From a Molecule to a Drug: Chemical Features Enhancing Pharmacological Potential
Author Contributions
Funding
Conflicts of Interest
References
- Ribaudo, G.; Bortoli, M.; Ongaro, A.; Oselladore, E.; Gianoncelli, A.; Zagotto, G.; Orian, L. Fluoxetine Scaffold to Design Tandem Molecular Antioxidants and Green Catalysts. RSC Adv. 2020, 10, 18583–18593. [Google Scholar] [CrossRef]
- Muraro, C.; Polato, M.; Bortoli, M.; Aiolli, F.; Orian, L. Radical Scavenging Activity of Natural Antioxidants and Drugs: Development of a Combined Machine Learning and Quantum Chemistry Protocol. J. Chem. Phys. 2020, 153, 114117. [Google Scholar] [CrossRef] [PubMed]
- Ribaudo, G.; Bortoli, M.; Witt, C.E.; Parke, B.; Mena, S.; Oselladore, E.; Zagotto, G.; Hashemi, P.; Orian, L. ROS-Scavenging Selenofluoxetine Derivatives Inhibit In Vivo Serotonin Reuptake. ACS Omega 2022, 7, 8314–8322. [Google Scholar] [CrossRef]
- Ribaudo, G.; Bortoli, M.; Oselladore, E.; Ongaro, A.; Gianoncelli, A.; Zagotto, G.; Orian, L. Selenoxide Elimination Triggers Enamine Hydrolysis to Primary and Secondary Amines: A Combined Experimental and Theoretical Investigation. Molecules 2021, 26, 2770. [Google Scholar] [CrossRef] [PubMed]
- Stefaniu, A.; Pirvu, L.; Albu, B.; Pintilie, L. Molecular Docking Study on Several Benzoic Acid Derivatives against SARS-CoV-2. Molecules 2020, 25, 5828. [Google Scholar] [CrossRef] [PubMed]
- Elzupir, A.O. Molecular Docking and Dynamics Investigations for Identifying Potential Inhibitors of the 3-Chymotrypsin-like Protease of SARS-CoV-2: Repurposing of Approved Pyrimidonic Pharmaceuticals for COVID-19 Treatment. Molecules 2021, 26, 7458. [Google Scholar] [CrossRef]
- Cuesta, S.A.; Meneses, L. The Role of Organic Small Molecules in Pain Management. Molecules 2021, 26, 4029. [Google Scholar] [CrossRef]
- Krake, E.F.; Baumann, W. Selective Oxidation of Clopidogrel by Peroxymonosulfate (PMS) and Sodium Halide (NaX) System: An NMR Study. Molecules 2021, 26, 5921. [Google Scholar] [CrossRef] [PubMed]
- Zagotto, G.; Bortoli, M. Drug Design: Where We Are and Future Prospects. Molecules 2021, 26, 7061. [Google Scholar] [CrossRef] [PubMed]
- Wanat, K.; Brzezińska, E. Statistical Methods in the Study of Protein Binding and Its Relationship to Drug Bioavailability in Breast Milk. Molecules 2022, 27, 3441. [Google Scholar] [CrossRef] [PubMed]
- Chai, T.-T.; Wong, C.C.-C.; Sabri, M.Z.; Wong, F.-C. Seafood Paramyosins as Sources of Anti-Angiotensin-Converting-Enzyme and Anti-Dipeptidyl-Peptidase Peptides after Gastrointestinal Digestion: A Cheminformatic Investigation. Molecules 2022, 27, 3864. [Google Scholar] [CrossRef] [PubMed]
- Ha, H.T.; Cuong, D.X.; Thuy, L.H.; Thuan, P.T.; Tuyen, D.T.T.; Mo, V.T.; Dong, D.H. Carrageenan of Red Algae Eucheuma Gelatinae: Extraction, Antioxidant Activity, Rheology Characteristics, and Physicochemistry Characterization. Molecules 2022, 27, 1268. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Reyes, D.; Casanova, A.G.; González-Paramás, A.M.; Martín, Á.; Santos-Buelga, C.; Morales, A.I.; López-Hernández, F.J.; Prieto, M. Protective Effect of Quercetin 3-O-Glucuronide against Cisplatin Cytotoxicity in Renal Tubular Cells. Molecules 2022, 27, 1319. [Google Scholar] [CrossRef] [PubMed]
- Torshin, I.Y.; Gromova, O.A.; Ostrenko, K.S.; Filimonova, M.V.; Gogoleva, I.V.; Demidov, V.I.; Kalacheva, A.G. Lithium Ascorbate as a Promising Neuroprotector: Fundamental and Experimental Studies of an Organic Lithium Salt. Molecules 2022, 27, 2253. [Google Scholar] [CrossRef] [PubMed]
- Huwait, E.; Al-Saedi, D.A.; Mirza, Z. Anti-Inflammatory Potential of Fucoidan for Atherosclerosis: In Silico and In Vitro Studies in THP-1 Cells. Molecules 2022, 27, 3197. [Google Scholar] [CrossRef] [PubMed]
- Álvaro-Alonso, E.A.; Lorenzo, M.P.; Gonzalez-Prieto, A.; Izquierdo-García, E.; Escobar-Rodríguez, I.; Aguilar-Ros, A. Physicochemical and Microbiological Stability of Two Oral Solutions of Methadone Hydrochloride 10 mg/mL. Molecules 2022, 27, 2812. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribaudo, G.; Orian, L. From a Molecule to a Drug: Chemical Features Enhancing Pharmacological Potential. Molecules 2022, 27, 4144. https://doi.org/10.3390/molecules27134144
Ribaudo G, Orian L. From a Molecule to a Drug: Chemical Features Enhancing Pharmacological Potential. Molecules. 2022; 27(13):4144. https://doi.org/10.3390/molecules27134144
Chicago/Turabian StyleRibaudo, Giovanni, and Laura Orian. 2022. "From a Molecule to a Drug: Chemical Features Enhancing Pharmacological Potential" Molecules 27, no. 13: 4144. https://doi.org/10.3390/molecules27134144
APA StyleRibaudo, G., & Orian, L. (2022). From a Molecule to a Drug: Chemical Features Enhancing Pharmacological Potential. Molecules, 27(13), 4144. https://doi.org/10.3390/molecules27134144