolution Based on Host-Guest Complexation with Crown Ethers in Capillary Zone Electrophoresis. Anal. Chem. 1992, 64, 2815–2820. [Google Scholar]
- Wang, X.; Hou, J.; Jann, M.; Hon, Y.Y.; Shamsi, S.A. Development of a Chiral Micellar Ellectrokinetic Chromatography-Tandem Mass Spectrometry Assay for Simultaneous Analysis of Warfarin and Hydroxywarfarin Metabolites: Application to the Analysis of Patients Serum Samples. J. Chromatogr. A 2013, 1271, 207–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Jann, M.; Vandenberg, C.; Eap, C.B.; Shamsi, S.A. Development of an Enantioselective Assay for Simultaneous Separation of Venlafaxine and O-Desmethylvenlafaxine by Micellar Electrokinetic Chromatography-Tandem Mass Spectrometry: Application to the Analysis of Drug-Drug Interaction. J. Chromatogr. A 2015, 140, 119–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akter, F.; Shamsi, S.A. Establishing Repeatability and Ruggedness of Chiral Separations in Micellar Electrokinetic Chromatography-Mass Spectrometry: Combined use of Covalently Bonded Capillary Column and Molecular Micelles. J. Chromatogr. A 2020, 1617, 460835. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, B.; Wang, P.; Shamsi, S.A. Synthesis, Characterization, and Application of Polysodium N Alkylenyl α-D-Glucopyranoside Surfactants for Micellar Electrokinetic Chromatography-Tandem Mass Spectrometry. Electrophoresis 2016, 37, 913–923. [Google Scholar] [CrossRef] [Green Version]
- Prior, A.; Moldovan, R.C.; Crommen, J.; Servais, A.C.; Fillet, M.; de Jong, G.J.; Sornsen, G.W. Enantioselective Capillary Electrophoresis-Mass Spectrometry of Amino acids in Cerebrospinal Fluid Using a Chiral Derivatizing Agent and Volatile Surfactant. Anal. Chim. Acta 2016, 940, 150–158. [Google Scholar] [CrossRef]
- Moldovan, R.C.; Bodoki, E.; Kacs, T.; Servais, A.-C.; Crommen, J.; Oprean, R.; Fillet, M. A Micellar Electrokinetic Chromatography-Mass Spectrometry Approach using in-Capillary Diastereomeric Derivatization for Fully Automatized Chiral Analysis of Amino Acids. J. Chromatogr. A 2016, 1467, 400–408. [Google Scholar] [CrossRef]
- Bragg, W.; Shamsi, S.A. High Throughput Analysis of Chiral Compounds Using Capillary Electrochromatography (CEC) and CEC-Mass Spectrometry with Cellulose Stationary Phases. Sep. Sci. Technol. 2013, 48, 2589–2599. [Google Scholar] [CrossRef] [Green Version]
- Bragg, W.; Shamsi, S.A. A Novel Positively Charged Achiral Co-monomer for β-cyclodextrin Monolithic Stationary Phase: Improved Chiral Separation of Acidic Compounds Using Capillary Electrochromatography Coupled to Mass Spectrometry. J. Chromatogr. A. 2012, 1267, 144–155. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Wang, X.; Morell, M.; Shamsi, S.A. Amino Acid Bound Surfactants: A New Synthetic Family of Polymeric Monoliths Open Up Possibilities for Chiral Separations in Capillary Electrochromatography. Anal. Chem. 2012, 84, 5236–5242. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Huang, L.; Chen, Q.; Chen, Z. A Silica Monolithic Column with Chemically Bonded L-Pipecolic Acid as Chiral Stationary Phase for Enantiomeric Separation of Dansyl Amino Acids by CEC-MS. Chromatographia 2012, 75, 289–296. [Google Scholar] [CrossRef]
- Perry, T.L.; Jones, R.T. Amino Acid Content of Human Cerebrospinal Fluid in Normal Individuals and in Mental Defectives. J. Clin. Investig. 1961, 40, 1363–1372. [Google Scholar] [CrossRef] [PubMed]
- Faserl, K.; Sarg, B.; Kremser, L.; Lindner, H. Optimization and Evaluation of a Sheathless Capillary Electrophoresis Electrospray Ionization Mass Spectrometry Platform for Peptide Analysis: Comparison to Liquid Chromatography–Electrospray Ionization Mass Spectrometry. Anal. Chem. 2011, 83, 7297–7305. [Google Scholar] [CrossRef] [PubMed]
- Hommerson, P.; Khan, A.M.; de Jong, G.J.; Somsen., G.W. Ionization Techniques in Capillary Electrophoresis Mass Spectrometry: Principles, Design, and Application. Mass Spectrom. Rev. 2011, 30, 1096–1120. [Google Scholar] [CrossRef]
- Liu, L.; Yun, Z.; He, B.; Jiang, G. Efficient Interface for Online Coupling of Capillary Electrophoresis with Inductively Coupled Plasma–Mass Spectrometry and Its Application in Simultaneous Speciation Analysis of Arsenic and Selenium. Anal. Chem. 2014, 86, 8167–8175. [Google Scholar] [CrossRef]
- Fagerström, A.; Nilsson, M.; Berg, U.; Isaksson, R. New Propranolol Analogs: Binding and Chiral Discrimination by Cellobiohydrolase Cel7A. Org. Biomol. Chem. 2006, 4, 3067–3076. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shamsi, S.A.; Akter, F. Capillary Electrophoresis Mass Spectrometry: Developments and Applications for Enantioselective Analysis from 2011–2020. Molecules 2022, 27, 4126. https://doi.org/10.3390/molecules27134126
Shamsi SA, Akter F. Capillary Electrophoresis Mass Spectrometry: Developments and Applications for Enantioselective Analysis from 2011–2020. Molecules. 2022; 27(13):4126. https://doi.org/10.3390/molecules27134126
Chicago/Turabian StyleShamsi, Shahab A., and Ferdoushi Akter. 2022. "Capillary Electrophoresis Mass Spectrometry: Developments and Applications for Enantioselective Analysis from 2011–2020" Molecules 27, no. 13: 4126. https://doi.org/10.3390/molecules27134126
APA StyleShamsi, S. A., & Akter, F. (2022). Capillary Electrophoresis Mass Spectrometry: Developments and Applications for Enantioselective Analysis from 2011–2020. Molecules, 27(13), 4126. https://doi.org/10.3390/molecules27134126